Database Query Results : , , MCT1

MCT1, Multiple Copies in T-cell malignancy 1: Click to Expand ⟱
Source:
Type:
MCT-1 is a transcriptional regulator that plays a crucial role in cell cycle regulation, apoptosis, and cell proliferation. Overexpression of MCT-1 has been observed in: Leukemia, Lymphoma, Breast, Lung, CRC.


Scientific Papers found: Click to Expand⟱
2308- CUR,    Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells
- in-vitro, Liver, HepG2
GlucoseCon↓, Curcumin obviated the hyperglycemia-induced modulations like elevated glucose consumption, lactate production, and extracellular acidification, and diminished nitric oxide and reactive oxygen species (ROS) production
lactateProd↓,
ECAR↓,
NO↓,
ROS↑, Curcumin favors the ROS production in HepG2 cells in normal as well as hyperglycemic conditions. ROS production was detected in cancer cells treated with curcumin, or doxorubicin, or their combinations in NG or HG medium for 24 h
HK2↓, HKII, PFK1, GAPDH, PKM2, LDH-A, IDH3A, and FASN. Metabolite transporters and receptors (GLUT-1, MCT-1, MCT-4, and HCAR-1) were also found upregulated in high glucose exposed HepG2 cells. Curcumin inhibited the elevated expression of these enzymes, tr
PFK1↓,
GAPDH↓,
PKM2↓,
LDHA↓,
FASN↓,
GLUT1↓, Curcumin treatment was able to significantly decrease the expression of GLUT1, HKII, and HIF-1α in HepG2 cells either incubated in NG or HG medium.
MCT1↓,
MCT4↓,
HCAR1↓,
SDH↑, Curcumin also uplifted the SDH expression, which was inhibited in high glucose condition
ChemoSen↑, Curcumin Prevents High Glucose-Induced Chemoresistance
ROS↑, Treatment of cells with doxorubicin in presence of curcumin was found to cooperatively augment the ROS level in cells of both NG and HG groups.
BioAv↑, Curcumin Favors Drug Accumulation in Cancer Cells
P53↑, An increased expression of p53 in curcumin-treated cells can be suggestive of susceptibility towards cytotoxic action of anticancer drugs
NF-kB↓, curcumin has therapeutic benefits in hyperglycemia-associated pathological manifestations and through NF-κB inhibition
pH↑, Curcumin treatment was found to resist the lowering of pH of culture supernatant both in NG as well in HG medium.

466- CUR,    Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1
- in-vitro, Liver, HepG2 - in-vitro, Liver, HuT78
GlucoseCon↓,
lactateProd↓,
pH↑,
NO↑,
LAR↓,
Hif1a↓, gene and protein
LDHA↓,
MCT1↓,
MDR1↓,
STAT3↓,
HCAR1↓,

1869- DCA,    Dichloroacetate induces autophagy in colorectal cancer cells and tumours
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Pca, PC3 - in-vitro, CRC, HT-29
LC3II↑, Increased expression of the autophagy markers LC3B II was observed following DCA treatment both in vitro and in vivo
ROS↑, increased production of reactive oxygen species (ROS)
mTOR↓, mTOR inhibition
MCT1↓, DCA is a possible competitive MCT-1 inhibitor
NADH:NAD↓, increased NAD+/NADH ratios
NAD↑,
TumAuto↑, DCA induces autophagy in cancer cells accompanied by ROS production and mTOR inhibition, reduced lactate excretion, reduced kPL and increased NAD+/NADH ratio.
lactateProd↓, DCA treatment reduces lactate excretion with no change in glucose uptake
LDH↑, Increased LDH activity

946- Nimb,    Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis
- in-vivo, NA, NA
Apoptosis↑,
Bcl-2↓,
P53↑, up-regulated expression of p53,
cl‑Casp3↑,
Cyt‑c↑,
ROS↑, induced ROS production by suppressing the expression of antioxidant regulatory enzymes, namely superoxide dismutase and catalase
SOD↓,
Catalase↓,
Glycolysis↓,
GLUT3↓,
LDHA↓, LDHA inhibitor
MCT1↓,
NHE1↓,
ATPase↓,
CAIX↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

Catalase↓, 1,   ROS↑, 4,   SOD↓, 1,  

Mitochondria & Bioenergetics

SDH↑, 1,  

Core Metabolism/Glycolysis

CAIX↓, 1,   ECAR↓, 1,   FASN↓, 1,   GAPDH↓, 1,   GlucoseCon↓, 2,   Glycolysis↓, 1,   HK2↓, 1,   lactateProd↓, 3,   LAR↓, 1,   LDH↑, 1,   LDHA↓, 3,   MCT4↓, 1,   NAD↑, 1,   NADH:NAD↓, 1,   PFK1↓, 1,   PKM2↓, 1,  

Cell Death

Apoptosis↑, 1,   Bcl-2↓, 1,   cl‑Casp3↑, 1,   Cyt‑c↑, 1,   MCT1↓, 4,  

Autophagy & Lysosomes

LC3II↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

P53↑, 2,  

Proliferation, Differentiation & Cell State

mTOR↓, 1,   STAT3↓, 1,  

Migration

ATPase↓, 1,  

Angiogenesis & Vasculature

Hif1a↓, 1,   NO↓, 1,   NO↑, 1,  

Barriers & Transport

GLUT1↓, 1,   GLUT3↓, 1,   NHE1↓, 1,  

Immune & Inflammatory Signaling

HCAR1↓, 2,   NF-kB↓, 1,  

Cellular Microenvironment

pH↑, 2,  

Drug Metabolism & Resistance

BioAv↑, 1,   ChemoSen↑, 1,   MDR1↓, 1,  

Clinical Biomarkers

LDH↑, 1,  
Total Targets: 44

Pathway results for Effect on Normal Cells:


Total Targets: 0

Scientific Paper Hit Count for: MCT1, Multiple Copies in T-cell malignancy 1
2 Curcumin
1 Dichloroacetate
1 Nimbolide
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:743  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page