Database Query Results : , , Apoptosis

Apoptosis, Apoptosis: Click to Expand ⟱
Source:
Type: type of cell death
Situation in which a cell actively pursues a course toward death upon receiving certain stimuli.
Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die.


Scientific Papers found: Click to Expand⟱
2432- 2DG,    Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth
- in-vitro, Lung, H23 - in-vitro, Lung, KP2 - in-vivo, NA, NA
HK2↓, Apoptosis↑, TumAuto↑, TumCG↓,
2327- 2DG,    2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents
- Review, Var, NA
Glycolysis↓, HK2↓, mt-ROS↑, AMPK↑, PPP↓, NADPH↓, GSH↓, Bax:Bcl2↑, Apoptosis↑, RadioS↑, eff↓, Half-Life↓, other↝, eff↓,
3453- 5-ALA,    The heme precursor 5-aminolevulinic acid disrupts the Warburg effect in tumor cells and induces caspase-dependent apoptosis
- in-vitro, Lung, A549
OXPHOS↑, OCR↑, Warburg↓, ROS↑, SOD2↑, Catalase↑, HO-1↑, Casp3↑, Apoptosis↑,
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
235- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Apoptosis↑, Bcl-2↓, BAX↑, MAPK↑, p‑ERK↑, ROS↑, eff↓,
239- AL,    Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways
- in-vitro, GC, SGC-7901
Apoptosis↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, Fas↑, tumCV↓, DNAdam↑, ROS↑, Telomerase↓,
241- AL,    Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cells
- in-vitro, neuroblastoma, SK-N-SH
Casp3↑, Casp9↑, p38↑, MAPK↑, Cyt‑c↑, Apoptosis↑,
245- AL,    Allicin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
Fas↑, Bcl-2↓, BAX↑, PI3k/Akt/mTOR↝, Casp3↑, Casp8↑, Casp9↑, Apoptosis↓, *toxicity↓, Cyt‑c↑,
246- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Apoptosis↑, cl‑Casp3↑, p38↑, tumCV↓, BAX↑, Bcl-2↑,
251- AL,    Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
Apoptosis↑, P53↑, P21↑, CHK1↑, CycB/CCNB1↓, BAX↑, Casp3↑, Casp9↑, Cyt‑c↑,
255- AL,    Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Apoptosis↑, P53↑, Casp3↑, P53↑, TPM4↓,
1290- AL,    Effect of allicin on the expression of Bcl-2 and Bax protein in LM-8 cells
- in-vitro, OS, LM8
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
2647- AL,    The Mechanism in Gastric Cancer Chemoprevention by Allicin
- Review, GC, NA
ChemoSen↓, TumCG↓, TumCCA↑, ER Stress↑, Apoptosis↑, Casp↑, DR5↑,
2656- AL,    Allicin Protects PC12 Cells Against 6-OHDA-Induced Oxidative Stress and Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics
- in-vitro, Park, PC12
*antiOx↑, *Apoptosis↓, *LDH↓, ROS↓, *lipid-P↓, *mtDam↓, *MMP↓, *Cyt‑c↓, *ATP∅, *Ca+2↝, *neuroP↑,
298- ALA,  Rad,    Synergistic Tumoricidal Effects of Alpha-Lipoic Acid and Radiotherapy on Human Breast Cancer Cells via HMGB1
- in-vitro, BC, MDA-MB-231
Apoptosis↑, P53↑, p38↑, NF-kB↑, TumCCA↑,
297- ALA,    Insights on the Use of α-Lipoic Acid for Therapeutic Purposes
- Review, BC, SkBr3 - Review, neuroblastoma, SK-N-SH - Review, AD, NA
PDH↑, TumCG↓, ROS↑, AMPK↑, EGR4↓, Half-Life↓, BioAv↝, *GSH↑, *IronCh↑, *ROS↓, *antiOx↑, *neuroP↑, *Ach↑, *lipid-P↓, *IL1β↓, *IL6↓, TumCP↓, FDG↓, Apoptosis↑, AMPK↑, mTOR↓, EGFR↓, TumCI↓, TumCMig↓, *memory↑, *BioAv↑, *BioAv↝, *other↓, *other↝, *Half-Life↓, *BioAv↑, *ChAT↑, *GlucoseCon↑,
304- ALA,    alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation
- in-vitro, Colon, HT-29
mt-ROS↑, Apoptosis↑, Casp3↑, DNAdam↑, Bcl-xL↓, Dose↝,
281- ALA,    Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation
- in-vitro, Lung, H460
mt-ROS↑, Apoptosis↑, Casp9↑, Bcl-2↓, eff↓, eff↑, H2O2↑, Dose↑,
267- ALA,    α-Lipoic Acid Targeting PDK1/NRF2 Axis Contributes to the Apoptosis Effect of Lung Cancer Cells
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, PC9
Apoptosis↑, ROS↑, PDK1↓, NRF2↓, PDK1↓, Bcl-2↓, Casp9↑, Dose∅,
260- ALA,    The effects of alpha-lipoic acid on breast of female albino rats exposed to malathion: Histopathological and immunohistochemical study
- in-vivo, BC, NA
PCNA↓, P53↓, Apoptosis↑, BAX↑,
3433- ALA,    Alpha lipoic acid promotes development of hematopoietic progenitors derived from human embryonic stem cells by antagonizing ROS signals
*ROS↓, *Apoptosis↓, *Hif1a↑, *FOXO1↑, *FOXO3↑, *ATM↑, *SIRT1↑, *SIRT3↑, *CD34↑,
3442- ALA,    α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B - in-vitro, Nor, 3T3
tumCV↓, TumCMig↓, TumCI↓, ROS↑, Hif1a↑, JNK↑, Casp↑, TumCCA↑, Apoptosis↑, selectivity↑,
3551- ALA,    Alpha lipoic acid treatment in late middle age improves cognitive function: Proteomic analysis of the protective mechanisms in the hippocampus
- in-vivo, AD, NA
*cognitive↑, *Apoptosis↓, *Inflam↓, *antiOx↑, *BioAv↝, *neuroP↑,
3541- ALA,    Insights on alpha lipoic and dihydrolipoic acids as promising scavengers of oxidative stress and possible chelators in mercury toxicology
- Review, Var, NA
*antiOx↑, *IronCh↑, *GSH↑, *BBB↑, Apoptosis↑, MMP↓, ROS↑, lipid-P↑, PARP1↑, Casp3↑, Casp9↑, *NRF2↑, *GSH↑, *ROS↓, RenoP↑, ChemoSen↑, *BG↓,
1252- aLinA,    α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase
- in-vitro, BC, NA
FASN↓, Apoptosis↑, TumCI↓, TumMeta↓, TumCCA↑,
1440- AMQ,    Lysosomotropism depends on glucose: a chloroquine resistance mechanism
- in-vitro, BC, 4T1
eff↑, Apoptosis↓, Necroptosis↑, eff↓, ChemoSen↑, eff↓,
1078- And,    Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs - in-vivo, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-361
TumCP↓, COX2↓, *angioG↓, Cyt‑c↑, CREB2↓, cFos↓, NF-kB↓, HATs↓, cl‑Casp3↑, cl‑Casp9↑, Bax:Bcl2↑, Apoptosis↑, *toxicity↓,
1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓, TumCCA↑, Apoptosis↑, STAT3↓, Akt↓, P21↑, BAX↑, cycD1/CCND1↓, cycE/CCNE↓, survivin↓, XIAP↓, Bcl-2↓, eff↑,
1294- And,  5-FU,    Andrographolide reversed 5-FU resistance in human colorectal cancer by elevating BAX expression
- in-vitro, CRC, HCT116
Apoptosis↑, BAX↑,
1352- And,    Andrographolide downregulates the v-Src and Bcr-Abl oncoproteins and induces Hsp90 cleavage in the ROS-dependent suppression of cancer malignancy
- in-vitro, AML, K562
Apoptosis↑, ROS↑, HSP90↓,
1279- And,    Andrographolide Exhibits Anticancer Activity against Breast Cancer Cells (MCF-7 and MDA-MB-231 Cells) through Suppressing Cell Proliferation and Inducing Cell Apoptosis via Inactivation of ER-α Receptor and PI3K/AKT/mTOR Signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Bcl-2↓, BAX↑, ERα/ESR1↓, PI3K↓, mTOR↓,
1354- And,    Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancer
- in-vitro, PC, NA - in-vivo, PC, NA
Apoptosis↑, DJ-1↓, ROS↑, TumAuto↑, TumCCA↑, TumCP↓, TumW↓, eff↓,
1146- AP,    Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms
- in-vivo, Nor, NA
TumCCA↑, Apoptosis↑, IL6↓, STAT3↓, angioG↓, TumMeta↓, VEGF↓, MMP9↓, SOD↑, Catalase↑, GSH↓, MDA↓, NO↓, *BioAv↑,
1151- Api,    Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study
- in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
TumCCA↑, Apoptosis↑, HDAC↓, P21↑, BAX↑, TumCG↓, Bcl-2↓, Bax:Bcl2↑, HDAC1↓, HDAC3↓,
1024- Api,  CUR,    Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects
- vitro+vivo, Melanoma, A375 - in-vitro, Melanoma, A2058 - in-vitro, Melanoma, RPMI-7951
TumCG↓, Apoptosis↑, PD-L1↓, STAT1↓, tumCV↓, T-Cell↑,
1537- Api,    Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer
- Review, PC, NA
TumCP↓, TumCCA↑, Apoptosis↑, MMPs↓, Akt↓, *BioAv↑, *BioAv↓, Half-Life∅, Hif1a↓, GLUT1↓, VEGF↓, ChemoSen↑, ROS↑, Bcl-2↓, Bcl-xL↓, BAX↑, BIM↑,
1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓, ROS↑, MMP↓, ATP↓, Apoptosis↑, Necroptosis↑, DNAdam↑, TumCCA↑, Casp3↑, cl‑PARP↑, MLKL↑, p‑RIP3↑, Bax:Bcl2↑, eff↓, eff↓,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1545- Api,    The Potential Role of Apigenin in Cancer Prevention and Treatment
- Review, NA, NA
TNF-α↓, IL6↓, IL1α↓, P53↑, Bcl-xL↓, Bcl-2↓, BAX↑, Hif1a↓, VEGF↓, TumCCA↑, DNAdam↑, Apoptosis↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK1↓, PI3K↓, Akt↓, mTOR↓, IKKα↓, ERK↓, p‑Akt↓, p‑P70S6K↓, p‑S6↓, p‑ERK↓, p‑P90RSK↑, STAT3↓, MMP2↓, MMP9↓, TumCP↓, TumCMig↓, TumCI↓, Wnt/(β-catenin)↓,
1546- Api,    Apigenin in Cancer Prevention and Therapy: A Systematic Review and Meta-Analysis of Animal Models
- Review, NA, NA
TumVol↓, TumW↓, AntiCan↑, Apoptosis↑, TumCCA↑,
1552- Api,    Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, miR-215-5p↑, TumCCA↑, E2Fs↓,
1565- Api,    Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549 - in-vitro, Nor, BEAS-2B - in-vitro, Lung, H1975
TumCP↓, Apoptosis↑, TumCMig↓, TumCI↓, Cyt‑c↑, MDA↑, GSH↓, ROS↑, PI3K↓, Akt↓, mTOR↓,
1560- Api,    Apigenin as an anticancer agent
- Review, NA, NA
Apoptosis↑, Casp3∅, Casp8∅, TNF-α∅, Cyt‑c↑, MMP2↓, MMP9↓, Snail↓, Slug↓, NF-kB↓, p50↓, PI3K↓, Akt↓, p‑Akt↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2583- Api,  Rad,    The influence of apigenin on cellular responses to radiation: From protection to sensitization
- Review, Var, NA
radioP↑, RadioS↑, *COX2↓, *ROS↓, VEGF↓, MMP2↓, STAT3↓, AMPK↑, Apoptosis↑, MMP9↓, glucose↓,
2593- Api,    Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo
- in-vivo, BC, 4T1
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↑, ROS↑, p‑PI3K↓, PI3K↓, Akt↓, NRF2↓, AntiTum↑, OS↑,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2634- Api,    Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells
- in-vitro, CRC, HCT116
TumCG↓, TumCCA↑, MMP↓, ROS↑, Ca+2↑, ER Stress↑, mtDam↑, CHOP↑, DR5↑, cl‑BID↑, BAX↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, Apoptosis↑,
3886- Api,    Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease
- in-vitro, AD, NA
*Inflam↓, *neuroP↑, *NO↓, *Apoptosis↓,
3396- ART/DHA,    Progress on the study of the anticancer effects of artesunate
- Review, Var, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, Diff↑, TumAuto↑, angioG↓, TumCCA↑, ROS↑, AMPK↑, mTOR↑, ChemoSen↑, Tf↑, Ferroptosis↑, Ferritin↓, lipid-P↑, CDK1↑, CDK2↑, CDK4↑, CDK6↑, SIRT1↑, COX2↓, IL1β↓, survivin↓, DNAdam↑, RadioS↑,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
2321- ART/DHA,    Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706
Pyro↑, PKM2↓, Casp8↑, Casp3↑, Warburg↓, TumCCA↑, Apoptosis↑,
2578- ART/DHA,  RES,    Synergic effects of artemisinin and resveratrol in cancer cells
- in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa
Dose↝, TumCMig↓, Apoptosis↑, necrosis↑, ROS↑, eff↑,
2576- ART/DHA,  AL,    The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo
- in-vitro, OS, MG63 - in-vivo, NA, NA
eff↑, tumCV↓, Casp3↑, Casp9↑, Apoptosis↑, TumCG↓,
1079- ART/DHA,    Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2
- in-vitro, GC, BGC-823 - in-vitro, GC, HGC27 - in-vitro, GC, MGC803
TumCP↓, Apoptosis↑, COX2↓, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, MMP↓,
556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓, IL1↓, TNF-α↓, TGF-β↓, NF-kB↓, MIP2↓, PGE2↓, NO↓, Hif1a↓, KDR/FLK-1↓, VEGF↓, MMP2↓, TIMP2↑, ITGB1↑, NCAM↑, p‑ATM↑, p‑ATR↑, p‑CHK1↑, p‑Chk2↑, Wnt/(β-catenin)↓, PI3K↓, Akt↓, ERK↓, cMyc↓, mTOR↓, survivin↓, cMET↓, EGFR↓, cycD1/CCND1↓, cycE1↓, CDK4/6↓, p16↑, p27↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, oncosis↑, TumCCA↑, ROS↑, DNAdam↑, RAD51↓, HR↓,
557- ART/DHA,    Artemisinin and Its Derivatives in Cancer Care
- Review, Var, NA
*BioAv↓, *BioAv↑, Apoptosis↑, EGFR↓, CD31↓, Ki-67↓, P53↓, TfR1/CD71↑, P-gp↓, PD-1↝,
558- ART/DHA,    Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer
- Review, NA, NA
ROS↑, oncosis↑, Apoptosis↑, LysoPr↑, TumAuto↑, Wnt/(β-catenin)↑, AMP↓, NF-kB↓, Myc↓, CREBBP↓, mTOR↓, E-cadherin↑,
573- ART/DHA,    Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model
- vitro+vivo, NA, NA
p‑p38↓, p‑ERK↓, p‑CREB↓, p‑Chk2↓, p‑STAT5↓, p‑RSK↓, SOCS1↑, Apoptosis↑, Casp3↑,
571- ART/DHA,  TMZ,    Artesunate enhances the therapeutic response of glioma cells to temozolomide by inhibition of homologous recombination and senescence
- vitro+vivo, GBM, A172 - vitro+vivo, GBM, U87MG
HR↓, RAD51↓, Apoptosis↑, necrosis↑, ROS↑, ChemoSen↑,
569- ART/DHA,    Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3
- in-vitro, GBM, NA
TumCP↓, Apoptosis↑, TumCCA↑, Casp3↑, p‑Akt↓,
4992- ART/DHA,    Dihydroartemisinin Increases the Sensitivity of Acute Myeloid Leukemia Cells to Cytarabine via the Nrf2/HO-1 Anti-Oxidant Signaling Pathway
- in-vitro, AML, HL-60
Apoptosis↑, Diff↑, ROS↓, HO-1↓, NRF2∅,
1295- AS,  Cisplatin,    Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases
- in-vivo, Laryn, NA
AntiTum↑, Apoptosis↑, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, Bax:Bcl2↑,
1338- AS,    The Modulatory Properties of Astragalus membranaceus Treatment on Triple-Negative Breast Cancer: An Integrated Pharmacological Method
- in-vitro, BC, NA
TumCI↓, Apoptosis↑, Symptoms↓, PIK3CA↓, Akt↓, Bcl-2↓,
1334- AS,    Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer
- Review, NA, NA
TumCP↓, Apoptosis↑, NF-kB↓, p50↓, cycD1/CCND1↓, Bcl-xL↓, ChemoSen↑, angioG↓, ChemoSen↑,
1000- AS,  5-FU,    Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation
- vitro+vivo, BC, 4T1
TumCG↓, TumCCA↑, Apoptosis↑, *IL2↑, *TNF-α↑, *IFN-γ↑,
1304- ASA,    Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells
- in-vitro, CRC, NA - in-vivo, NA, NA
TumCP↓, Apoptosis↑, Bcl-2↓, BAX↑, IL10↓, TNF-β↓,
1367- Ash,    An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells
- in-vitro, BC, MDA-MB-231
Apoptosis↑, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, TumCCA↑,
1365- Ash,    Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
- in-vitro, Oral, Ca9-22 - in-vitro, Oral, CAL27
ROS↑, *toxicity↓, Apoptosis↑, TumCCA↑, MMP↓, p‑γH2AX↑, DNAdam↑, eff↓,
1362- Ash,  GEM,    Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin A
- in-vitro, PC, PANC1 - in-vitro, PC, Hs766t
ChemoSen↑, ROS↑, Apoptosis↑, TumCMig↓, F-actin↓, YMcells↓, NF-kB↓,
1361- Ash,  SRF,    Withaferin A, a natural thioredoxin reductase 1 (TrxR1) inhibitor, synergistically enhances the antitumor efficacy of sorafenib through ROS-mediated ER stress and DNA damage in hepatocellular carcinoma cells
- in-vitro, Liver, HUH7 - in-vivo, Liver, HUH7
TrxR↓, ROS↑, DNA-PK↑, ER Stress↑, Apoptosis↑, eff↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, TumCP↓, CSCs↓, TumMeta↓, EMT↓, angioG↓, Vim↓, HSP90↓, annexin II↓, m-FAM72A↓, BCR-ABL↓, Mortalin↓, NRF2↓, cMYB↓, ROS↑, ChemoSen↑, eff↑, ChemoSen↑, ChemoSen↑, eff↑, *BioAv↓, ROCK1↓, TumCI↓, Sp1/3/4↓, VEGF↓, Hif1a↓, EGFR↓,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1357- Ash,    Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vitro, GBM, GL26
TumCP↓, TumCCA↑, Akt↓, mTOR↓, p70S6↓, p85S6K↓, AMPKα↑, TSC2↑, HSP70/HSPA5↑, HO-1↑, HSF1↓, Apoptosis↑, ROS↑, eff↓,
1356- Ash,    Withaferin A induces apoptosis by ROS-dependent mitochondrial dysfunction in human colorectal cancer cells
- in-vitro, CRC, HCT116
ROS↑, TumCCA↑, MMP↓, TumCG↓, Apoptosis↑, JNK↝,
1372- Ash,    Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential
- in-vitro, OS, U2OS
Apoptosis↑, ROS↑, MMP↓, Casp3↑,
2003- Ash,    Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145 - in-vitro, Nor, TIG-1 - in-vitro, PC, LNCaP
TumCD↑, selectivity↑, cFos↑, ROS↑, *ROS∅, HSP70/HSPA5↑, Apoptosis↑, ER Stress↑, TumCCA↑,
1176- Ash,    Metabolic Alterations in Mammary Cancer Prevention by Withaferin A in a Clinically Relevant Mouse Model
- in-vivo, NA, NA
TumVol↓, Apoptosis↑, Glycolysis↓, PKM2↓, PGK1↓, ALDOAiso2↓,
1174- Ash,    Withaferin A Suppresses Estrogen Receptor-α Expression in Human Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vivo, BC, MDA-MB-231 - in-vitro, BC, T47D
p‑P53↑, Apoptosis↑, ERα/ESR1↓,
1173- Ash,    Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling
- in-vitro, EC, K1 - in-vitro, Nor, THESCs
TumCP↓, *toxicity↓, Apoptosis↑, TumCCA↑, TumCMig↓, TumCI↓, p‑SMAD2↓, TGF-β↓, *toxicity↓,
1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑, ROS↑, DNAdam↑, OXPHOS↓, *ROS∅, Bcl-2↓, XIAP↓, survivin↓, DR5↑, IKKα↓, NF-kB↓, selectivity↑, *ROS∅, eff↓, Paraptosis↑,
3672- Ash,    Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa
- Review, NA, NA
*cardioP↑, *antiOx↑, *ROS↓, *neuroP↑, *Inflam↓, *Apoptosis↓,
3670- Ash,    Neurodegenerative diseases and Withania somnifera (L.): An update
- Review, AD, NA - Review, Park, NA
*Apoptosis↓, *Inflam↓, *ROS↓, *neuroP↑,
3179- Ash,    Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells
- in-vitro, RCC, Caki-1
JAK↓, STAT3↓, Apoptosis↑,
3156- Ash,    Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug
- Review, Var, NA
MAPK↑, p38↑, BAX↑, BIM↑, CHOP↑, ROS↑, DR5↑, Apoptosis↑, Ferroptosis↑, GPx4↓, BioAv↝, HSP90↓, RET↓, E6↓, E7↓, Akt↓, cMET↓, Glycolysis↓, TCA↓, NOTCH1↓, STAT3↓, AP-1↓, PI3K↓, eIF2α↓, HO-1↑, TumCCA↑, CDK1↓, *hepatoP↑, *GSH↑, *NRF2↑, Wnt↓, EMT↓, uPA↓, CSCs↓, Nanog↓, SOX2↓, CD44↓, lactateProd↓, Iron↑, NF-kB↓,
3164- Ash,    Withaferin A alleviates fulminant hepatitis by targeting macrophage and NLRP3
*hepatoP↑, *IKKα↓, *NLRP3↓, *NRF2↑, *AMPK↑, *Inflam↓, *Apoptosis↓, *cl‑Casp3↓, *cl‑PARP1↓, *NLRP3↓, *ROS↓, *ALAT↓, *AST↓, *GSH↑,
3170- Ash,    Withaferin A protects against hyperuricemia induced kidney injury and its possible mechanisms
- in-vitro, Nor, NRK52E - in-vivo, NA, NA
*RenoP↑, *hepatoP↑, *creat↓, *BUN↓, *uricA↓, *Apoptosis↓, *α-SMA↓,
3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, *cardioP↑, *AMPK↑, *BioAv↝, *Half-Life↝, *Half-Life↝, *Dose↑, *chemoPv↑, IL6↓, STAT3↓, ROS↓, OXPHOS↓, PCNA↓, LDH↓, AMPK↑, TumCCA↑, NOTCH3↓, Akt↓, Bcl-2↓, Casp3↑, Apoptosis↑, eff↑, NF-kB↓, CSCs↓, HSP90↓, PI3K↓, FOXO3↑, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, FASN↓, ACLY↓, ROS↑, NRF2↑, HO-1↑, NQO1↑, JNK↑, mTOR↓, neuroP↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL18↓, RadioS↑, eff↑,
4821- ASTX,    Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53
- in-vitro, BC, SkBr3 - in-vitro, BC, BT20 - in-vitro, BC, T47D
Apoptosis↑, CSCs↓, OCT4↓, Nanog↓, TumCP↓,
4804- ASTX,    Astaxanthin in cancer therapy and prevention (Review)
- Review, Var, NA - Review, AD, NA
*antiOx↑, *Inflam↓, ChemoSen⇅, chemoP↑, BioAv↑, TumCP↑, ROS⇅, Apoptosis↑, PI3K↑, Akt↑, GSK‐3β↑, NRF2↑, AntiCan↑, *neuroP↑, eff↑, AntiTum↑,
4805- ASTX,    Astaxanthin promotes apoptosis by suppressing growth signaling pathways in HT-29 colorectal cancer cells
- in-vitro, Colon, HT29
TumCP↓, Casp3↑, EGFR↓, HER2/EBBR2↓, ERK↓, Apoptosis↑,
4806- ASTX,    Astaxanthin's Impact on Colorectal Cancer: Examining Apoptosis, Antioxidant Enzymes, and Gene Expression
- in-vitro, CRC, HCT116
BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, MDA↓, ROS↓, SOD↑, Catalase↑, GPx↑, antiOx↑, TumCG↓, TumCP↓,
4807- ASTX,    An overview of the anticancer activity of astaxanthin and the associated cellular and molecular mechanisms
- Review, Var, NA
*antiOx↑, *neuroP↑, AntiCan↑, TumCG↓, TumCD↑, TumCMig↓, ChemoSen↑, chemoP↑, *BioAv↓, TumCP↓, TumCCA↑, Apoptosis↑, BioAv↑,
4808- ASTX,    Anti-Tumor Effects of Astaxanthin by Inhibition of the Expression of STAT3 in Prostate Cancer
- in-vitro, Pca, DU145 - in-vivo, NA, NA
TumCP↓, STAT3↓, Apoptosis↑, TumCMig↓, TumCI↓,
4820- ASTX,    Astaxanthin suppresses the malignant behaviors of nasopharyngeal carcinoma cells by blocking PI3K/AKT and NF-κB pathways via miR-29a-3p
- in-vitro, NPC, NA
TumCP↓, TumCI↓, Apoptosis↑, TumCCA↑, cycD1/CCND1↓, Bcl-2↓, P21↑, BAX↑, PI3K↓, Akt↓, NF-kB↓, miR-29b↑,
4819- ASTX,    Astaxanthin Induces Apoptosis in MCF-7 Cells through a p53-Dependent Pathway
- in-vitro, BC, MCF-7
antiOx↑, AntiTum↑, TumCD↑, P53↑, P21↑, Apoptosis↑, Dose↝, Casp3↑,
4818- ASTX,  MEL,    Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
TumCD↑, DNAdam↑, *antiOx↑, *AntiTum↑, Inflam↓, tumCV↓, Bcl-2↓, Apoptosis↓, selectivity↑, eff↑, Dose↓,
4814- ASTX,    Chemopreventive and therapeutic efficacy of astaxanthin against cancer: A comprehensive review
- Review, Var, NA
Apoptosis↑, EMT↓, AntiCan↑, *cardioP↑, *neuroP↑, TumCG↓, *antiOx↑, *Bacteria↓, *Imm↑, *hepatoP↑, *AntiDiabetic↑, ROS↓, *chemoPv↑,
4812- ASTX,    Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a
- in-vitro, CRC, HCT116
miR-29b↑, miR-200b↑, MMP2↓, Zeb1↓, EMT↓, Apoptosis↑, ERK↓, MAPK↓, PI3K↓, Akt↓, MMPs↓, TumMeta↓,
4813- ASTX,    Astaxanthin Prevents Oxidative Damage and Cell Apoptosis Under Oxidative Stress Involving the Restoration of Mitochondrial Function
- in-vitro, AD, NA
*antiOx↑, *Apoptosis↓, *AntiTum↑, *ROS↓, *MMP↑, *neuroP↑,
4823- ASTX,    Astaxanthin increases radiosensitivity in esophageal squamous cell carcinoma through inducing apoptosis and G2/M arrest
- in-vitro, ESCC, NA
RadioS↑, Apoptosis↑, TumCCA↑, Bcl-2↓, CycB/CCNB1↓, CDC2↓, BAX↑,
4981- ATV,    Crosstalk between Statins and Cancer Prevention and Therapy: An Update
Apoptosis↑, selectivity↑, eff↑, HMG-CoA↓, *cardioP↑, OS↑, IL1β↓, IL6↓, IL8↓, TNF-α↓, TumAuto↑, Histones↝, ac‑H3↑, ac‑H4↑, HDAC↓,
4986- ATV,  Dipy,    The combination of statins and dipyridamole is effective preclinically in AML, MM, and breast cancer
- Review, Var, NA
HMG-CoA↓, AntiAg↑, eff↑, Apoptosis↑, selectivity↑, *toxicity↓, TumCG↓, PDE4↓, other↑,
4978- ATV,  Rad,    Atorvastatin Sensitizes Breast and Lung Cancer Cells to Ionizing Radiation
- in-vitro, BC, A549
Apoptosis↑, RadioS↑, TumCP↓, ROS↑,
1900- Aur,    Potential Anticancer Activity of Auranofin
- Review, Var, NA
TrxR↓, ROS↑, Apoptosis↓, TumCP↓, eff↑,
1053- Ba,  docx,    Baicalin, a Potent Inhibitor of NF-κB Signaling Pathway, Enhances Chemosensitivity of Breast Cancer Cells to Docetaxel and Inhibits Tumor Growth and Metastasis Both In Vitro and In Vivo
- in-vivo, BC, 4T1
TumCP↓, Apoptosis↑, ROS↑, Bax:Bcl2↑, NF-kB↓, ChemoSen↑, survivin↓,
996- Ba,  Tam,    Baicalein resensitizes tamoxifen‐resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia‐inducible factor‐1α
Hif1a↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, lact/pyru↓, ROS↑, Apoptosis↑,
1288- Ba,    The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells
- in-vitro, GC, SGC-7901
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, Bcl-2↓, BAX↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1519- Ba,    Baicalein inhibits KB oral cancer cells by inducing apoptosis via modulation of ROS
- in-vitro, Oral, KB
Apoptosis↑, Dose∅, ROS↑,
1521- Ba,    Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
TumCG↓, Apoptosis↑, IAP1↓, IAP2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, MMP↓, Casp8↑, BID↑, ROS?, eff↓, DR4↑, DR5↑, FasL↑, TRAIL↑,
1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑, Apoptosis↑, ROS↑, eff↓, Casp3↑, Bcl-2↓, selectivity↑, Cyt‑c↑, LDH?, BNIP3?, BAX↑,
1524- Ba,    Apoptosis_Associated_with_the_Generation_of_ROS_and_the_Activation_of_AMPK_in_Human_Lung_Carcinoma_A549_Cells">Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
DR5↑, FADD↑, FasL↑, Casp8↑, cFLIP↓, Casp3↑, Casp9↑, cl‑PARP↑, MMP↓, BID↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑, Apoptosis↑, TumCCA↑, DR5↑, FasL↑, DR4∅, cFLIP↓, FADD↑, MMPs↓,
1525- Ba,  almon,    Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway
- in-vitro, Lung, H1975 - in-vivo, Lung, NA
eff↑, TumCP↓, Apoptosis↑, cl‑Casp3↑, cl‑PARP↑, cl‑Casp9↑, p‑PI3K↓, p‑Akt↓, ROS↑, eff↓,
1528- Ba,    Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma
- in-vitro, OS, CAL27
Apoptosis↑, ROS↑, eff↓, TumAuto↑, cl‑PARP↑, Bax:Bcl2↑, Beclin-1↑, p62↓,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
1526- Ba,    Baicalein induces apoptosis through ROS-mediated mitochondrial dysfunction pathway in HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, cl‑PARP↑, DNAdam↑, cl‑BID↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9?, H2O2↑, ROS↑,
2599- Ba,    Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, Apoptosis↑, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IKKα↓, IKKα↑, PI3K↓, MMP↓, TumAuto↑, TumVol↓, TumW↓,
2600- Ba,    Baicalein Induces Apoptosis and Autophagy via Endoplasmic Reticulum Stress in Hepatocellular Carcinoma Cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402
ER Stress↑, Bcl-2↓, Ca+2↑, JNK↑, CHOP↑, Casp9↑, Casp3↑, PARP↑, Apoptosis↑, UPR↑,
2603- Ba,    Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumCG↓, Apoptosis↑, Cav1↓, p‑Akt↓, p‑mTOR↓, Bax:Bcl2↑, survivin↓, cl‑PARP↑, BioAv↓,
2608- Ba,    Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity
- in-vitro, HCC, Bel-7402
Apoptosis↑, TumAuto↑, P-gp↓, Bcl-xL↓, ChemoSen↑,
2626- Ba,    Molecular targets and therapeutic potential of baicalein: a review
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
AntiCan↓, *neuroP↑, *cardioP↑, *hepatoP↑, *RenoP↑, TumCCA↑, CDK4↓, cycD1/CCND1↓, cycE/CCNE↑, BAX↑, Bcl-2↓, VEGF↓, Hif1a↓, cMyc↓, NF-kB↓, ROS↑, BNIP3↑, *neuroP↑, *cognitive↑, *NO↓, *iNOS↓, *COX2↓, *PGE2↓, *NRF2↑, *p‑AMPK↑, *Ferroptosis↓, *lipid-P↓, *ALAT↓, *AST↓, *Fas↓, *BAX↓, *Apoptosis↓,
2618- Ba,    Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer
- in-vitro, Lung, H1299 - in-vivo, Lung, A549
TumCG↓, TumCP↓, Apoptosis↑, GLUT1↓, GLS↓, mTOR↓, *toxicity∅, cl‑Casp9↓, cl‑Casp3↓, GSH↓, GlutMet↓,
2629- Ba,    Baicalein, a Component of Scutellaria baicalensis, Attenuates Kidney Injury Induced by Myocardial Ischemia and Reperfusion
- in-vivo, Nor, NA
*RenoP↑, *Apoptosis↓, *TNF-α↓, *IL1↓, *Bcl-2↑, *BAX↓, *Akt↑,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE/CCNE↑, CDK4↓, cycD1/CCND1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
2476- Ba,    Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
TumCG↓, Apoptosis↑, DR5↑, FasL↑, FADD↑, Casp8↑, cFLIP↓, Casp9↑, Casp3↑, cl‑PARP↑, MMP↓, BID↑, BAX↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑,
2769- Ba,  Rad,    Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis
- in-vivo, Nor, NA
*radioP↑, GutMicro↑, *P53↓, *Apoptosis↑, *DR4↓,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
1390- BBR,  Rad,    Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells
- in-vitro, Pca, PC3
RadioS↑, Apoptosis↑, ROS↑, eff↑, BAX↑, Casp3↑, P53↑, p38↑, JNK↑, Bcl-2↓, ERK↓, HO-1↓,
1398- BBR,    Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage
- in-vitro, Kidney, NA
TumCP↓, TumCMig↓, ROS↑, Apoptosis↑, BAX↑, BAD↑, Bak↑, Cyt‑c↑, cl‑Casp3↑, cl‑Casp9↑, E-cadherin↑, TIMP1↑, γH2AX↑, Bcl-2↓, N-cadherin↓, Vim↓, Snail↓, RAD51↓, PCNA↓,
1393- BBR,  EPI,    Berberine promotes antiproliferative effects of epirubicin in T24 bladder cancer cells by enhancing apoptosis and cell cycle arrest
- in-vitro, Bladder, T24
ChemoSen↑, TumCCA↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, P53↑, P21↑, Bcl-2↓, ROS↑,
1395- BBR,    Analysis of the mechanism of berberine against stomach carcinoma based on network pharmacology and experimental validation
- in-vitro, GC, NA
Apoptosis↑, ROS↑, MMP↓, ATP↓, AMPK↑, TP53↑, p‑MAPK↓, p‑ERK↓,
1399- BBR,  Rad,    Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review
- Review, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *TGF-β↓, *IL10↑, ROS↑, DNAdam↑, mtDam↑, MMP↓, Apoptosis↑, TumCCA↑, Hif1a↓, VEGF↓, RadioS↑,
1400- BBR,    Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells
- in-vitro, Melanoma, U266
ROS↑, TumCCA↑, Apoptosis↑, miR-21↓, Bcl-2↓, NF-kB↓, Set9↑,
1401- BBR,    Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity
- in-vitro, GBM, U87MG
TumCP↓, Apoptosis↑, ROS↑,
1404- BBR,    Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation
- in-vitro, Pca, PC3
Apoptosis↑, *Apoptosis∅, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, eff↓, Cyt‑c↑,
1374- BBR,  PDT,    Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells
- in-vitro, RCC, 786-O - in-vitro, RCC, HK-2
ROS↑, TumAuto↑, Apoptosis↑, Casp3↑, eff↑,
1387- BBR,    Antitumor Activity of Berberine by Activating Autophagy and Apoptosis in CAL-62 and BHT-101 Anaplastic Thyroid Carcinoma Cell Lines
- in-vitro, Thyroid, CAL-62
TumCG↓, Apoptosis↑, LC3B↑, ROS↑, PI3K↓, Akt↓, mTOR↓,
1384- BBR,    Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines
- in-vitro, PC, PANC1
TumCCA↑, ROS↑, Apoptosis↑,
1382- BBR,    Berberine increases the expression of cytokines and proteins linked to apoptosis in human melanoma cells
- in-vitro, Melanoma, SK-MEL-28
Apoptosis↑, necrosis↑, DNAdam↑, TumCCA↑, ROS↑, Casp3↑, p‑P53↑, ERK↑,
1381- BBR,  Rad,    Berberine enhances the sensitivity of radiotherapy in ovarian cancer cell line (SKOV-3)
- in-vitro, Ovarian, SKOV3
RadioS↑, ROS↑, GSH↓, Apoptosis↑,
1389- BBR,  Lap,    Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS
- in-vitro, BC, BT474 - in-vitro, BC, AU-565
ChemoSen↑, Apoptosis↑, ROS↑, NRF2↓,
1379- BBR,    Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells
- in-vitro, lymphoma, NA
TumCP↓, CDK4↓, CDK6↓, cycD1/CCND1↓, TumCCA↑, MMP↓, Ca+2↑, ATP↓, mtDam↑, Apoptosis↑, ROS↑, JNK↑, eff↓,
1378- BBR,    Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway
- in-vitro, Lung, NA
Apoptosis↑, Casp3↑, Cyt‑c↑, MMP↓, p‑JNK↑, eff↓,
1377- BBR,    Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway
- in-vitro, Arthritis, NA
Apoptosis↑, MMP↓, Bax:Bcl2↑, LC3‑Ⅱ/LC3‑Ⅰ↓, p62↑, *ROS↓,
2709- BBR,    Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α
- in-vitro, HCC, HepG2
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PKM2↓, LDHA↓,
2711- BBR,    Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, FGF↓, IGFBP3↑,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2681- BBR,  PDT,    Berberine-photodynamic induced apoptosis by activating endoplasmic reticulum stress-autophagy pathway involving CHOP in human malignant melanoma cells
- in-vitro, Melanoma, NA
Apoptosis↑, cl‑Casp3↑, LC3s↑, ER Stress↑, ROS↑, CHOP↑,
2682- BBR,    Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, HCT116
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, necrosis↑, AQPs↓, PTEN↑, PI3K↓, Akt↓, p‑Akt↓, mTOR↓, p‑mTOR↓,
2685- BBR,    Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells
- in-vitro, neuroblastoma, NA
CSCs↓, CD133↓, β-catenin/ZEB1↓, n-MYC↓, SOX2↓, NOTCH2↓, Nestin↓, TumCCA↑, TumCP↓, CDK1↓, Cyc↓, Apoptosis↑, Bax:Bcl2↑, NCAM↓, MMP2↓, MMP9↓, *Smad1↑, *HSP70/HSPA5↑, *LAMs↑,
2692- BBR,    Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis
- in-vitro, OS, MG63 - in-vitro, OS, SaOS2 - in-vivo, NA, NA
Casp1↓, IL1β↓, TumCG↓, Dose↝, Apoptosis↑, Inflam↓,
1092- BBR,    Berberine as a Potential Anticancer Agent: A Comprehensive Review
- Review, NA, NA
Apoptosis↑, TumCCA↑, TumAuto↑, TumCI↓, IL1↓, IL6↓, TNF-α↓, LDH↓, P2X7↓, proCasp1↓, Casp1↓, ASC↓,
3678- BBR,    Network pharmacology study on the mechanism of berberine in Alzheimer’s disease model
- Review, AD, NA
*APP↓, *PPARγ↑, *NF-kB↓, *Aβ↓, *cognitive↑, *antiOx↑, *Inflam↓, *Apoptosis↓, *BioAv↑, *BioAv↝, *BBB↑, *motorD↑, *NRF2↑, *HO-1↑, *ROS↓, *p‑Akt↑, *p‑ERK↑,
3680- BBR,    Network pharmacology reveals that Berberine may function against Alzheimer’s disease via the AKT signaling pathway
- in-vivo, AD, NA
*Akt↑, *neuroP↑, *p‑ERK↑, *Aβ↓, *Inflam↓, *ROS↓, *BioAv↑, *BBB↑, *Half-Life↝, *memory↑, *cognitive↑, *HSP90↑, *APP↓, *mTOR↓, *P70S6K↓, *CD31↑, *VEGF↑, *N-cadherin↑, *Apoptosis↓,
3682- BBR,    Berberine Improves Cognitive Impairment by Simultaneously Impacting Cerebral Blood Flow and β-Amyloid Accumulation in an APP/tau/PS1 Mouse Model of Alzheimer’s Disease
- in-vitro, AD, NA
*cognitive↑, *Aβ↓, *Apoptosis↓, *CD31↑, *VEGF↑, *N-cadherin↑, *angioG↑, *neuroP↑, *p‑tau↓, *antiOx↑, *AChE↓, *MAOB↓, *lipid-P↓,
4658- BBR,    Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A Methylation
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
CSCs↓, TumCP↓, cycD1/CCND1↓, p27↑, P21↑, TumCCA↑, Apoptosis↑, ChemoSen↑, β-catenin/ZEB1↓, FTO↑, CD44↓, CD133↓, ChemoSen↑,
1473- BCA,  SFN,    An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast Cancer
- in-vitro, BC, MCF-7
eff↑, ROS↑, other↑, ERK↓, Apoptosis↑,
1285- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, Var, NA
Apoptosis↑, Bcl-2↓, cycD1/CCND1↓, BAX↑,
1305- BetA,    Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells
- in-vitro, UEC, NA
Apoptosis↑, Bcl-2↓, BAX↑,
2753- BetA,    Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells
- in-vitro, Cerv, HeLa
PI3K↓, p‑Akt↓, ROS↑, TumCCA↑, p27↑, P21↑, mt-Apoptosis↑, BAD↑, Casp9↑, MMP↓, eff↓,
2750- BetA,  GEM,    Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation
- in-vitro, PC, Bxpc-3 - in-vitro, Lung, H1299
CHK1↓, ChemoSen↑, tumCV↓, Apoptosis↑, DNAdam↑,
2745- BetA,    Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors
- in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vivo, NA, NA
Apoptosis↑, TumCG↓, Sp1/3/4↓, survivin↓, VEGF↓, p65↓, EGFR↓, cycD1/CCND1↓, ROS↑, MMP↓,
2744- BetA,    Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential
- Review, Var, NA
Apoptosis↓, TumCCA↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, MMP↓, ROS↑, TOP1↓, NF-kB↓,
2743- BetA,    Betulinic acid and the pharmacological effects of tumor suppression
- Review, Var, NA
ROS↓, MMP↓, Cyt‑c↑, Apoptosis↑, TumCCA↑, Sp1/3/4↓, STAT3↓, NF-kB↓, EMT↓, TOP1↓, MAPK↑, p38↑, JNK↑, Casp↑, Bcl-2↓, BAX↑, VEGF↓, LAMs↓,
2757- BetA,    Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
- in-vitro, GBM, U251
tumCV↓, TumCMig↓, TumCI↓, Apoptosis↑, p‑PI3K↓, p‑Akt↓, Ferroptosis↑, HO-1↑, NRF2↑,
2717- BetA,    Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma
- in-vitro, Melanoma, U266 - in-vivo, Melanoma, NA - in-vitro, Melanoma, RPMI-8226
Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, NF-kB↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP1↑, MDA↑, SOD↓, SOD2↓, GCLM↓, GSTA1↓, FTH1↓, GSTs↓, TumVol↓,
2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, Apoptosis↑, i-ROS↑, cycA1/CCNA1↓, CycB/CCNB1↓, P21↑, Cyt‑c↑, MMP↓, Bax:Bcl2↑, Casp9↑, Casp3↑, PARP↓, eff↓, *antiOx↑, *Inflam↓, *hepatoP↑, selectivity↑, NF-kB↓, *ROS↓,
2719- BetA,    Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential
- in-vitro, CRC, T24 - in-vitro, Bladder, UMUC3 - in-vitro, Bladder, 5637
TumCD↑, Apoptosis↑, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK2↓, CDC25↓, mtDam↑, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Snail↓, Slug↓, MMP9↓, selectivity↑, MMP↓, ROS∅, TumCMig↓, TumCI↓,
2723- BetA,    Betulinic acid and oleanolic acid modulate CD81 expression and induce apoptosis in triple-negative breast cancer cells through ROS generation
- in-vitro, BC, MDA-MB-231
Apoptosis↑, tumCV↓, ROS↑,
2724- BetA,    Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice
- in-vivo, Nor, NA - in-vivo, Stroke, NA
AntiTum↑, *Inflam↓, *ROS↓, *NOX4↓, *Apoptosis↓, neuroP↑,
2727- BetA,    Betulinic acid in the treatment of breast cancer: Application and mechanism progress
- Review, BC, NA
mt-ROS↑, Sp1/3/4↓, TumMeta↓, GlucoseCon↓, NF-kB↓, ChemoSen↑, chemoP↑, m-Apoptosis↑, TOP1↓,
2739- BetA,    Glycolytic Switch in Response to Betulinic Acid in Non-Cancer Cells
- in-vitro, Nor, HUVECs - in-vitro, Nor, MEF
*Glycolysis↑, *GlucoseCon↑, *Apoptosis↓, *UCP1↓, *AMPK↑, GLUT1↑, mt-ROS↑,
2736- BetA,  Chemo,    Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on JAK/STAT, VEGF, EGF/EGFR, TRAIL/TRAIL-R, AKT/mTOR and Non-Coding RNAs in the Inhibition of Carcinogenesis and Metastasis
- Review, Var, NA
chemoPv↑, p‑STAT3↓, JAK1↓, JAK2↓, VEGF↓, EGFR↓, Cyt‑c↑, Diablo↑, AMPK↑, mTOR↓, Sp1/3/4↓, DNAdam↑, Gli1↓, GLI2↓, PTCH1↓, MMP2↓, MMP9↓, miR-21↓, SOD2↓, ROS↑, Apoptosis↑,
2735- BetA,    Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications
- Review, Var, NA
mt-Apoptosis↑, Casp↑, p38↑, MAPK↓, JNK↓, VEGF↓, AIF↑, Cyt‑c↑, ROS↑, Ca+2↑, ATP↓, NF-kB↓, ATF3↓, TOP1↓, VEGF↓, survivin↓, Sp1/3/4↓, MMP↓, ChemoSen↑, selectivity↑, BioAv↓, BioAv↑, BioAv↑, BioAv↑, BioAv↑,
2734- BetA,    Betulinic Acid Modulates the Expression of HSPA and Activates Apoptosis in Two Cell Lines of Human Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
tumCV↓, HSP70/HSPA5⇅, ROS↑, cl‑Casp3↑, mt-Apoptosis↑, Dose↝,
2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, TumVol↓, mt-Apoptosis↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↑, OCR↓, TumCCA↑, ROS↑, eff↓, P53↑, STAT3↓, cycD1/CCND1↑,
1250- Bif,    Oral administration of Bifidobacterium breve promotes antitumor efficacy via dendritic cells-derived interleukin 12
- in-vitro, SCC, NA
TumCG↓, Apoptosis↑, CCL20↑, IL12↑,
3510- Bor,    Boron Affects the Development of the Kidney Through Modulation of Apoptosis, Antioxidant Capacity, and Nrf2 Pathway in the African Ostrich Chicks
- in-vivo, Nor, NA
*RenoP↑, *ROS↓, *antiOx↑, *Apoptosis↓, *NRF2↑, *HO-1↑, *MDA↓, *lipid-P↓, *GPx↓, *Catalase↑, *SOD↑, *ALAT↓, *AST↓, *ALP↓,
3507- Bor,    Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling
*MMP↑, *Cyt‑c↓, *Apoptosis↓, *Casp3↓, *NO↓, *iNOS↓,
4620- Bor,  BTZ,    Boron Compounds in the Breast Cancer Cells Chemoprevention and Chemotherapy
- Review, Var, NA - Review, Arthritis, NA - Review, Pca, NA
Risk↓, *memory↑, *Dose↑, Risk↓, other↝, *testos↑, other↝, Risk↓, TumCP↓, Apoptosis↑, eff↑,
718- Bor,    Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells
- in-vitro, NA, NA
OSI↑, TNF-α↓, IL1↓, Casp3↑, Apoptosis↑, TOS↑,
719- Bor,    Boric Acid Affects Cell Proliferation, Apoptosis, and Oxidative Stress in ALL Cells
- in-vitro, Var, NA
Apoptosis↑, miR-21↓, TOS↓,
720- Bor,    High Concentrations of Boric Acid Trigger Concentration-Dependent Oxidative Stress, Apoptotic Pathways and Morphological Alterations in DU-145 Human Prostate Cancer Cell Line
- in-vitro, Pca, DU145
ROS↑, TumCG↓, Apoptosis↑,
722- Bor,    Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms
- in-vitro, Ovarian, MDAH-2774
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, ROS↑, miR-21↓, miR-130a↓, Casp8∅, Casp10∅, cycD1/CCND1∅, CDK6∅, CDK4∅, FADD∅, DR4∅, DR5∅,
723- Bor,    Boric acid suppresses cell proliferation by TNF signaling pathway mediated apoptosis in SW-480 human colon cancer line
- in-vitro, Colon, SW480
Apoptosis↑, TNF-α↝,
724- Bor,    Does Boric Acid Inhibit Cell Proliferation on MCF-7 and MDA-MB-231 Cells in Monolayer and Spheroid Cultures by Using Apoptosis Pathways?
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Apoptosis↑, Casp3↝, Casp8↝, Casp9↝,
725- Bor,    Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway
- in-vitro, HCC, NA
tumCV↓, Apoptosis↑, TumAuto↑, p‑Akt↓,
707- Bor,    Cytotoxic and apoptotic effects of boron compounds on leukemia cell line
- in-vitro, AML, HL-60
Apoptosis↑,
716- Bor,    Sugar-borate esters--potential chemical agents in prostate cancer chemoprevention
TumCG↓, Apoptosis↑,
755- Bor,    https://aacrjournals.org/cancerres/article/67/9_Supplement/4220/535557/Boric-acid-induces-apoptosis-in-both-prostate-and
- in-vitro, Pca, DU145 - in-vitro, PC, PC3
TumCG↓, Apoptosis↑,
766- Bor,    In vitro effects of boric acid on human liver hepatoma cell line (HepG2) at the half-maximal inhibitory concentration
- in-vitro, Liver, HepG2
TumCCA↑, DNAdam↑, Apoptosis↑,
740- Bor,    Anti-cancer effect of boron derivatives on small-cell lung cancer
- in-vitro, Lung, DMS114 - in-vitro, Nor, MRC-5
Apoptosis↑, TumCCA↑, P53↑, Casp3↑, *toxicity↓,
749- Bor,    Comparative effects of boric acid and calcium fructoborate on breast cancer cells
P53↓, Bcl-2↓, Casp3↑, Apoptosis↑,
751- Bor,  5-FU,    Cytotoxic and Apoptotic Effects of the Combination of Borax (Sodium Tetraborate) and 5-Fluorouracil on DLD-1 Human Colorectal Adenocarcinoma Cell Line
- in-vitro, CRC, DLD1
Apoptosis↑,
697- Bor,    Boron-containing compounds as preventive and chemotherapeutic agents for cancer
- Review, NA, NA
serineP↓, NADHdeh↓, Apoptosis↑,
696- Bor,    Nothing Boring About Boron
- Review, Var, NA
*hs-CRP↓, *TNF-α↓, *SOD↑, *Catalase↑, *GPx↑, *cognitive↑, *memory↑, *Risk↓, *SAM-e↑, *NAD↝, *ATP↝, *Ca+2↝, HDAC↓, TumVol↓, IGF-1↓, PSA↓, Cyc↓, TumCMig↓, *serineP↓, HIF-1↓, *ChemoSideEff↓, *VitD↑, *Mag↑, *eff↑, Risk↓, *Inflam↓, *neuroP↑, *Calcium↑, *BMD↑, *chemoP↑, AntiCan↑, *Dose↑, *Dose↝, *BMPs↑, *testos↑, angioG↓, Apoptosis↑, *selectivity↑, *chemoPv↑,
1450- Bos,  Cisplatin,    3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells
- in-vitro, Pca, DU145
ROS↑, MMP↓, Casp↑, Apoptosis↑, Bax:Bcl2↑, TumCCA?, cycD1/CCND1↓, CDK4↓, P21↑, p27↑, NOTCH↓, ChemoSen↑,
1424- Bos,    Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, Apoptosis↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1/CCND1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
1449- Bos,  Chemo,    Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells
- in-vitro, Pca, PC3
TumCP↓, ChemoSen↑, MMP↝, ROS↝, Apoptosis↑,
1448- Bos,    A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells
- in-vitro, AML, HL-60
TumCP↓, Apoptosis↑, ROS↑, NO↑, cl‑Bcl-2↑, BAX↑, MMP↓, Cyt‑c↑, AIF↑, Diablo↑, survivin↓, ICAD↓, Casp↑, cl‑PARP↑, DR4↑, TNFR 1↑,
2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, ER Stress↑, TumCG↓, Apoptosis↑, Inflam↓, ChemoSen↑, Casp↑, ERK↓, cl‑PARP↑, AR↓, cycD1/CCND1↓, VEGFR2↓, CXCR4↓, radioP↑, NF-kB↓, VEGF↓, P21↑, Wnt↓, β-catenin/ZEB1↓, Cyt‑c↑, MMP2↓, MMP1↓, MMP9↓, PI3K↓, MAPK↓, JNK↑, *5LO↓, *NRF2↑, *HO-1↑, *MDA↓, *SOD↑, *hepatoP↑, *ALAT↓, *AST↓, *LDH↑, *CRP↓, *COX2↓, *GSH↑, *ROS↓, *Imm↑, *Dose↝, *eff↑, *neuroP↑, *cognitive↑, *IL6↓, *TNF-α↓,
2768- Bos,    Boswellic acids as promising agents for the management of brain diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*neuroP↑, *ROS↓, *cognitive↓, TumCP↓, TumCMig↓, TumMeta↓, angioG↓, Apoptosis↑, *Inflam↓, IL1↓, IL2↓, IL4↓, IL6↓, TNF-α↓, P53↑, Akt↓, NF-kB↓, DNAdam↑, Casp↑, COX2↓, MMP9↓, CXCR4↓, VEGF↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑,
1297- CA,    Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes
- in-vitro, Ovarian, OV7
lysosome↓, Apoptosis↑, Bax:Bcl2↑,
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑, TumCCA↓, TumCMig↓, TumMeta↓, ChemoSen↑, eff↑, eff↑, eff↓, eff↝, Dose∅, AMPK↑, p62↓, LC3II↑, Ca+2↑, Bax:Bcl2↑, CDK4↑, CDK6↑, RB1↑, EMT↓, E-cadherin↑, Vim↓, β-catenin/ZEB1↓, NF-kB↓, angioG↑, VEGF↓, TSP-1↑, MMP9↓, MMP2↓, ChemoSen↑, eff↑, ROS↑, CSCs↓, Fas↑, P53↑, BAX↑, Casp↑, β-catenin/ZEB1↓, NDRG1↑, STAT3↓, MAPK↑, ERK↑, eff↑, eff↑, eff↑,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1/CCND1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
1207- CA,  PacT,    Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation
- in-vitro, Lung, A549 - in-vitro, Cerv, HeLa
TumCG↑, TumCMig↓, Apoptosis↓, ac‑α-tubulin↑,
2652- CAP,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
chemoPv↑, AntiCan↑, ROS↑, TumCG↓, ROS↑, MMP↑, Apoptosis↑, TumCCA↑, JNK↑, SOD↓, Catalase↓, GPx↓, other↓, SIRT1↓, NADPH↑, FOXO3↑,
1262- CAP,    Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway
- vitro+vivo, BC, NA
FBI-1↓, Ki-67↓, Bcl-2↓, survivin↓, BAX↑, Casp3↑, TumCP↓, Apoptosis↑,
2014- CAP,    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, Bxpc-3 - in-vitro, Nor, HPDE-6 - in-vivo, PC, AsPC-1
ROS↑, *ROS∅, selectivity↑, compI↓, compIII↓, eff↑, selectivity↑, ATP↓, Cyt‑c↑, Casp9↑, Casp3↑, MMP↓, SOD↓, GSH/GSSG↓, Apoptosis↑, *toxicity∅, GSH↓, Catalase↓, GPx↓, Dose↝,
2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoPv↑, Ca+2↑, antiOx↑, *ROS↓, *MMP∅, *Cyt‑c∅, *Casp3∅, *eff↑, *Inflam↓, *NF-kB↓, *COX2↓, iNOS↓, TRPV1↑, i-Ca+2?, MMP↓, Cyt‑c↑, Bax:Bcl2↑, P53↑, JNK↑, PI3K↓, Akt↓, mTOR↓, LC3II↑, ATG5↑, p62↑, Fap1↓, Casp3↑, Apoptosis↑, ROS↑, MMP9↓, eff↑, eff↓, eff↑, selectivity↑, eff↑, ChemoSen↑,
2012- CAP,    Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways
- NA, OS, MG63
AntiTum↑, Apoptosis↑, TRPV1↑, ROS↑, SOD↓, AMPK↑, P53↑, JNK↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑PARP↑, Ca+2↑, MMP↓,
1287- CAR,    Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway
- in-vitro, BC, HCC1937
TumCP↓, TumCCA↑, Apoptosis↑, BAX↑, Cyt‑c↑, Casp3↑, Bcl-2↓,
1103- CBD,    Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway
- vitro+vivo, NA, NA
Apoptosis↑, TumCP↓, TumCMig↓, TumMeta↓, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, Hif1a↓, Wnt/(β-catenin)↓, AXIN1↑, TumVol↓, TumW↓,
4493- Chit,  Selenate,  Se,    A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway
- in-vitro, Lung, A549
tumCV↓, Apoptosis↑, TumCCA↑, Fas↑, FasL↑, FADD↑, Casp↑,
4487- Chit,  PreB,    Unravelling the Role of Chitin and Chitosan in Prebiotic Activity and Correlation With Cancer: A Narrative Review
- Review, NA, NA
*GutMicro↑, Apoptosis↑, BAX↑, Bcl-2↓, *Inflam↓, AntiTum↑,
4482- Chit,    Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44
- in-vitro, Lung, A549 - in-vitro, Liver, HepG2
EPR↑, mtDam↑, ROS↑, Apoptosis↑,
4478- Chit,    Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D
TumCP↓, selectivity↑, MMP↓, ROS↑, TumCCA↑, Apoptosis↑, Casp3↑,
3258- CHr,  PBG,    Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells
- in-vitro, GC, MKN45
TET1↑, Apoptosis↑, TumCI↓, TumCMig↓,
1107- CHr,    Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway
- in-vitro, BC, NA
TumCP↓, Apoptosis↑, MMP-10↓, E-cadherin↑, Vim↓, Snail↓, Slug↓, EMT↓,
1143- CHr,    Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2
- in-vitro, HCC, HepG2 - in-vivo, NA, NA - in-vitro, HCC, HepG3 - in-vitro, HCC, HUH7
HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, Apoptosis↑,
1249- CHr,    Chrysin as an Anti-Cancer Agent Exerts Selective Toxicity by Directly Inhibiting Mitochondrial Complex II and V in CLL B-lymphocytes
- in-vitro, CLL, NA
ROS↑, MMP↓, ADP:ATP↑, Casp3↑, Apoptosis↑,
2794- CHr,    An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches
- Review, Park, NA - Review, Stroke, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *IL1β↓, *TNF-α↓, *COX2↓, *iNOS↓, *NF-kB↓, *JNK↓, *HDAC↓, *GSK‐3β↓, *IFN-γ↓, *IL17↓, *GSH↑, *NRF2↑, *HO-1↑, *SOD↑, *MDA↓, *NO↓, *GPx↑, *TBARS↓, *AChE↓, *GR↑, *Catalase↑, *VitC↑, *memory↑, *lipid-P↓, *ROS↓,
2800- CHr,    Chrysin Activates Notch1 Signaling and Suppresses Tumor Growth of Anaplastic Thyroid Carcinoma In vitro and In vivo
- in-vitro, Thyroid, NA
TumCG↓, NOTCH↑, cl‑PARP↑, Apoptosis↑,
2780- CHr,    Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review
- Review, Var, NA
*antiOx↑, Inflam↓, *hepatoP↑, AntiCan↑, Cyt‑c↑, Casp3↑, XIAP↓, p‑Akt↓, PI3K↑, Apoptosis↑, COX2↓, FAK↓, AMPK↑, STAT3↑, MMP↓, DNAdam↑, BAX↑, Bak↑, Casp9↑, p38↑, MAPK↑, TumCCA↑, ChemoSen↑, HDAC8↓, Wnt↓, NF-kB↓, angioG↓, BioAv↓,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
2783- CHr,    Apoptotic Effects of Chrysin in Human Cancer Cell Lines
- Review, Var, NA
TumCP↓, Apoptosis↑, Casp↑, PCNA↓, p38↑, NF-kB↑, DNAdam↑, XIAP↓, Cyt‑c↑, Casp3↑, Akt↓, SCF↓, hTERT/TERT↓, COX2↓, *Inflam↓, *antiOx↑, *chemoPv↑, AR-V7?, CYP19?,
2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, TumCMig↓, *toxicity↝, ChemoSen↑, *BioAv↓, Dose↝, neuroP↑, *P450↓, *ROS↓, *HDL↑, *GSTs↑, *SOD↑, *Catalase↑, *MAPK↓, *NF-kB↓, *PTEN↑, *VEGF↑, ROS↑, MMP↓, Ca+2↑, selectivity↑, PCNA↓, Twist↓, EMT↓, CDKN1C↑, p‑STAT3↑, MMP2↓, MMP9↓, eff↑, cycD1/CCND1↓, hTERT/TERT↓, CLDN1↓, TumVol↓, OS↑, COX2↓, eff↑, CDK2↓, CDK4↓, selectivity↑, TumCCA↑, E-cadherin↑, HK2↓, HDAC↓,
2786- CHr,    Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumCI↓, TumMeta↑, *toxicity↓, selectivity↑, chemoPv↑, *GSTs↑, *NADPH↑, *GSH↑, HDAC8↓, Hif1a↓, *ROS↓, *NF-kB↓, SCF↓, cl‑PARP↑, survivin↓, XIAP↓, Casp3↑, Casp9↑, GSH↓, ChemoSen↑, Fenton↑, P21↑, P53↑, cycD1/CCND1↓, CDK2↓, STAT3↓, VEGF↓, Akt↓, NRF2↓,
2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, *neuroP↓, *ROS↓, *cardioP↑, *Inflam↓, eff↑, hTERT/TERT↓, cycD1/CCND1↓, MMP9↓, MMP2↓, TIMP1↑, TIMP2↑, BioAv↑, HK2↓, ROS↑, MMP↓, Casp3↑, ADP:ATP↑, Apoptosis↑, ER Stress↑, UPR↑, GRP78/BiP↝, eff↑, Ca+2↑,
1567- Cin,    Cinnamon: Mystic powers of a minute ingredient
- Review, Var, NA
other∅, cognitive↑, antiOx↑, lipid-P↓, Apoptosis↑, NF-kB↓,
1577- Citrate,    Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet
- in-vivo, PC, NA - in-vitro, PC, PANC1 - in-vitro, PC, PATU-8988 - in-vitro, PC, MIA PaCa-2
Apoptosis↑, TumCP↓, TumCG↑, SPARC↑, Glycolysis↓, OCR↓, pol-M1↑, pol-M2 MC↓, Weight∅, ATP↓, ECAR↓, mitResp↓, i-ATP↑, p65↓, i-Ca+2↑, eff↓,
1580- Citrate,    Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway
- in-vitro, Pca, PC3 - in-vivo, PC, NA - in-vitro, Pca, LNCaP - in-vitro, Pca, WPMY-1
Apoptosis↑, Ca+2↓, Akt↓, mTOR↓, selectivity↑, TumCP↓, cl‑Casp3↑, cl‑PARP↑, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, ATG5↑, ATG7↑, Beclin-1↑, TumAuto↑, CaMKII ↓,
1583- Citrate,    Extracellular citrate and metabolic adaptations of cancer cells
- Review, NA, NA
Warburg↓, OXPHOS↓, Dose∅, TumCP↓, ATP↓, eff↑, Apoptosis↑, TumCG↓, PFK1↓,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
1593- Citrate,    Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma?
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901
PFK↓, Glycolysis↓, tumCV↓, cl‑Casp3↑, cl‑PARP↑, Apoptosis↑, ATP↓, ChemoSen↑, Mcl-1↓, glucoNG↑, FBPase↑, OXPHOS↓, TCA↓, β-oxidation↓, HK2↓, PDH↓, ROS↑,
3997- CoQ10,    Coenzyme Q and Its Role in the Dietary Therapy against Aging
- Review, AD, NA
*AntiAge↑, *Inflam↓, *antiOx↑, *Apoptosis↓, *BioAv↑, *other↝, *cognitive↑, *DNAdam↓, *ER Stress↓,
4776- CoQ10,    Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy
- vitro+vivo, Ovarian, SKOV3
ROS↑, eff↓, AntiCan↑, Apoptosis↑, tumCV↓, TumCG↓, TumCCA↑, LC3s↑, ERStress↑, Beclin-1↑, Bax:Bcl2↑, HER2/EBBR2↓, Akt↓, mTOR↓,
4772- CoQ10,    The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231
TumCP↓, Apoptosis↑, Casp3↑, cl‑PARP↑, LC3II↑, eff↓, TumCG↓, Bax:Bcl2↑, Beclin-1↑, TumAuto↑, ROS↑,
4768- CoQ10,    Role of coenzymes in cancer metabolism
- Review, Var, NA
Risk↓, *ROS↓, AntiCan↑, TumMeta↓, ROS↑, TumCG↓, Apoptosis↑, TumMeta↓, Wnt↓, β-catenin/ZEB1↓, TumCG↓, selectivity↑, RadioS↑, ChemoSen↑, H2O2↓, MMP2↓, cardioP↑, ChemoSen∅, Dose↝,
4764- CoQ10,  VitE,    Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway
- in-vitro, RPE, Y79 - in-vitro, Nor, ARPE-19 - in-vivo, NA, NA
tumCV↓, Apoptosis↑, ROS↑, MMP↓, TumCCA↑, VEGF↓, ERK↓, Akt↓, ChemoSen↑, chemoP↑, toxicity↓, angioG↓,
4763- CoQ10,  Chemo,  doxoR,    Effect of Coenzyme Q10 on Doxorubicin Cytotoxicity in Breast Cancer Cell Cultures
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
ChemoSen∅, antiNeop∅, *cardioP↑, Dose↝, selectivity↑, TumCG∅, TumCG∅, Apoptosis∅,
4762- CoQ10,    The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers
- Review, Var, NA
*AntiCan↓, *ROS↓, chemoPv↑, TumCCA↑, Apoptosis↑, TumCP↓, angioG↓, MMPs↓, ChemoSen∅,
3832- Croc,    Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *memory↑, *Apoptosis↓, *cognitive↑, *ER Stress↓,
1596- Cu,  CDT,    Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review
- Review, NA, NA
TumCD↑, Apoptosis↓, ROS↑, angioG↑, Cupro↑, Paraptosis↑, eff↑, eff↓, selectivity↑, DNAdam↑, eff↑, eff↑, eff↑, eff↑, Fenton↑, H2O2↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑, *toxicity↝, other↑, eff↑,
1602- Cu,    A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy†
- in-vitro, BC, MCF-7 - in-vitro, BC, 4T1 - in-vitro, Lung, A549 - in-vitro, Liver, HepG2
eff↑, GSH↓, H2O2↑, ROS↑, *BioAv↑, selectivity↑, TumCCA↑, Apoptosis↑, Fenton↑, *toxicity?,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
1571- Cu,    Copper in cancer: From pathogenesis to therapy
- Review, NA, NA
*toxicity↝, ROS↑, lipid-P↓, HNE↑, MAPK↑, JNK↑, AP-1↑, Beclin-1↑, ATG7↑, TumAuto↑, Apoptosis↑, HO-1↑, NQO1↑, mt-ROS↑, Fenton↑,
1410- CUR,    Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway
- vitro+vivo, OS, MG63
tumCV↓, Apoptosis↑, TumCG↓, NRF2↓, GPx4↓, HO-1↓, xCT↓, ROS↑, MDA↑, GSH↓,
1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑, Apoptosis↑, DNMTs↓, HDAC↓, HATs↓, TumCP↓, p300↓, HDAC1↓, HDAC3↓, HDAC8↓, NF-kB↓,
2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, *NRF2↑, *ROS↓, *Inflam↓, ROS↑, p‑ERK↑, ER Stress↑, mtDam↑, Apoptosis↑, Akt↓, mTOR↓, HO-1↑, Fenton↑, GSH↓, Iron↑, p‑JNK↑, Cyt‑c↑, ATF6↑, CHOP↑,
2818- CUR,    Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways
- Review, AD, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *cognitive↑, *cardioP↑, other↑, *COX2↓, *IL1β↓, *TNF-α↓, NF-kB↓, *PGE2↓, *iNOS↓, *NO↓, *IL2↓, *IL4↓, *IL6↓, *INF-γ↓, *GSK‐3β↓, *STAT↓, *GSH↑, *MDA↓, *lipid-P↓, *SOD↑, *GPx↑, *Catalase↑, *GSR↓, *LDH↓, *H2O2↓, *Casp3↓, *Casp9↓, *NRF2↑, *AIF↓, *ATP↑,
2808- CUR,    Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation
- in-vitro, Liver, HUH7
Ferritin↓, IronCh↑, TumAuto↑, Apoptosis↑, eff↝, Dose↝,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1/CCND1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Catalase↓, SOD1↓, GLO-I↓, NADPH↓, TumCCA↑, Apoptosis↑, Akt↓, ER Stress↑, JNK↑, STAT3↓, BioAv↑,
4709- CUR,    Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling Pathways
- Review, Var, NA
miR-21↓, TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-99↑, JAK↓, STAT↓, cycD1/CCND1↓, P21↑, ChemoSen↑, miR-192-5p↑, cMyc↓, Wnt↓, β-catenin/ZEB1↓, miR-130a↓,
4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, *Inflam↑, *ROS↓, Apoptosis↑, TumCP↓, BioAv↓, Half-Life↓, eff↑, TumCCA↑, BAX↑, Bak↑, PUMA↑, BIM↑, NOXA↑, TRAIL↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, cMyc↓, Casp↑, NF-kB↓, STAT3↓, AP-1↓, angioG↓, TumMeta↑, VEGF↓, MMPs↓, DNMTs↓, HDAC↓, ROS↑,
4830- CUR,    Curcumin and Its Derivatives Induce Apoptosis in Human Cancer Cells by Mobilizing and Redox Cycling Genomic Copper Ions
- in-vitro, Var, NA
eff↑, ROS↑, DNAdam↑, TumCG↓, Apoptosis↑, eff↓, Fenton↑, eff↑,
4652- CUR,    Anticancer effect of curcumin on breast cancer and stem cells
- Review, BC, NA
TumCP↓, TumMeta↓, TumCCA↑, Apoptosis↑, CSCs↓, NF-kB↓, Telomerase↓, Cyt‑c↑, Casp9↑, Casp3↑, E-cadherin↑,
933- CUR,  EP,    Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study
- in-vitro, BC, NA
Apoptosis↑, ALDOA↓, ENO2↓, LDHA↓, LDHB↓, PFKP↓, PGK1↓, PGM1↓, PGAM1↓, OXPHOS↑, TCA↑,
134- CUR,  RES,  MEL,  SIL,    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, ROS↑, Trx1↓,
15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝, Akt↝, AR↝, Apoptosis↝, Bcl-2↝, Casp3↝, BAX↝, P21↝, ROS↝, Apoptosis↝, Bcl-xL↝, JNK↝, MMP2↝, P53↝, PSA↝, VEGF↝, COX2↝, cycD1/CCND1↝, EGFR↝, IL6↝, β-catenin/ZEB1↝, mTOR↝, NRF2↝, p‑Akt↝, AP-1↝, Cyt‑c↝, PI3K↝, PTEN↝, Cyc↝, TNF-α↝,
124- CUR,    Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TGF-β↓, Wnt↓, PI3k/Akt/mTOR↓, NF-kB↓, PTEN↑, Apoptosis↑,
435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑, TumAuto↑, LC3‑Ⅱ/LC3‑Ⅰ↑, Beclin-1↑, p62↓, PI3K↓, Akt↓, mTOR↓, p‑Akt↓, p‑mTOR↓,
439- CUR,    Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway
- in-vitro, CRC, LGR5
Apoptosis↑, TumAuto↑, GP1BB↓, COL9A3↓, COMP↓, AGRN↓, ITGB4↓, LAMA5↓, COL2A1↓, ITGB6↓, LGR5↓, TFAP2A↓, ECM/TCF↓,
407- CUR,    Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress
- in-vitro, Melanoma, A375
Apoptosis↑, ROS↑, GSH↓, MMP↓,
406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, Apoptosis↑, Bcl-2↓, cMyc↓,
405- CUR,  5-FU,    Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis
- vitro+vivo, CRC, HCT116
Apoptosis↑, TumCMig↓, NRF2↑, ROS↑, MET↑, miR-34a↑,
477- CUR,    Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells
- in-vitro, Cerv, SiHa
TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, CycB/CCNB1↓, CDC25↓, ROS↑, p62↑, LC3‑Ⅱ/LC3‑Ⅰ↑, cl‑Casp3↑, cl‑PARP↑, P53↑, P21↑,
468- CUR,  5-FU,    Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, 402 - vitro+vivo, Liver, Bel7
Apoptosis↑, TumCCA↑, PI3k/Akt/mTOR↓, p‑PI3K↓, Bacteria↑, cl‑Casp3↑,
459- CUR,    Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells
- in-vitro, Bladder, T24 - in-vitro, Bladder, RT4
Trop2↓, Apoptosis↑, cycE1↓, p27↑, TumCCA↑,
460- CUR,    Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer
- in-vitro, Bladder, T24 - in-vitro, Bladder, TCCSUP - in-vitro, Bladder, J82
miR-7641↓, p16↑, Apoptosis↑, TumCI↓,
461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-30a-5p↑, PCLAF↓, Bcl-2↓, Casp3↓, BAX↑, cl‑Casp3↑,
467- CUR,    Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling
- in-vitro, Liver, HepG2
TumCP↓, TumCI↓, TumMeta↓, Apoptosis↑, HSP70/HSPA5↓, e-HSP70/HSPA5↓, TLR4↓,
458- CUR,    Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion
- vitro+vivo, GC, SGC-7901
Casp3↑, Apoptosis↑, TumCP↓,
471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑, TumAuto↑, p62↓, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, Casp9↑, PARP↑, ATG3↑, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↑,
472- CUR,    Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis
- vitro+vivo, Ovarian, SKOV3 - vitro+vivo, Ovarian, A2780S
TumCP↓, Apoptosis↑, PCNA↓, miR-320a↓, BAX↑, cl‑Casp3↑, circ‑PLEKHM3↑, SMG1↑,
474- CUR,    Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2
TumCD↑, Apoptosis↑, DNAdam↑, γH2AX↑, TumCCA↑,
475- CUR,    Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway
- in-vitro, PC, PANC1
Apoptosis↑, cl‑Casp3↑, miR-340↑, cl‑PARP↑, XIAP↓,
476- CUR,    The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer
- in-vitro, PC, PATU-8988 - in-vitro, PC, PANC1
TumCMig↓, TumCI↓, Apoptosis↑, NEDD9↓, p‑Akt↓, p‑mTOR↓, PTEN↑, p73↑, β-TRCP↑,
442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, TumCCA↑, TET1↑, NKD2↑, Wnt↓, EMT↓, Vim↑, E-cadherin↓, β-catenin/ZEB1↓, TCF↓, AXIN1↓,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
454- CUR,    Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway
- in-vitro, GC, MGC803
TumCMig↓, TumCP↓, ROS↑, mtDam↑, DNAdam↑, Apoptosis↑, ATR↑, P21↑, p‑P53↑, GADD45A↑, p‑γH2AX↑,
455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓, Gli1↓, FOXM1↓, β-catenin/ZEB1↓, TumCMig↓, Apoptosis↑, TumCCA↑, Wnt↓, EMT↓, E-cadherin↑, Vim↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
990- CUR,    Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29
HK2↓, Glycolysis↓, Apoptosis↑,
479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, Bcl-2↓, BAX↑, cl‑Casp3↑,
480- CUR,    Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells
- in-vitro, GBM, SNB19
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, NEDD9↓, NOTCH1↓, p‑Akt↓,
482- CUR,  PDT,    The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro
- in-vitro, Bladder, RT112 - in-vitro, Bladder, UMUC3
Apoptosis↑, TumCG↓, TumCP↓,
483- CUR,  PDT,    Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin
- in-vivo, NA, A431
TumVol↓, TumCP↓, Apoptosis↑,
1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, Apoptosis↑, TumCG↓, PDK1↓, cl‑PARP↑, Bcl-xL↓, Bcl-2↓, Beclin-1↓, ATG3↓, PI3K↓, Akt↓, eff↑,
1889- DCA,    A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth
- Review, Var, NA
PDKs↓, Glycolysis↓, mt-H2O2↑, Apoptosis↑, TumCP↓, TumCG↓, toxicity∅,
1874- DCA,    Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, MDAH-2774
Apoptosis↑, MPO↓, iNOS↓, Hif1a↓, SOD↑, Casp3↑,
1873- DCA,    Dual-targeting of aberrant glucose metabolism in glioblastoma
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
PDKs↓, eff↑, selectivity↑, MMP↓, ROS↑, Apoptosis↑, Warburg↓, eff↑, Dose∅, toxicity∅,
1870- DCA,  Rad,    Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation
- in-vitro, Pca, PC3
TumCCA↑, Apoptosis↑, MMP↓, eff↑, RadioS↑,
1868- DCA,  MET,    Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy
- Case Report, NA, NA
eff↑, toxicity∅, MMP↓, Apoptosis↑, selectivity↑, pH↝, Dose↝, Dose↝, eff↑,
4901- DCA,  Sal,    Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer
- Review, NSCLC, NA
Glycolysis↓, OXPHOS↑, PDKs↓, ROS↑, Apoptosis↑, GlucoseCon↓, lactateProd↓, RadioS↑, TumAuto↑, mTOR↓, LC3s↓, p62↑, TumCG↓, OS↑, toxicity↝, ChemoSen↑, eff↑, eff↑, Ferritin↓, CSCs↓, EMT↓, ROS↑, Cyt‑c↑, Casp3↑, ER Stress↑, selectivity↑, eff↑, TumCG↓,
1442- Deg,    Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention
- Review, Var, NA
PI3K/Akt↓, IKKα↓, AMP↓, mTOR↓, survivin↓, NF-kB↓, Apoptosis↑, TumCCA↑, toxicity↓, HSP90↓, Casp↑, TumCG↓, p27↑, cycE/CCNE↓, angioG↓, Hif1a↓, VEGF↓, *toxicity↑,
4456- DFE,    Induction of apoptosis and cell cycle arrest by ethyl acetate fraction of Phoenix dactylifera L. (Ajwa dates) in prostate cancer cells
- in-vitro, Pca, PC3
TumCD↑, MMP↓, mt-ROS↑, Apoptosis↑, TumCCA↑,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
4454- DFE,    Cytostatic and Anti-tumor Potential of Ajwa Date Pulp against Human Hepatocellular Carcinoma HepG2 Cells
- in-vitro, Liver, HepG2
ROS↑, MMP↓, TumCCA↑, Apoptosis↑, selectivity↑, MMP↓, TumCCA↑,
1843- dietFMD,  BTZ,    Cyclic Fasting–Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic Leukemia
- in-vivo, CLL, NA
AntiTum↓, Apoptosis↑, IGF-1↓, eff↑, OS↑, eff↑,
1858- dietFMD,  Chemo,    Effect of short-term fasting on the cisplatin activity in human oral squamous cell carcinoma cell line HN5 and chemotherapy side effects
- in-vitro, HNSCC, HN5
Apoptosis↑, necrosis↑,
1861- dietFMD,  Chemo,    Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models
- in-vitro, Colon, CT26 - in-vivo, NA, NA
selectivity↑, ChemoSen↑, BG↓, AminoA↓, Warburg↓, OCR↑, ATP↓, ROS↑, Apoptosis↑, GlucoseCon↓, PI3K↓, PTEN↑, GLUT1↓, GLUT2↓, HK2↓, PFK1↓, PKA↓, ATP:AMP↓, Glycolysis↓, lactateProd↓,
4984- Dipy,  ATV,    Immediate Utility of Two Approved Agents to Target Both the Metabolic Mevalonate Pathway and Its Restorative Feedback Loop
- in-vitro, AML, NA
eff↑, Apoptosis↑, selectivity↑, TumCG↓, HMG-CoA↓, HMGCR↑,
5006- DSF,  Cu,    Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition
- vitro+vivo, lymphoma, NA
TumCD↑, TumCP↑, Apoptosis↑, NRF2↓, ROS↑, p‑JNK↑, p65↓, eff↓, NF-kB↓,
5010- DSF,  Cu,  Rad,    Disulfiram/Copper Combined with Irradiation Induces Immunogenic Cell Death in Melanoma
- in-vivo, Melanoma, B16-F10
Apoptosis↑, ICD↑, HMGB1↑, ATP↓, TumCG↓,
4913- DSF,    Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies
- Review, Var, NA
Apoptosis↑, tumCV↑, eff↑, toxicity↓, antiNeop↑, ChemoSen↑, RadioS↑, OS↑, ROS↑, SOD↓, MMP1↓, eff↑, Half-Life↓,
4916- DSF,  Cu,    The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics
- Review, Var, NA
TumCP↓, TumCMig↓, TumCI↓, eff↑, Imm↑, ROS↑, NF-kB↓, chemoP↑, JNK↑, FOXO↑, Myc↑, TumCCA↑, Apoptosis↑, RadioS↑, PD-L1↑, eff↑, CSCs↓, Dose↝, Half-Life↑,
4832- EA,    Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid
*antiOx↑, *AntiCan↑, TumCMig↓, angioG↓, ChemoSen↑, RadioS↑, *chemoP↑, *BioAv↓, eff↓, selectivity↑, MMP2↓, MMP9↓, VEGF↓, TumCCA↑, Apoptosis↑, ROS↑, BioAv↑,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, TumCMig↓, TumCI↓, TumMeta↓, Apoptosis↑, TGF-β↓, SMAD3↓, CDK6↓, PI3K↓, Akt↓, angioG↓, VEGFR2↓, MAPK↓, NEDD9↓, NF-kB↓, eff↑, eff↑, RadioS↑, ChemoSen↑, DNAdam↑, eff↑, *toxicity∅, *toxicity∅,
1607- EA,    Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions
- Review, GC, NA
STAT3↓, TumCP↓, Apoptosis↑, NF-kB↓, EMT↓, RadioS↑, antiOx↑, COX1↓, COX2↓, cMyc↓, Snail↓, Twist↓, MMP2↓, P90RSK↓, CDK8↓, PI3K↓, Akt↓, TumCCA↑, Casp8↑, PCNA↓, TGF-β↓, Shh↓, NOTCH↓, IL6↓, ALAT↓, ALP↓, AST↓, VEGF↓, P21↑, *toxicity∅, *Inflam↓, *cardioP↑, *neuroP↑, *hepatoP↑, ROS↑, *NRF2↓, *GSH↑,
1606- EA,    Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells
- in-vitro, Colon, HCT15
TumCP↓, cycD1/CCND1↓, Apoptosis↑, PI3K↓, Akt↓, ROS↑, Casp3↑, Cyt‑c↑, Bcl-2↓, TumCCA↑, Dose∅, ALP↓, LDH↓, PCNA↓, P53↑, Bax:Bcl2↑,
1620- EA,  Rad,    Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study
- in-vitro, Liver, HepG2
ROS↑, P53↑, TumCCA↑, IL6↓, COX2↓, TNF-α↓, MMP↓, angioG↓, MMP9↓, BAX↑, Casp3↑, Apoptosis↑, RadioS↑, TBARS↑, GSH↓, Bax:Bcl2↑, p‑NF-kB↓, p‑STAT3↓,
1022- EDM,    Evodiamine suppresses non-small cell lung cancer by elevating CD8+ T cells and downregulating the MUC1-C/PD-L1 axis
- in-vivo, Lung, H1975 - in-vitro, Lung, H1650
TumCG↓, Apoptosis↑, TumCCA↑, PD-L1↓, MUC1-C↓, TumVol↓,
989- EGCG,  Citrate,    In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity
- in-vitro, HCC, NA - in-vivo, NA, NA
