| Source: |
| Type: HH |
| Gli family zinc-finger transcription factors; GLI1‐dependent target genes (CyclinD1, Bcl‐2, Foxm1) Glioma-associated oncogene homolog 1 (GLI1) is a transcription factor that plays a significant role in the Hedgehog signaling pathway, which is crucial for cell growth, differentiation, and tissue patterning during embryonic development. GLI1 can promote tumor growth and survival by regulating the expression of genes involved in cell proliferation, apoptosis, and angiogenesis. Its overexpression has been associated with aggressive tumor behavior and poor prognosis in several cancer types. ts overexpression is often associated with aggressive tumor behavior, poor prognosis, and resistance to therapy |
| 1- | Aco, | Acoschimperoside P, 2'-acetate: a Hedgehog signaling inhibitory constituent from Vallaris glabra |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Pca, | DU145 |
| 1353- | And, | Andrographolide Induces Apoptosis and Cell Cycle Arrest through Inhibition of Aberrant Hedgehog Signaling Pathway in Colon Cancer Cells |
| - | in-vitro, | Colon, | HCT116 |
| 275- | Api, | Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3‑derived sphere-forming cells |
| - | in-vitro, | Ovarian, | SKOV3 |
| 5- | Api, | Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate Cancer |
| - | in-vitro, | Pca, | NA |
| 6- | Ba, | Common Botanical Compounds Inhibit the Hedgehog Signaling Pathway in Prostate Cancer |
| - | in-vitro, | Pca, | NA |
| 2617- | Ba, | Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review |
| - | Review, | Var, | NA |
| 7- | BBR, | Berberine, a natural compound, suppresses Hedgehog signaling pathway activity and cancer growth |
| - | vitro+vivo, | MB, | NA |
| - | Review, | Var, | NA |
| 18- | CBC/D, | Cynanbungeigenin C and D, a pair of novel epimers from Cynanchum bungei, suppress hedgehog pathway-dependent medulloblastoma by blocking signaling at the level of Gli |
| - | vitro+vivo, | MB, | NA |
| 17- | CBC/D, | CBC-1 as a Cynanbungeigenin C derivative inhibits the growth of colorectal cancer through targeting Hedgehog pathway component GLI 1 |
| - | in-vivo, | CRC, | NA |
| 16- | CP, | Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis |
| - | in-vitro, | GC, | SGC-7901 |
| 9- | CUR, | Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo |
| - | vitro+vivo, | MG, | U87MG | - | vitro+vivo, | MG, | T98G |
| 10- | CUR, | Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 11- | CUR, | Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway |
| - | in-vitro, | PC, | PANC1 |
| 12- | CUR, | Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells |
| - | in-vitro, | MB, | DAOY |
| 411- | CUR, | Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 19- | Deg, | Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 |
| 27- | EA, | Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice |
| - | in-vivo, | PC, | NA |
| 23- | EGCG, | (-)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells |
| - | in-vitro, | Chon, | SW1353 | - | in-vitro, | Chon, | CRL-7891 |
| 22- | EGCG, | Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics |
| - | in-vitro, | PC, | CD133+ | - | in-vitro, | PC, | CD44+ | - | in-vitro, | PC, | CD24+ | - | in-vitro, | PC, | ESA+ |
| 21- | EGCG, | Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice |
| - | in-vivo, | Liver, | NA |
| 20- | EGCG, | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
| - | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
| 651- | EGCG, | Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications |
| 3245- | EGCG, | (−)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway |
| - | in-vitro, | Nor, | PC12 |
| 816- | GAR, | Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells |
| - | in-vitro, | PC, | PANC1 |
| 28- | GEN, | Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway |
| - | in-vivo, | BC, | MCF-7 |
| 29- | GEN, | Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway |
| - | in-vivo, | Pca, | NA |
| 30- | Ger, | A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | AsPC-1 |
| 31- | GlaB, | Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors |
| - | in-vitro, | BCC, | NA |
| 32- | GlaB, | Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors |
| - | in-vivo, | MB, | NA |
| - | in-vitro, | NMSC, | A431 | - | in-vitro, | NMSC, | UW-BCC1 | - | in-vitro, | Nor, | NHEKn |
| 108- | GSL, | A sesquiterpene lactone from Siegesbeckia glabrescens suppresses Hedgehog/Gli-mediated transcription in pancreatic cancer cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | C3H10T1/2 |
| 8- | HCO3, | Hedgehog/GLI-mediated transcriptional inhibitors from Zizyphus cambodiana |
| - | in-vitro, | PC, | HaCaT | - | in-vitro, | Pca, | PANC1 |
| 2179- | itraC, | Repurposing itraconazole for the treatment of cancer |
| - | Review, | Var, | NA |
| 34- | PFB, | Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription |
| - | in-vitro, | PC, | PANC1 |
| 101- | RES, | Resveratrol inhibits the hedgehog signaling pathway and epithelial-mesenchymal transition and suppresses gastric cancer invasion and metastasis |
| - | in-vitro, | GC, | SGC-7901 |
| 3079- | RES, | Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action |
| - | Review, | Var, | NA |
| 3098- | RES, | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
| - | Review, | Var, | NA |
| 4663- | RES, | Exploring resveratrol’s inhibitory potential on lung cancer stem cells: a scoping review of mechanistic pathways across cancer models |
| - | Review, | Var, | NA |
| 1748- | RosA, | The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity |
| - | Review, | Var, | NA |
| 3010- | RosA, | Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | NA, | NA |
| 3035- | RosA, | Rosmarinic Acid Decreases the Malignancy of Pancreatic Cancer Through Inhibiting Gli1 Signaling |
| - | in-vitro, | PC, | NA | - | in-vivo, | NA, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 110- | SFN, | Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog-GLI pathway |
| - | in-vivo, | PC, | NA |
| 111- | SFN, | Sulforaphene Interferes with Human Breast Cancer Cell Migration and Invasion through Inhibition of Hedgehog Signaling |
| - | in-vitro, | BC, | SUM159 |
| 3197- | SFN, | Sulforaphane Inhibits Self-renewal of Lung Cancer Stem Cells Through the Modulation of Polyhomeotic Homolog 3 and Sonic Hedgehog Signaling Pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 2448- | SFN, | Sulforaphane and bladder cancer: a potential novel antitumor compound |
| - | Review, | Bladder, | NA |
| 1733- | SFN, | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal |
| - | in-vitro, | PC, | PanCSC | - | in-vitro, | Nor, | HPNE | - | in-vitro, | Nor, | HNPSC |
| 1731- | SFN, | Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts |
| - | Review, | Var, | NA |
| 109- | SIL, | Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinoma |
| - | vitro+vivo, | RCC, | 769-P | - | in-vitro, | RCC, | 786-O | - | in-vitro, | RCC, | ACHN | - | in-vitro, | RCC, | OS-RC-2 |
| 107- | SS, | Saikosaponin B1 and Saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the Hedgehog signaling pathway |
| - | vitro+vivo, | MB, | NA |
| 112- | SuD, | Inhibition of Gli/hedgehog signaling in prostate cancer cells by “cancer bush” Sutherlandia frutescens extract |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP |
| 113- | TQ, | Selective Targeting of the Hedgehog Signaling Pathway by PBM Nanoparticles in Docetaxel-Resistant Prostate Cancer |
| - | vitro+vivo, | Pca, | C4-2B |
| - | in-vivo, | RCC, | NA | - | in-vivo, | BCC, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:124 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid