| Source: |
| Type: |
| Glutathione (GSH) is a ubiquitous tripeptide antioxidant that plays a key role in mitigating oxidative damage. GSH is oxidized by ROS to form a homodimer disulfide (GSSG). The ratio between GSH and GSSG can be used as a metric to define the redox state of a cell, and imbalances in this ratio leading to excess GSSG can cause cell death. GSH/GSSG ratio can be altered in various types of cancer, including breast, lung, colon, and prostate cancer. In general, increased GSH levels and decreased GSSG levels are associated with cancer progression and poor prognosis. |
| 2014- | CAP, | Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | HPDE-6 | - | in-vivo, | PC, | AsPC-1 |
| 1600- | Cu, | Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis |
| - | Review, | NA, | NA |
| 1979- | CUR, | Rad, | Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase |
| - | in-vitro, | Lung, | A549 |
| 5012- | DSF, | Cu, | Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems |
| 1709- | Lyco, | Lycopene prevents carcinogen-induced cutaneous tumor by enhancing activation of the Nrf2 pathway through p62-triggered autophagic Keap1 degradation |
| - | in-vitro, | Nor, | JB6 |
| 184- | MFrot, | MF, | Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells |
| - | in-vitro, | GBM, | GBM |
| 2259- | MFrot, | MF, | Method and apparatus for oncomagnetic treatment |
| - | in-vitro, | GBM, | NA |
| 1987- | Part, | Rad, | A NADPH oxidase dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | PrEC |
| 4934- | PEITC, | Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2004- | Plum, | Plumbagin Inhibits Proliferative and Inflammatory Responses of T Cells Independent of ROS Generation But by Modulating Intracellular Thiols |
| - | in-vivo, | Var, | NA |
| 2005- | Plum, | Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2) |
| - | in-vivo, | Nor, | EL4 | - | in-vitro, | AML, | Jurkat |
| 5033- | PTS, | Involvement of the Nrf2 Pathway in the Regulation of Pterostilbene-Induced Apoptosis in HeLa Cells via ER Stress |
| - | in-vitro, | Cerv, | HeLa |
| 1481- | SFN, | docx, | Combination of Low-Dose Sulforaphane and Docetaxel on Mitochondrial Function and Metabolic Reprogramming in Prostate Cancer Cell Lines |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 1345- | SK, | The Critical Role of Redox Homeostasis in Shikonin-Induced HL-60 Cell Differentiation via Unique Modulation of the Nrf2/ARE Pathway |
| - | in-vitro, | AML, | HL-60 |
| 2198- | SK, | Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | 143B |
| 2195- | SK, | Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis |
| - | in-vitro, | OS, | NA |
| 1068- | SM, | Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | NA | - | Human, | BC, | NA |
| 322- | SNP, | Cisplatin, | Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin |
| - | in-vitro, | Ovarian, | A2780S | - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | OVCAR-3 |
| 374- | SNP, | Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2134- | TQ, | Modulation of Nrf2/HO1 Pathway by Thymoquinone to Exert Protection Against Diazinon-induced Myocardial Infarction in Rats |
| - | in-vivo, | Nor, | NA |
| 2112- | TQ, | Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 630- | VitC, | Metabolomic alterations in human cancer cells by vitamin C-induced oxidative stress |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | HT-29 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:104 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid