| Features: |
| Withaferin A is a steroidal lactone derived from the medicinal plant Withania somnifera (commonly known as Ashwagandha). The main active constituents of Ashwagandha leaves are alkaloids and steroidal lactones (commonly known as Withanolides). -The main constituents of ashwagandha are withanolides such as withaferin A, alkaloids, steroidal lactones, tropine, and cuscohygrine. Ashwagandha is an herb that may reduce stress, anxiety, and insomnia. *-Ashwagandha is often characterized as an antioxidant. -Some studies suggest that while ashwagandha may protect normal cells from oxidative damage, it can simultaneously stress cancer cells by tipping their redox balance toward cytotoxicity. Pathways: -Induction of Apoptosis and ROS Generation -Hsp90 Inhibition and Proteasomal Degradation Cell culture studies vary widely, typically ranging from low micromolar (e.g., 1–10 µM). In animal models (commonly mice), Withaferin A has been administered in doses ranging from approximately 2 to 10 mg/kg body weight. - General wellness, Ashwagandha supplements are sometimes taken in doses ranging from 300 mg to 600 mg of an extract (often standardized to contain a certain percentage of withanolides) once or twice daily. - 400mg of WS extract was given 3X/day to schizophrenia patients. report#2001. - Ashwagandha Pure 400mg/capsule is available from mcsformulas.com. -Note half-life 4-6 hrs?. BioAv Pathways: - well-recognized for promoting ROS in cancer cells, while no effect(or reduction) on normal cells. - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx, - Confusing results about Lowering AntiOxidant defense in Cancer Cells: NRF2↓, TrxR↓**, SOD↓, GSH↓ Catalase↓ HO1↓ GPx↓ - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, ROCK1↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓(combined with sulfor), DNMT1↓, DNMT3A↓, P53↑, HSP↓, Sp proteins↓, TET↑ - cause Cell cycle arrest : TumCCA↑, cyclin E↓, CDK2↓, CDK4↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓, EMT↓, TOP1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, β-catenin↓, sox2↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, α↓, ERK↓, JNK, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
| 3169- | Ash, | Withaferin A blocks formation of IFN-γ-induced metastatic cancer stem cells through inhibition of the CXCR4/CXCL12 pathway in the UP-LN1 carcinoma cell model |
| - | in-vitro, | GC, | NA |
| 3178- | Ash, | Withaferin A Inhibits Neutrophil Adhesion, Migration, and Respiratory Burst and Promotes Timely Neutrophil Apoptosis |
| - | Review, | Nor, | NA |
| 3177- | Ash, | Emerging Role of Hypoxia-Inducible Factors (HIFs) in Modulating Autophagy: Perspectives on Cancer Therapy |
| - | Review, | Var, | NA |
| 3176- | Ash, | Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex |
| - | in-vitro, | NA, | NA |
| 3175- | Ash, | SFN, | Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 3173- | Ash, | Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma |
| - | in-vitro, | neuroblastoma, | NA |
| 3172- | Ash, | Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 3171- | Ash, | Unlocking the epigenetic code: new insights into triple-negative breast cancer |
| - | Review, | BC, | NA |
| 3170- | Ash, | Withaferin A protects against hyperuricemia induced kidney injury and its possible mechanisms |
| - | in-vitro, | Nor, | NRK52E | - | in-vivo, | NA, | NA |
| 3179- | Ash, | Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells |
| - | in-vitro, | RCC, | Caki-1 |
| 3168- | Ash, | Withaferin A targeting both cancer stem cells and metastatic cancer stem cells in the UP-LN1 carcinoma cell model |
| - | in-vitro, | Var, | NA |
| 3167- | Ash, | Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo |
| - | in-vitro, | MM, | H226 |
| 3166- | Ash, | Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives |
| - | Review, | Var, | NA |
| 3165- | Ash, | Inhibitory effect of withaferin A on Helicobacter pylori‑induced IL‑8 production and NF‑κB activation in gastric epithelial cells |
| - | in-vitro, | Nor, | NA |
| 3164- | Ash, | Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3 |
| 3163- | Ash, | Rad, | Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis |
| 3162- | Ash, | Molecular insights into cancer therapeutic effects of the dietary medicinal phytochemical withaferin A |
| - | Review, | Var, | NA |
| 3161- | Ash, | Withaferin A inhibits ferroptosis and protects against intracerebral hemorrhage |
| - | in-vivo, | Stroke, | NA |
| 1142- | Ash, | Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer |
| - | Review, | BC, | MCF-7 | - | NA, | BC, | MDA-MB-231 | - | NA, | Nor, | HMEC |
| 3685- | Ash, | Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation |
| - | in-vivo, | NA, | NA |
| 4679- | Ash, | Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell |
| - | in-vitro, | NA, | NA |
| 4678- | Ash, | Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer |
| - | vitro+vivo, | NSCLC, | H1975 |
| 4677- | Ash, | Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells |
| - | vitro+vivo, | Ovarian, | NA |
| 4660- | Ash, | Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem Cells |
| - | in-vitro, | Ovarian, | NA |
| 4303- | Ash, | Ashwagandha (Withania somnifera)—Current Research on the Health-Promoting Activities: A Narrative Review |
| - | Review, | AD, | NA |
| 3689- | Ash, | Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells |
| - | in-vitro, | NA, | NRK52E |