| Source: |
| Type: |
| Differentiation refers to the process by which cells become specialized in structure and function. -In healthy tissues, cells undergo differentiation to become specialized types (e.g., muscle cells, neurons, blood cells) that perform specific functions. This process is tightly regulated by genetic and epigenetic factors. -In some cases, cells can lose their specialized characteristics, a process known as dedifferentiation. This is often seen in cancer, where tumor cells revert to a more primitive, less differentiated state. |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 4992- | ART/DHA, | Dihydroartemisinin Increases the Sensitivity of Acute Myeloid Leukemia Cells to Cytarabine via the Nrf2/HO-1 Anti-Oxidant Signaling Pathway |
| - | in-vitro, | AML, | HL-60 |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 2798- | CHr, | Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2511- | H2, | Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation |
| - | in-vivo, | GBM, | U87MG |
| 4233- | LEC, | Lecithinized brain-derived neurotrophic factor promotes the differentiation of embryonic stem cells in vitro and in vivo |
| - | in-vitro, | Nor, | NA |
| 2243- | MF, | Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study |
| - | in-vitro, | Nor, | NA |
| 2242- | MF, | Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair |
| - | in-vitro, | Nor, | NA |
| 2240- | MF, | Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway |
| - | in-vitro, | Nor, | C3H10T1/2 |
| 2255- | MF, | Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress |
| - | in-vitro, | Nor, | SkMC |
| 4356- | MF, | Pulsed electromagnetic fields synergize with graphene to enhance dental pulp stem cell-derived neurogenesis by selectively targeting TRPC1 channels |
| - | in-vitro, | Nor, | NA |
| 3536- | MF, | Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis |
| - | Review, | Arthritis, | NA | - | Review, | Stroke, | NA |
| 3464- | MF, | Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology |
| - | Review, | Var, | NA |
| 530- | MF, | Low frequency sinusoidal electromagnetic fields promote the osteogenic differentiation of rat bone marrow mesenchymal stem cells by modulating miR-34b-5p/STAC2 |
| - | in-vivo, | Nor, | NA |
| 218- | MFrot, | MF, | Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells |
| - | in-vitro, | Nor, | NA |
| 3535- | MFrot, | MF, | Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications |
| - | Review, | Nor, | NA |
| 2311- | MFrot, | MF, | Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials |
| - | in-vivo, | Nor, | HaCaT |
| 2036- | PB, | Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate |
| - | in-vitro, | Pca, | NA | - | in-vivo, | NA, | NA |
| 2055- | PB, | The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 Cells |
| - | in-vitro, | Nor, | IPEC-J2 |
| 2064- | PB, | Rad, | Phenylbutyrate Attenuates the Expression of Bcl-XL, DNA-PK, Caveolin-1, and VEGF in Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP |
| 5016- | PEITC, | Phenethyl Isothiocyanate (PEITC) interaction with Keap1 activates the Nrf2 pathway and inhibits lipid accumulation in adipocytes |
| - | in-vitro, | Nor, | NA |
| 3380- | QC, | Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases |
| - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | AD, | NA |
| 2040- | SAHA, | The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | CRC, | T24 | - | in-vitro, | BC, | MCF-7 |
| 4905- | Sal, | Salinomycin as a drug for targeting human cancer stem cells |
| - | Review, | Var, | NA |
| 5004- | Sal, | Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 3198- | SFN, | Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells |
| - | in-vitro, | Pca, | NA |
| 1345- | SK, | The Critical Role of Redox Homeostasis in Shikonin-Induced HL-60 Cell Differentiation via Unique Modulation of the Nrf2/ARE Pathway |
| - | in-vitro, | AML, | HL-60 |
| 2212- | SK, | Shikonin Exerts an Antileukemia Effect against FLT3-ITD Mutated Acute Myeloid Leukemia Cells via Targeting FLT3 and Its Downstream Pathways |
| - | in-vitro, | AML, | NA |
| 4365- | SNP, | Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview |
| - | Review, | Var, | NA |
| 2132- | TQ, | Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis |
| - | in-vivo, | Nor, | NA |
| 5019- | UA, | Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directions |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:1235 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid