Database Query Results : , , Ferroptosis

Ferroptosis, Ferroptosis: Click to Expand ⟱
Source:
Type: type of cell death
Type of programmed cell death dependent on iron.
Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid peroxides to lethal levels. It is distinct from other forms of cell death, such as apoptosis, necrosis, and autophagy. The process of ferroptosis is heavily dependent on iron metabolism and reactive oxygen species (ROS).
The accumulation of lipid peroxides is a hallmark of ferroptosis. This can occur when the antioxidant defenses, such as glutathione and selenoproteins, are overwhelmed or inhibited. Many cancer cells upregulate GPX4 to evade ferroptosis, making it a potential target for therapy. It has been described that GPX4, xCT and ACSL-4 are the main targets in the regulation of ferroptosis.


Scientific Papers found: Click to Expand⟱
1069- AL,    Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling
- vitro+vivo, ESCC, TE1 - vitro+vivo, ESCC, KYSE-510 - in-vitro, Nor, Het-1A
TumCP↓, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, p‑AMPK↑, mTOR↓, TumAuto↑, NCOA4↑, MDA↑, Iron↑, TumW↓, TumVol↓, ATG5↑, ATG7↑, TfR1/CD71↓, FTH1↓, ROS↑, Iron↑, Ferroptosis↑, *toxicity↓,
1009- And,  5-FU,    Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer
- in-vivo, CRC, HCT116 - in-vitro, CRC, SW480
ChemoSen↑, Casp9↑, Ferroptosis↑, Wnt/(β-catenin)↓, FTL↑, TP53↑, ACSL5↑, GCLC↑, GCLM↑, SAT1↑, STEAP3↑, ACSL5↑,
1349- And,    Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction
- in-vitro, Lung, H460 - in-vitro, Lung, H1650
TumCG↓, TumMeta↓, Ferroptosis↑, ROS↑, MDA↑, Iron↑, GSH↓, GPx4↓, xCT↓, MMP↓, ATP↓,
3395- ART/DHA,    Artesunate Induces Ferroptosis in Hepatic Stellate Cells and Alleviates Liver Fibrosis via the ROCK1/ATF3 Axis
- in-vitro, NA, HSC-T6
*Ferroptosis↑, *GSH↓, *ROCK1↓,
3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, Diff↑, TumAuto↑, angioG↓, TumCCA↑, ROS↑, AMPK↑, mTOR↑, ChemoSen↑, Tf↑, Ferroptosis↑, Ferritin↓, lipid-P↑, CDK1↑, CDK2↑, CDK4↑, CDK6↑, SIRT1↑, COX2↓, IL1β↓, survivin↓, DNAdam↑, RadioS↑,
3345- ART/DHA,    Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells
- in-vitro, GBM, NA
ROS↑, Ferroptosis↑, lipid-P↑, HSP70/HSPA5↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MDA↑, GSH↓, eff↑, GPx4↑,
3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, toxicity↑, Ferroptosis↑, ROS↑, TumCCA↑, BioAv↝, eff↝, Half-Life↓, Ferritin↓, GPx4↓, NADPH↓, GSH↓, BAX↑, Cyt‑c↑, cl‑Casp3↑, VEGF↓, IL8↓, COX2↓, MMP9↓, E-cadherin↑, MMP2↓, NF-kB↓, p16↑, CDK4↓, cycD1/CCND1↓, p62↓, LC3II↑, EMT↓, CSCs↓, Wnt↓, β-catenin/ZEB1↓, uPA↓, TumAuto↑, angioG↓, ChemoSen↑,
3384- ART/DHA,    Dihydroartemisinin triggers ferroptosis in primary liver cancer cells by promoting and unfolded protein response‑induced upregulation of CHAC1 expression
- in-vitro, Liver, Hep3B - in-vitro, Liver, HUH7 - in-vitro, Liver, HepG2
Ferroptosis↑, ROS↑, GSH↓, UPR↑, GPx4↓, PERK↑, eIF2α↑, ATF4↑,
3390- ART/DHA,    Ferroptosis: The Silver Lining of Cancer Therapy
Ferroptosis↑, Iron↑, NCOA4↝, ROS↑, Fenton↑, Tf↓,
3387- ART/DHA,    Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment
- Review, Var, NA
BioAv↓, lipid-P↑, Ferroptosis↑, Iron↑, GPx4↓, GSH↓, P53↑, ER Stress↑, PERK↑, ATF4↑, GRP78/BiP↑, CHOP↑, ROS↑, NRF2↑,
2575- ART/DHA,  docx,    Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC
- in-vitro, Lung, H23
ChemoSen↑, GPx4↓, ROS↑, Ferroptosis↑, eff↑,
1076- ART/DHA,    The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer
- Review, NA, NA
Ferroptosis↑, ROS↑, ER Stress↑, i-Iron↓, TumAuto↑, AMPK↑, mTOR↑, P70S6K↑, Fenton↑, lipid-P↑, ROS↑, ChemoSen↑, NRF2↑, NRF2↓,
1026- ART/DHA,    Artemisinin improves the efficiency of anti-PD-L1 therapy in T-cell lymphoma
Ferroptosis↑, ROS↑, ERK↓, PD-L1↓,
556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓, IL1↓, TNF-α↓, TGF-β↓, NF-kB↓, MIP2↓, PGE2↓, NO↓, Hif1a↓, KDR/FLK-1↓, VEGF↓, MMP2↓, TIMP2↑, ITGB1↑, NCAM↑, p‑ATM↑, p‑ATR↑, p‑CHK1↑, p‑Chk2↑, Wnt/(β-catenin)↓, PI3K↓, Akt↓, ERK↓, cMyc↓, mTOR↓, survivin↓, cMET↓, EGFR↓, cycD1/CCND1↓, cycE1↓, CDK4/6↓, p16↑, p27↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, oncosis↑, TumCCA↑, ROS↑, DNAdam↑, RAD51↓, HR↓,
575- ART/DHA,    Dihydroartemisinin initiates ferroptosis in glioblastoma through GPX4 inhibition
- in-vitro, GBM, U87MG
GPx4↓, xCT∅, ROS↑, Ferroptosis↑, ACSL4∅,
4991- ART/DHA,  doxoR,    Dihydroartemisinin alleviates doxorubicin-induced cardiotoxicity and ferroptosis by activating Nrf2 and regulating autophagy
- in-vivo, Nor, H9c2
*cardioP↑, *ROS↓, *Ferroptosis↓, *NRF2↑, Keap1↓,
4993- ART/DHA,    Dihydroartemisinin inhibits galectin-1–induced ferroptosis resistance and peritoneal metastasis of gastric cancer via the Nrf2–HO-1 pathway
- vitro+vivo, GC, NA
Ferroptosis↑, NRF2↓, HO-1↓, PI3K↓, Akt↓, TumMeta↓,
1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, TumCP↓, CSCs↓, TumMeta↓, EMT↓, angioG↓, Vim↓, HSP90↓, annexin II↓, m-FAM72A↓, BCR-ABL↓, Mortalin↓, NRF2↓, cMYB↓, ROS↑, ChemoSen↑, eff↑, ChemoSen↑, ChemoSen↑, eff↑, *BioAv↓, ROCK1↓, TumCI↓, Sp1/3/4↓, VEGF↓, Hif1a↓, EGFR↓,
3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, p38↑, BAX↑, BIM↑, CHOP↑, ROS↑, DR5↑, Apoptosis↑, Ferroptosis↑, GPx4↓, BioAv↝, HSP90↓, RET↓, E6↓, E7↓, Akt↓, cMET↓, Glycolysis↓, TCA↓, NOTCH1↓, STAT3↓, AP-1↓, PI3K↓, eIF2α↓, HO-1↑, TumCCA↑, CDK1↓, *hepatoP↑, *GSH↑, *NRF2↑, Wnt↓, EMT↓, uPA↓, CSCs↓, Nanog↓, SOX2↓, CD44↓, lactateProd↓, Iron↑, NF-kB↓,
3173- Ash,    Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma
- in-vitro, neuroblastoma, NA
GPx4↓, HO-1↑, lipid-P↑, Keap1↓, NRF2↑, Ferroptosis↑,
3172- Ash,    Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
Keap1↑, NRF2↓, EMT↓, TumCP↓, TumCI↓, selectivity↑, *toxicity↓, ROS↑, MDA↑, GSH↓, Ferroptosis↑,
4822- ASTX,  Rad,    Astaxanthin Synergizes with Ionizing Radiation (IR) in Oral Squamous Cell Carcinoma (OSCC)
tumCV↓, selectivity↑, RadioS↑, GPx4↓, Ferroptosis↑,
2625- Ba,  LT,    Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyte
- in-vivo, Stroke, NA
*lipid-P↓, *ACSL4∅, *NRF2∅, *GPx4∅, *Ferroptosis↓, *ROS↓, *MDA↓, *eff↑, *HO-1∅,
2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, *neuroP↑, *cardioP↑, *hepatoP↑, *RenoP↑, TumCCA↑, CDK4↓, cycD1/CCND1↓, cycE/CCNE↑, BAX↑, Bcl-2↓, VEGF↓, Hif1a↓, cMyc↓, NF-kB↓, ROS↑, BNIP3↑, *neuroP↑, *cognitive↑, *NO↓, *iNOS↓, *COX2↓, *PGE2↓, *NRF2↑, *p‑AMPK↑, *Ferroptosis↓, *lipid-P↓, *ALAT↓, *AST↓, *Fas↓, *BAX↓, *Apoptosis↓,
2628- Ba,  Cisplatin,    Baicalein alleviates cisplatin-induced acute kidney injury by inhibiting ALOX12-dependent ferroptosis
- in-vitro, Nor, HK-2
*RenoP↑, *12LOX↓, *Ferroptosis↓,
2475- Ba,    Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis
- in-vitro, CRC, HCT116 - in-vitro, CRC, DLD1 - in-vivo, NA, NA
tumCV↓, GPx4↓, STAT3↓, Ferroptosis↑,
2701- BBR,    Berberine Inhibits KLF4 Promoter Methylation and Ferroptosis to Ameliorate Diabetic Nephropathy in Mice
- in-vivo, Diabetic, NA
*Inflam↓, *antiOx↑, *Ferroptosis↓, *RenoP↑, *DNMT1↓, *DNMTs↓, *KLF4↑,
3679- BBR,    Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway
- in-vivo, AD, NA
*Beclin-1↑, *LC3B↑, *p62↓, *ROS↓, *lipid-P↓, *MDA↓, *Ferroptosis↓, *TfR1/CD71↓, *FTH1↑, *memory↑, *JNK↓, *p38↓, *Aβ↓, *Inflam↓,
2756- BetA,    Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway
- in-vitro, HCC, HUH7 - in-vitro, HCC, H1299
TumCP↓, ROS↓, antiOx↓, TumCG↓, TumCMig↓, NRF2↓, GPx4↓, HO-1↓, NCOA4↑, FTH1↓, Ferritin↑, Ferroptosis↑, GSH↓, MDA↓,
2757- BetA,    Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
- in-vitro, GBM, U251
tumCV↓, TumCMig↓, TumCI↓, Apoptosis↑, p‑PI3K↓, p‑Akt↓, Ferroptosis↑, HO-1↑, NRF2↑,
727- Bor,  RSL3,  erastin,    Enhancement of ferroptosis by boric acid and its potential use as chemosensitizer in anticancer chemotherapy
- in-vitro, Liver, HepG2
ROS↑, GSH↓, TBARS↑, Ferroptosis↑, ChemoSen↑,
738- Bor,    Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways
- in-vitro, GBM, U251 - in-vitro, GBM, A172 - in-vitro, Nor, SVGp12
TumCP↓, GPx4↓, GSH↓, HSP70/HSPA5↓, NRF2↓, MDA↑, Casp3↑, Casp7↑, Ferroptosis↑, selectivity↑,
739- Bor,    Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells
- in-vitro, GBM, U87MG - in-vitro, Nor, HMC3
TumCG↓, TumCP↓, TumCCA↑, PCBP1↓, GSH↓, GPx4↓, Beclin-1↑, MDA↑, ACSL4↑, Casp3↑, Casp7↑, Ferroptosis↑, *toxicity↓,
1447- Bos,    Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, BC, 4T1 - in-vitro, Nor, MCF10
tumCV↓, AntiCan↑, *toxicity↓, Ferroptosis↑, i-Iron↑, GPx4↓, ROS↑, lipid-P↑, Tf↑, TumCG↓,
2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, Mcl-1↓, survivin↓, Casp3↑, Casp9↑, Ferroptosis↑, lipid-P↑, Ca+2↓, Akt↓, mTOR↓, Hif1a↓, MCU↓, ATP↓, ROS↑, eff↑,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
4770- CoQ10,  VitK2,    Cancer cell stiffening via CoQ10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer
- in-vitro, BC, MDA-MB-231
other↑, *antiOx↑, Risk↓, other↑, TumMeta↓, ECM/TCF↓, Akt2↓, Ferroptosis↑, eff↑,
1600- Cu,    Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis
- Review, NA, NA
ER Stress↑, ROS↑, AntiTum↑, GSH↓, Ferroptosis↑, selectivity↑, GSH/GSSG↓, *ROS∅, eff↑,
404- CUR,    Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, H1299
TumAuto↑, TumCG↓, TumCP↓, Iron↑, GSH↓, lipid-P↑, GPx↓, mtDam↑, autolysosome↑, Beclin-1↑, LC3s↑, p62↓, Ferroptosis↑,
414- CUR,    Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Ferroptosis↑, Iron↑, ROS↑, lipid-P↑, MDA↑, GSH↓, HO-1↑, NRF2↑, GPx↓, ROS↑, Iron↑, GPx4↓, HSP70/HSPA5↑, ATFs↑, CHOP↑, MDA↑, FTL↑, FTH1↑, BACH1↑, REL↑, USF1↑, NFE2L2↑,
4990- Dipy,    Characterization of dipyridamole as a novel ferroptosis inhibitor and its therapeutic potential in acute respiratory distress syndrome management
- in-vivo, Nor, NA
*Ferroptosis↓, *HO-1↓, SOD1↑,
5008- DSF,  Cu,    Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis
- in-vitro, HCC, NA
selectivity↑, TumCD↑, TumCMig↓, TumCI↓, angioG↓, mtDam↑, Iron↑, lipid-P↑, Ferroptosis↑, NF-kB↑, p‑p62↑, Keap1↓, eff↑, eff↓, ChemoSen↑,
5007- DSF,  Cu,    Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell Carcinoma
- vitro+vivo, Oral, NA
AntiTum↑, TumCP↓, Ferroptosis↑, Iron↑, lipid-P↑, NRF2↓, HO-1↓,
3215- EGCG,    Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H1299
TumCP↓, Ki-67↓, GPx4↓, ACSL4↑, Iron↑, MDA↑, ROS↑, Ferroptosis↑, eff↑, NRF2↑, HO-1↑,
2204- erastin,    Regulation of ferroptotic cancer cell death by GPX4
- in-vitro, fibroS, HT1080
GSH↓, Ferroptosis↑, ROS↑, GPx↓, GPx4↓, lipid-P↑, eff↓, eff↑,
1955- GamB,    Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer
- in-vitro, Pca, NA
ROS↑, Apoptosis↑, Ferroptosis↑, Trx↓, eff↑, TrxR↓, Dose∅, MMP↓, eff↑,
3761- H2,    Therapeutic Inhalation of Hydrogen Gas for Alzheimer's Disease Patients and Subsequent Long-Term Follow-Up as a Disease-Modifying Treatment: An Open Label Pilot Study
- Human, AD, NA
*cognitive↑, *BBB↑, *ROS↓, *NRF2↑, *Inflam↓, *NFAT↓, *FAO↓, *4-HNE↓, *PGC-1α↑, *Ferroptosis↓,
2080- HNK,    Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia Cells
- in-vitro, AML, THP1 - in-vitro, AML, U937 - in-vitro, AML, SK-HEP-1
tumCV↓, TumCCA↑, Ferroptosis↑, lipid-P↑, HO-1↑, GPx4∅,
2081- HNK,    Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, SW48 - in-vitro, Colon, HT-29 - in-vitro, Colon, LS174T - in-vitro, Colon, HCT8 - in-vitro, Colon, SW480 - in-vivo, NA, NA
tumCV↓, ROS↑, Iron↑, GPx4↓, mtDam↑, Ferroptosis↑, TumVol↓, TumW↓,
2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, TumCP↑, TumAuto↑, Apoptosis↑, *BioAv↑, *neuroP↑, *NF-kB↑, MAPK↑, GPx4↑, Tf↑, BAX↑, Bcl-2↓, antiOx↑, Hif1a↓, Ferroptosis↑,
4641- HT,    Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Ferroptosis↑, Iron↑, lipid-P↑, ROS↑, GSH↓, MMP↓, GPx4↓, TLR1↑, eff↓, NRF2↓, ROS↑,
1921- JG,    Juglone induces ferroptotic effect on hepatocellular carcinoma and pan-cancer via the FOSL1-HMOX1 axis
- in-vitro, PC, NA - vitro+vivo, PC, NA
TumCG↓, Ferroptosis↑, ROS↑, Iron↑, lipid-P↑, MDA↑, GSH↓, FOSL1↑, HO-1↑,
1275- LT,    Mechanism of luteolin induces ferroptosis in nasopharyngeal carcinoma cells
- in-vitro, Laryn, NA
Ferroptosis↑, MDA↑, Iron↑, SOD↓, GSH↓, GPx4↓, SOX4↓, GDF15↓,
582- MF,  immuno,  VitC,    Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy
- in-vitro, Pca, TRAMP-C1 - in-vivo, NA, NA
Fenton↑, Ferroptosis↑, ROS↑, TumCG↓, Iron↑, GPx4↓,
1273- Myr,    Myricetin Induces Ferroptosis and Inhibits Gastric Cancer Progression by Targeting NOX4
- vitro+vivo, GC, NA
Ferroptosis↑, MDA↑, Iron↑, GSH↓, NOX4↑, NRF2↓, GPx4↓,
2937- NAD,    High-Dosage NMN Promotes Ferroptosis to Suppress Lung Adenocarcinoma Growth through the NAM-Mediated SIRT1-AMPK-ACC Pathway
- in-vitro, Lung, A549
SIRT1↑, Dose↝, TumCP⇅, Ferroptosis↑, lipid-P↑, AMPK↑, ACC↑,
1225- OLST,    Orlistat Induces Ferroptosis in Pancreatic Neuroendocrine Tumors by Inactivating the MAPK Pathway
- vitro+vivo, PC, NA
TumCMig↓, TumCI↓, Ferroptosis↑, MAPK↓,
2054- PB,    Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis
- in-vitro, EC, ISH - in-vitro, EC, HEC1B
Ferroptosis↑, xCT↓, RBM3↑, HDAC↓, ROS↑,
4927- PEITC,    Targeting ferroptosis in osteosarcoma
- Review, OS, NA
AntiCan↑, BioAv↑, Ferroptosis↑, TfR1/CD71↑, Iron↑, ROS↑, MDA↑, lipid-P↑, GPx4↓,
4925- PEITC,    PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells
- in-vitro, OS, NA
tumCV↓, TumCP↓, TumCCA↑, GSH↓, ROS↑, Ferroptosis↑, Apoptosis↑, TumAuto↑, MAPK↑, TumCG↓, Dose⇅,
2958- PL,    Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity
- in-vitro, Oral, HSC3
TumCP↓, lipid-P↑, ROS↑, DNMT1↑, FTH1↓, GPx4↓, eff↓, GSH↓, Ferroptosis↑, MDA↓,
2956- PL,    Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis
- in-vitro, PC, NA
ROS↑, Ferroptosis↓, GSH↓, GPx↓, cl‑PARP∅, cl‑Casp3∅, eff↑, eff↑,
2954- PL,    The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy
- Review, Var, NA
NRF2↑, ROS↑, ER Stress↑, MAPK↑, CHOP↑, selectivity↑, Keap1↝, HO-1↑, Ferroptosis↑,
4965- PSO,  Cisplatin,    The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis
- vitro+vivo, GC, HGC27 - vitro+vivo, GC, MKN45
TumCP↓, TumCMig↓, TumCI↓, TumCG↓, *toxicity↓, eff↑, Ferroptosis↑, ACSL4↑, GPx4↓, ChemoSen↑, chemoP↑, AntiTum↑, Sepsis↓,
5026- QC,    Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes
- in-vitro, GC, NA
SLC1A5↓, ROS↑, Iron↓, NRF2↓, GPx4↓, Ferroptosis↑,
1489- RES,    Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer
- Review, Var, NA
RadioS↑, ChemoSen↑, *BioAv↓, *BioAv↑, Ferroptosis↑, lipid-P↑, xCT↓, GPx4↓, *BioAv↑, COX2↓, cycD1/CCND1↓, FasL↓, FOXP3↓, HLA↑, p‑NF-kB↓, BAX↑, Bcl-2↓, MALAT1↓,
3024- RosA,    rmMANF prevents sepsis-associated lung injury via inhibiting endoplasmic reticulum stress-induced ferroptosis in mice
- in-vivo, Sepsis, NA
*Ferroptosis↓, *GRP78/BiP↓, *PERK↓, *ATF4↓, *Sepsis↓, *GSH↑, *SOD↑, *Catalase↑,
3023- RosA,    Rosmarinic acid alleviates septic acute respiratory distress syndrome in mice by suppressing the bronchial epithelial RAS-mediated ferroptosis
- in-vivo, Sepsis, NA
*GPx4↑, *Inflam↓, *ER Stress↓, *Ferroptosis↓, *Sepsis↓, *GRP78/BiP↓, *IRE1↓, JNK↓,
3039- RosA,    Rosmarinic acid liposomes suppress ferroptosis in ischemic brain via inhibition of TfR1 in BMECs
- in-vivo, Nor, NA - in-vivo, Stroke, NA
*Ferroptosis↓, *GPx4↑, *ACSL4↓, *BBB↑, *IronCh↑, *TfR1/CD71↓, *neuroP↑,
4911- Sal,    MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells
- in-vitro, Var, DU145
MUC1-C↓, Ferroptosis↑, CSCs↓, NF-kB↓, GSR↓, GSH↑, Iron↑,
4904- Sal,  CUR,    Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal Transition
CSCs↓, TumCCA↑, EMT↓, other↝, TumAuto↑, Iron↑, Ferroptosis↑, BioAv↓, ROS↑, lipid-P↑, GPx4↓, eff↑,
5000- Sal,    Salinomycin kills cancer stem cells by sequestering iron in lysosomes
- vitro+vivo, BC, NA
CSCsMark↓, eff↑, Ferroptosis↑, ROS↑,
4727- Se,    Selenium inhibits ferroptosis in ulcerative colitis through the induction of Nrf2/Gpx4
- in-vivo, Col, NA
*Ferroptosis↓, *NRF2↑, *GPx4↑, *eff↑, *other↓, *antiOx↑, *Inflam↓, AntiTum↑,
4723- Se,    Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4
- in-vitro, CRC, HCT116
TumCP↓, Iron↑, MDA↑, ROS↑, MMP↓, NRF2↓, GPx4↓, Ferroptosis↑,
4718- Se,    High-Dose Selenium Induces Ferroptotic Cell Death in Ovarian Cancer
- in-vitro, Ovarian, NA
TumCP↑, ROS↑, GPx↓, lipid-P↑, Ferroptosis↑, Dose↑,
4712- Se,    Selenium and selenoproteins: key regulators of ferroptosis and therapeutic targets in cancer
- Review, Var, NA
selenoP↑, Ferroptosis↑, lipid-P↑,
4732- Se,    Selenium inhibits ferroptosis and ameliorates autistic-like behaviors of BTBR mice by regulating the Nrf2/GPx4 pathway
- in-vivo, Autism, NA
*Ferroptosis↓, *NRF2↑, *GPx4↑, *other↝,
1002- Sel,  Osi,  Adag,    Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interference
- in-vitro, Lung, H1975 - in-vitro, Lung, H385
Apoptosis↑, Ferroptosis↑, DNMT1↓, TET1↑, TumCCA↑, cl‑PARP↑, cl‑Casp3↑, Cyt‑c↑, BIM↑, NOXA↑, Apoptosis↑, ROS↑, ER Stress↑, UPR↑,
1483- SFN,    Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment
- in-vitro, OS, 143B - in-vitro, Nor, HEK293 - in-vivo, OS, NA
AntiCan↑, *toxicity∅, Ferroptosis↑, ROS↑, lipid-P↑, GSH↓, p62↑, SLC12A5↓, eff↓, GPx4↓, i-Iron↑, eff↓, MDA↑, TumVol↓, TumW↓, Ki-67↓, LC3B↑, *Weight∅,
1479- SFN,    Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway
- in-vitro, CRC, HCT116
Ferroptosis↑, SIRT3↑, AMPK↑, mTOR↑, tumCV↓, ROS↑, MDA↑, Iron↑,
3313- SIL,    Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar rats
- in-vivo, NA, NA
*NRF2↑, *HO-1↑, *creat↓, *BUN↓, *RenoP↑, *MDA↓, *TNF-α↓, *IL1β↓, *Cyt‑c↓, *Casp3↓, *GSTs↓, *GSH↑, *GPx4↑, *SOD↑, *GSR↓, *Ferroptosis↓,
1284- SK,    Shikonin induces ferroptosis in multiple myeloma via GOT1-mediated ferritinophagy
- in-vitro, Melanoma, RPMI-8226 - in-vitro, Melanoma, U266
Ferroptosis↑, LDH↓, ROS↑, Iron↑, lipid-P↑, ATP↓, HMGB1↓, GPx4↓, MDA↑, SOD↓, GSH↓,
2201- SK,    Shikonin promotes ferroptosis in HaCaT cells through Nrf2 and alleviates imiquimod-induced psoriasis in mice
- in-vitro, PSA, HaCaT - in-vivo, NA, NA
*eff↑, *IL6↓, *IL17↓, *TNF-α↓, *lipid-P↑, *NRF2↓, *HO-1↝, *NCOA4↝, *GPx4↓, *Ferroptosis↓, *Inflam↓, *ROS↓, *Iron↓,
2203- SK,    Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation
- in-vitro, Lung, NA
TumCP↓, Apoptosis↓, TumCMig↓, TumCI↓, Ferroptosis↑, ERK↓, GPx4↓, 4-HNE↑, ROS↑, GSH↓, ATF3↑, HDAC1↓, ac‑Histones↑,
2202- SK,    Enhancing Tumor Therapy of Fe(III)-Shikonin Supramolecular Nanomedicine via Triple Ferroptosis Amplification
- in-vitro, Var, NA
Iron↑, Ferroptosis↑, pH↝, H2O2↑, ROS↑, Fenton↑, GSH↓, GPx4↓, lipid-P↑,
2200- SK,    Shikonin inhibits the growth of anaplastic thyroid carcinoma cells by promoting ferroptosis and inhibiting glycolysis
- in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, 8505C
NF-kB↓, GPx4↓, TrxR1↓, PKM2↓, GLUT1↓, Glycolysis↓, Ferroptosis↑, GlucoseCon↓, lactateProd↓, ROS↑,
2199- SK,    Induction of Ferroptosis by Shikonin in Gastric Cancer via the DLEU1/mTOR/GPX4 Axis
- in-vitro, GC, NA
ROS↑, lipid-P↑, Iron↑, MDA↑, GPx4↓, Ferritin↓, DLEU1↓, mTOR↓, Ferroptosis↑,
2198- SK,    Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis
- in-vitro, OS, MG63 - in-vitro, OS, 143B
TumCP↓, TumCCA↑, Ferroptosis↑, Iron↑, ROS↑, lipid-P↑, MDA↑, mtDam↑, NRF2↓, xCT↓, GPx4↓, GSH/GSSG↓, Keap1↑,
2195- SK,    Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis
- in-vitro, OS, NA
TumCP↓, Ferroptosis↓, Hif1a↑, HO-1↑, Iron↑, ROS↑, GSH/GSSG↓, GPx4↓,
1068- SM,    Danshen Improves Survival of Patients With Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA - Human, BC, NA
TumCG↓, Ferroptosis↑, GPx4↓, TumVol↓, OS↑, GSH/GSSG↓,
4892- Sper,  erastin,    Spermidine inactivates proteasome activity and enhances ferroptosis in prostate cancer
- in-vitro, Pca, PC3 - in-vivo, Pca, NA
Ferroptosis↑, lipid-P↑, Iron↑, eff↑, HO-1↑, NRF2↑, ROS↑, AntiTum↑, eff↓,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
1216- VitC,    Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer
- in-vitro, Laryn, FaDu - in-vitro, SCC, SCC-154
Iron↝, ROS↑, tumCV↓, Ki-67↓, TumCCA↑, Ferroptosis↑, GSH↓, ROS↑, MDA↑, STAT3↓, GPx4↓, p‑STAT3↓,
1221- Z,    Unexpected zinc dependency of ferroptosis: what is in a name?
- Analysis, Nor, NA
*Ferroptosis↑, *ROS↑, *lipid-P↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 94

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

4-HNE↑, 1,   antiOx↓, 1,   antiOx↑, 1,   ATF3↑, 1,   Fenton↑, 4,   Ferroptosis↓, 2,   Ferroptosis↑, 74,   GCLC↑, 1,   GCLM↑, 1,   GPx↓, 6,   GPx4↓, 40,   GPx4↑, 2,   GPx4∅, 1,   GSH↓, 27,   GSH↑, 1,   GSH/GSSG↓, 4,   GSR↓, 1,   H2O2↑, 2,   HO-1↓, 3,   HO-1↑, 10,   Iron↓, 1,   Iron↑, 30,   Iron↝, 1,   i-Iron↓, 1,   i-Iron↑, 2,   Keap1↓, 3,   Keap1↑, 2,   Keap1↝, 1,   lipid-P↑, 29,   MDA↓, 2,   MDA↑, 21,   NADPH/NADP+↓, 1,   NFE2L2↑, 1,   NOX4↑, 1,   NRF2↓, 12,   NRF2↑, 8,   ROS↓, 1,   ROS↑, 58,   selenoP↑, 1,   SIRT3↑, 1,   SOD↓, 2,   SOD1↑, 1,   TBARS↑, 1,   Trx↓, 1,   TrxR↓, 1,   TrxR1↓, 1,   xCT↓, 4,   xCT∅, 1,  

Metal & Cofactor Biology

Ferritin↓, 3,   Ferritin↑, 1,   FTH1↓, 4,   FTH1↑, 1,   FTL↑, 2,   NCOA4↑, 3,   NCOA4↝, 1,   STEAP3↑, 1,   Tf↓, 1,   Tf↑, 3,   TfR1/CD71↓, 1,   TfR1/CD71↑, 1,  

Mitochondria & Bioenergetics

ATP↓, 3,   BCR-ABL↓, 1,   MMP↓, 4,   Mortalin↓, 1,   mtDam↑, 5,  

Core Metabolism/Glycolysis

ACC↑, 1,   ACSL4↑, 3,   ACSL4∅, 1,   ACSL5↑, 2,   AMPK↑, 4,   p‑AMPK↑, 1,   ATG7↑, 1,   cMyc↓, 2,   GlucoseCon↓, 2,   Glycolysis↓, 3,   ac‑Histones↑, 1,   HK2↓, 1,   lactateProd↓, 3,   LDH↓, 1,   MCU↓, 1,   NADPH↓, 1,   PFKP↓, 1,   PKM2↓, 1,   Pyruv↓, 1,   SAT1↑, 1,   SIRT1↑, 2,   SLC1A5↓, 1,   TCA↓, 1,  

Cell Death

Akt↓, 5,   p‑Akt↓, 2,   Apoptosis↓, 1,   Apoptosis↑, 11,   BAX↑, 6,   Bcl-2↓, 5,   BIM↑, 2,   Casp3↑, 4,   cl‑Casp3↑, 2,   cl‑Casp3∅, 1,   Casp7↑, 2,   Casp9↑, 3,   p‑Chk2↑, 1,   Cyt‑c↑, 3,   DR5↑, 1,   FasL↓, 1,   Ferroptosis↓, 2,   Ferroptosis↑, 74,   JNK↓, 1,   MAPK↓, 1,   MAPK↑, 4,   Mcl-1↓, 1,   NOXA↑, 1,   oncosis↑, 1,   p27↑, 1,   p38↑, 1,   survivin↓, 3,   TumCD↑, 1,  

Kinase & Signal Transduction

CaMKII ↓, 1,   RET↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

DLEU1↓, 1,   other↑, 2,   other↝, 1,   tumCV↓, 9,   USF1↑, 1,  

Protein Folding & ER Stress

ATFs↑, 1,   CHOP↑, 4,   eIF2α↓, 1,   eIF2α↑, 1,   ER Stress↑, 6,   GRP78/BiP↑, 2,   HSP70/HSPA5↓, 1,   HSP70/HSPA5↑, 2,   HSP90↓, 2,   PERK↑, 2,   UPR↑, 2,  

Autophagy & Lysosomes

ATG5↑, 1,   autolysosome↑, 1,   Beclin-1↑, 2,   BNIP3↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 2,   LC3B↑, 1,   LC3II↑, 1,   LC3s↑, 1,   p62↓, 3,   p62↑, 1,   p‑p62↑, 1,   TumAuto↑, 10,  

DNA Damage & Repair

p‑ATM↑, 1,   p‑ATR↑, 1,   p‑CHK1↑, 1,   DNAdam↑, 2,   DNMT1↓, 1,   DNMT1↑, 1,   m-FAM72A↓, 1,   HR↓, 1,   p16↑, 2,   P53↑, 1,   cl‑PARP↑, 1,   cl‑PARP∅, 1,   RAD51↓, 1,   TP53↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK1↑, 1,   CDK2↑, 1,   CDK4↓, 2,   CDK4↑, 1,   cycD1/CCND1↓, 4,   cycE/CCNE↑, 1,   cycE1↓, 1,   TumCCA↑, 13,  

Proliferation, Differentiation & Cell State

CD44↓, 1,   cMET↓, 2,   cMYB↓, 1,   CSCs↓, 5,   CSCsMark↓, 1,   Diff↑, 1,   EMT↓, 5,   ERK↓, 3,   FOSL1↑, 1,   GDF15↓, 1,   HDAC↓, 1,   HDAC1↓, 1,   mTOR↓, 5,   mTOR↑, 3,   p‑mTOR↓, 1,   Nanog↓, 1,   NOTCH1↓, 1,   P70S6K↑, 1,   PI3K↓, 3,   p‑PI3K↓, 1,   SOX2↓, 1,   STAT3↓, 3,   p‑STAT3↓, 1,   TumCG↓, 11,   Wnt↓, 2,   Wnt/(β-catenin)↓, 2,  

Migration

Akt2↓, 1,   annexin II↓, 1,   AP-1↓, 1,   BACH1↑, 1,   Ca+2↓, 2,   CDK4/6↓, 1,   E-cadherin↑, 1,   HLA↑, 1,   ITGB1↑, 1,   Ki-67↓, 3,   MALAT1↓, 1,   MMP2↓, 2,   MMP9↓, 1,   MUC1-C↓, 1,   NCAM↑, 1,   PCBP1↓, 1,   ROCK1↓, 1,   SOX4↓, 1,   TET1↑, 1,   TGF-β↓, 1,   TIMP2↑, 1,   TumCI↓, 8,   TumCMig↓, 7,   TumCP↓, 17,   TumCP↑, 2,   TumCP⇅, 1,   TumMeta↓, 4,   uPA↓, 2,   Vim↓, 1,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 4,   ATF4↑, 3,   ECM/TCF↓, 1,   EGFR↓, 2,   Hif1a↓, 7,   Hif1a↑, 1,   KDR/FLK-1↓, 1,   NO↓, 1,   REL↑, 1,   VEGF↓, 4,  

Barriers & Transport

GLUT1↓, 2,   SLC12A5↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 3,   FOXP3↓, 1,   HMGB1↓, 1,   IL1↓, 1,   IL1β↓, 1,   IL6↓, 1,   IL8↓, 1,   MIP2↓, 1,   NF-kB↓, 6,   NF-kB↑, 1,   p‑NF-kB↓, 1,   PD-L1↓, 1,   PGE2↓, 1,   TLR1↑, 1,   TNF-α↓, 1,  

Cellular Microenvironment

pH↝, 1,  

Hormonal & Nuclear Receptors

CDK6↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   BioAv↝, 2,   ChemoSen↑, 13,   Dose↑, 1,   Dose⇅, 1,   Dose↝, 1,   Dose∅, 1,   eff↓, 9,   eff↑, 18,   eff↝, 1,   Half-Life↓, 1,   RadioS↑, 3,   selectivity↑, 6,  

Clinical Biomarkers

E6↓, 1,   E7↓, 1,   EGFR↓, 2,   Ferritin↓, 3,   Ferritin↑, 1,   IL6↓, 1,   Ki-67↓, 3,   LDH↓, 1,   PD-L1↓, 1,   RBM3↑, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↓, 1,   AntiCan↑, 5,   AntiTum↑, 5,   chemoP↑, 1,   OS↑, 1,   Risk↓, 1,   toxicity↑, 1,   TumVol↓, 4,   TumW↓, 3,  

Infection & Microbiome

Sepsis↓, 1,  
Total Targets: 290

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

4-HNE↓, 1,   antiOx↑, 4,   Catalase↑, 2,   Ferroptosis↓, 16,   Ferroptosis↑, 2,   GPx4↓, 1,   GPx4↑, 5,   GPx4∅, 1,   GSH↓, 1,   GSH↑, 3,   GSR↓, 1,   GSTs↓, 1,   HO-1↓, 1,   HO-1↑, 2,   HO-1↝, 1,   HO-1∅, 1,   Iron↓, 1,   lipid-P↓, 4,   lipid-P↑, 2,   MDA↓, 3,   NRF2↓, 1,   NRF2↑, 8,   NRF2∅, 1,   PARK2↑, 1,   ROS↓, 6,   ROS↑, 1,   ROS∅, 1,   SOD↑, 3,  

Metal & Cofactor Biology

FTH1↑, 1,   IronCh↑, 1,   NCOA4↝, 1,   TfR1/CD71↓, 2,  

Mitochondria & Bioenergetics

ATP↑, 1,   MMP↑, 1,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

12LOX↓, 1,   ACSL4↓, 1,   ACSL4∅, 1,   ALAT↓, 1,   AMPK↑, 1,   p‑AMPK↑, 1,   BUN↓, 1,   FAO↓, 1,  

Cell Death

Akt↓, 1,   Apoptosis↓, 2,   BAX↓, 1,   BAX↑, 1,   Bcl-2↓, 1,   Casp3↓, 1,   Casp3↑, 1,   Cyt‑c↓, 1,   Fas↓, 1,   Ferroptosis↓, 16,   Ferroptosis↑, 2,   iNOS↓, 1,   JNK↓, 1,   MAPK↓, 1,   p38↓, 1,  

Transcription & Epigenetics

other↓, 1,   other↝, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,   GRP78/BiP↓, 2,   IRE1↓, 1,   PERK↓, 1,  

Autophagy & Lysosomes

Beclin-1↑, 1,   LC3B↑, 1,   MitoP↑, 1,   p62↓, 2,   p62↑, 1,  

DNA Damage & Repair

DNMT1↓, 1,   DNMTs↓, 1,  

Proliferation, Differentiation & Cell State

KLF4↑, 1,   mTOR↓, 1,   PI3K↓, 1,  

Migration

Cartilage↑, 1,   NFAT↓, 1,   ROCK1↓, 1,  

Angiogenesis & Vasculature

ATF4↓, 1,   NO↓, 1,  

Barriers & Transport

BBB↑, 3,  

Immune & Inflammatory Signaling

COX2↓, 1,   CRP↓, 1,   IL17↓, 1,   IL1β↓, 2,   IL6↓, 2,   Inflam↓, 7,   NF-kB↓, 1,   NF-kB↑, 1,   PGE2↓, 1,   TNF-α↓, 3,  

Synaptic & Neurotransmission

p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 2,   NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 3,   eff↑, 4,  

Clinical Biomarkers

ALAT↓, 1,   AST↓, 1,   creat↓, 1,   CRP↓, 1,   IL6↓, 2,  

Functional Outcomes

cardioP↑, 2,   cognitive↑, 2,   hepatoP↑, 2,   memory↑, 1,   motorD↑, 1,   neuroP↑, 5,   radioP↑, 1,   RenoP↑, 4,   Risk↓, 1,   Strength↑, 1,   toxicity↓, 5,   toxicity∅, 1,   Weight∅, 1,  

Infection & Microbiome

Sepsis↓, 2,  
Total Targets: 115

Scientific Paper Hit Count for: Ferroptosis, Ferroptosis
14 Artemisinin
8 Shikonin
5 Selenium
4 Ashwagandha(Withaferin A)
4 Baicalein
3 Boron
3 erastin
3 Copper and Cu NanoParticlex
3 Curcumin
3 Honokiol
3 Piperlongumine
3 Rosmarinic acid
3 salinomycin
2 Andrographis
2 Luteolin
2 Cisplatin
2 Berberine
2 Betulinic acid
2 Citric Acid
2 Disulfiram
2 Vitamin C (Ascorbic Acid)
2 Phenethyl isothiocyanate
2 Sulforaphane (mainly Broccoli)
1 Allicin (mainly Garlic)
1 5-fluorouracil
1 Docetaxel
1 doxorubicin
1 Astaxanthin
1 Radiotherapy/Radiation
1 Ras-selective lethal 3
1 Boswellia (frankincense)
1 Coenzyme Q10
1 Vitamin K2
1 Dipyridamole
1 EGCG (Epigallocatechin Gallate)
1 Gambogic Acid
1 Hydrogen Gas
1 HydroxyTyrosol
1 Juglone
1 Magnetic Fields
1 immunotherapy
1 Myricetin
1 nicotinamide adenine dinucleotide
1 Orlistat
1 Phenylbutyrate
1 Psoralidin
1 Quercetin
1 Resveratrol
1 Selenite
1 Osimertinib
1 Adagrasib
1 Silymarin (Milk Thistle) silibinin
1 Salvia miltiorrhiza
1 Spermidine
1 Urolithin
1 Zinc
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:114  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page