PFK↓, Glycolysis↓, lactateProd↓, GlucoseCon↓, TumCP↓, TumCCA↑, Casp3↑, cl‑PARP↑, Apoptosis↑, Casp8↑, Casp9↑, Cyt‑c↝, MMP↓, BAD↑, GLUT2↓, PKM2∅,
20- EGCG,    Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer
- in-vivo, Liver, NA - in-vivo, Tong, NA
HH↓, Gli1↓, Smo↓, TNF-α↓, COX2↓, *antiOx↑, Hif1a↓, NF-kB↓, VEGF↓, STAT3↓, Bcl-2↓, P53↑, Akt↓, p‑Akt↓, p‑mTOR↓, EGFR↓, AP-1↓, BAX↑, ROS↑, Casp3↑, Apoptosis↑, NRF2↑, *H2O2↓, *NO↓, *SOD↑, *Catalase↑, *GPx↑, *ROS↓,
660- EGCG,  FA,    Epigallocatechin-3-gallate Delivered in Nanoparticles Increases Cytotoxicity in Three Breast Carcinoma Cell Lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, *eff↓,
661- EGCG,  GoldNP,    Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice
- vitro+vivo, NA, NA
Apoptosis↑, TumVol↓,
642- EGCG,    Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect
ROS↑, H2O2↑, Apoptosis↑, Trx↓, TrxR↓, JNK↑, HO-1↑, Fenton↑,
640- EGCG,    Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea
- in-vitro, CRC, HCT116 - in-vitro, Colon, SW480
TumCCA↑, Apoptosis↑,
695- EGCG,  TFdiG,    The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention
- in-vitro, NA, HL-60
ROS↑, IronCh↑, Apoptosis↑,
692- EGCG,    EGCG: The antioxidant powerhouse in lung cancer management and chemotherapy enhancement
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑, CTR1↑, JWA↑, β-catenin/ZEB1↓, P53↑, Vim↓, VEGF↓, p‑Akt↓, Hif1a↓, COX2↓, ERK↓, NF-kB↓, Akt↓, Bcl-xL↓, miR-210↓,
691- EGCG,    Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer
- Review, NA, NA
Apoptosis↑, necrosis↑, TumAuto↑, ERK↓, p38↓, NF-kB↓, VEGF↓,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
677- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2 α /ATF4 and IRE1 α
- in-vitro, CRC, HT-29
ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑,
676- EGCG,  Chemo,    The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review
- Review, NA, NA
PI3k/Akt/mTOR↓, Apoptosis↑, ROS↑, TumAuto↑,
672- EGCG,    Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer
- Review, NA, NA
DNMT1↓, HDAC↓, G9a↓, PRC2↓, DNMT3A↓, 67LR↓, Apoptosis↑, TumCCA↑,
2395- EGCG,    EGCG inhibits diabetic nephrophathy through up regulation of PKM2
- Study, Diabetic, NA
*PKM2↑, *Apoptosis↓, *PGC-1α↑,
3208- EGCG,    Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α
- in-vitro, Colon, HT29 - in-vitro, Nor, 3T3
TumCD↓, ER Stress↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, IRE1↑, Apoptosis↑, Casp3↑, Casp7↑, Wnt↓, β-catenin/ZEB1↓, *toxicity∅, UPR↑,
3206- EGCG,    Insights on the involvement of (-)-epigallocatechin gallate in ER stress-mediated apoptosis in age-related macular degeneration
- Review, AMD, NA
*Ca+2↓, *ROS↓, *Apoptosis↓, *GRP78/BiP↓, *CHOP↓, *PERK↓, *IRE1↓, *p‑PARP↓, *Casp3↓, *Casp12↓, *ER Stress↓, *UPR↓,
3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, ROS↑, Apoptosis↑, ER Stress↑, *Inflam↓, *cardioP↑, *antiOx↑, *LDL↓, *NF-kB↓, *MPO↓, *glucose↓, *ROS↓, ATG5↑, LC3B↑, MMP↑, lactateProd↓, VEGF↓, Zeb1↑, Wnt↑, IGF-1R↑, Fas↑, Bak↑, BAD↑, TP53↓, Myc↓, Casp8↓, LC3II↑, NOTCH3↓, eff↑, p‑Akt↓, PARP↑, *Cyt‑c↓, *BAX↓, *memory↑, *neuroP↑, *Ca+2?, GRP78/BiP↑, CHOP↑, ATF4↑, Casp3↑, Casp8↑, UPR↑,
3202- EGCG,    Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity
- in-vitro, Cerv, HeLa - in-vitro, HCC, QGY-7703
PARP16↓, p‑PERK↓, Apoptosis↑, eIF2α↓, UPR↓, ER Stress↑, eff↑, GRP78/BiP↓,
3236- EGCG,  BA,    Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, HT29
Apoptosis↑, TumCCA?, HDAC1↓, DNMT1↓, survivin↓, HDAC↓, P21↑, NF-kB↑, γH2AX↑, ac‑H3↑, DNAdam↑,
3241- EGCG,    Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, Liver, HepG2 - in-vitro, Liver, HUH7
tumCV↓, mtDam↑, Apoptosis↑, ATP↓, lipoGen↓, eff↑,
3243- EGCG,    (−)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway
CD133↓, CSCs↓, TumCP↓, Apoptosis↑, Wnt↓, β-catenin/ZEB1↓,
4681- EGCG,    Epigallocatechin-3-Gallate Prevents the Acquisition of a Cancer Stem Cell Phenotype in Ovarian Cancer Tumorspheres through the Inhibition of Src/JAK/STAT3 Signaling
- in-vitro, Ovarian, ES-2
TumCP↓, Apoptosis↑, Nanog↓, SOX2↓, Fibronectin↓, CD133↓,
4682- EGCG,    Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate
- Review, Var, NA
CSCs↓, EMT↓, ChemoSen↑, CD133↓, CD44↓, ALDH1A1↓, Nanog↓, OCT4↓, TumCP↓, Apoptosis↑, p‑GSK‐3β↓, GSK‐3β↑, β-catenin/ZEB1↓, cMyc↓, XIAP↓, Bcl-2↓, survivin↓, Vim↓, Slug↓, Snail↓,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1974- EGCG,    Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes
- in-vitro, Nor, NA
*ROS↓, *NO↓, *MMP↑, *i-Ca+2↓, *HO-1↑, *Catalase↑, *NRF2↑, *Trx1↑, *antiOx↑, *SOD↑, *Apoptosis↓,
1321- EMD,    Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model
- in-vitro, CRC, LS1034 - in-vivo, NA, NA
tumCV↓, TumCCA↑, ROS↑, Ca+2↑, MMP↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Bax:Bcl2↑,
1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑, TumCP↓, ROS↑, TumAuto↑, EMT↓, TGF-β↓, DNAdam↑, ER Stress↑, TumCCA↑, ATP↓, NF-kB↓, CYP1A1↑, STAC2↓, JAK↓, PI3K↓, Akt↓, MAPK↓, FASN↓, HER2/EBBR2↓, ChemoSen↑, eff↑, ChemoSen↑, angioG↓, VEGF↓, MMP2↓, eNOS↓, FOXD3↑, MMP9↓, TIMP1↑,
1245- EMD,    Apoptosis">Emodin Exhibits Strong Cytotoxic Effect in Cervical Cancer Cells by Activating Intrinsic Pathway of Apoptosis
- in-vitro, Cerv, HeLa
TumCG↓, TumCP↓, Apoptosis↑, ROS↑, Casp3↑, Casp9↑, MMP↓, DNAdam↑, GSH↓,
1325- EMD,  PacT,    Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo
- vitro+vivo, Lung, A549
TumCP↓, Apoptosis↑, BAX↑, Casp3↑, Bcl-2↓, p‑Akt↓, p‑ERK↓, ChemoSideEff∅, ChemoSen↑,
1326- EMD,    Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells
- in-vitro, Lung, A549
Apoptosis↑, ROS↑, P53↑, BAX↑, ATM↑,
1328- EMD,    Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways
- in-vitro, Tong, SCC4
TumCCA↑, P21↑, Chk2↑, CycB/CCNB1↓, cDC2↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Casp3↑, ROS↑, MMP↓, Bax:Bcl2↑, ER Stress↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
2150- Ex,    Roles and molecular mechanisms of physical exercise in cancer prevention and treatment
- Review, Var, NA
eff↓, Dose↝, TumCP↓, Apoptosis↓, ChemoSen↑, chemoP↑,
1039- F,    Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network
- in-vitro, NA, NA
TumCP↓, Apoptosis↑, PD-L1↓,
1114- F,    The Potential Effect of Fucoidan on Inhibiting Epithelial-to-Mesenchymal Transition, Proliferation, and Increase in Apoptosis for Endometriosis Treatment: In Vivo and In Vitro Study
- vitro+vivo, NA, NA
tumCV↓, TumCMig↓, VEGF↓, EMT↓, Apoptosis↑,
1112- FA,    Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA
tumCV↓, Apoptosis↑, AntiTum↑, TumMeta↓, EMT↓, TumVol↓, TumW↓,
1289- FA,    Cytotoxic and Apoptotic Effects of Ferulic Acid on Renal Carcinoma Cell Line (ACHN)
- in-vitro, RCC, NA
Bcl-2↓, BAX↑, Apoptosis↑,
1655- FA,    Ferulic acid inhibiting colon cancer cells at different Duke’s stages
- in-vitro, Colon, SW480 - in-vitro, Colon, Caco-2 - in-vitro, Colon, HCT116
TumCP↓, TumCMig↓, TumCCA↑, Apoptosis↑, ATM↑, Chk2↑, ATR↑, CHK1↑, CK2↓, cycA1/CCNA1↑, CDK4↓, CDK6↓, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1/CCND1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
2494- Fenb,    Oral Fenbendazole for Cancer Therapy in Humans and Animals
- Review, Var, NA
Glycolysis↓, GlucoseCon↓, ROS↑, Apoptosis↑, BioAv↓, eff↑, toxicity↓, BioAv↑, BioAv↑, hepatoP↓, eff↑,
2844- FIS,    Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2851- FIS,    Apoptosis-induction-in-breast-cancer">Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, SkBr3 - in-vitro, Nor, NA
tumCV↓, selectivity↑, TumCCA↑, Apoptosis↑, ROS∅,
2853- FIS,    Fisetin Inhibits Cell Proliferation and Induces Apoptosis via JAK/STAT3 Signaling Pathways in Human Thyroid TPC 1 Cancer Cells
- in-vitro, Thyroid, TPC-1
Apoptosis↑, ROS↑, MMP↓, TumCCA↑, Casp3↑, Casp8↑, Casp9↑, JAK1↓, STAT3↓,
2855- FIS,    Apoptosis_Through_p53-Mediated_Up-Regulation_of_DR5_Expression_in_Human_Renal_Carcinoma_Caki_Cells">Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells
- in-vitro, RCC, Caki-1
TumCCA↑, cl‑PARP↑, Apoptosis↑, Casp↑, P53↑, DR5↑, CHOP↑, ROS↑, ER Stress↑, ATF4↑, XBP-1↑, eff∅,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2826- FIS,    Fisetin induces apoptosis in breast cancer MDA-MB-453 cells through degradation of HER2/neu and via the PI3K/Akt pathway
- in-vitro, BC, MDA-MB-453
Apoptosis↑, p‑ENO1↓, DNAdam↑, PI3K↑, p‑Akt↑, HER2/EBBR2↓,
2829- FIS,    Fisetin: An anticancer perspective
- Review, Var, NA
TumCP↓, TumCI↓, TumCCA↑, TumCG↓, Apoptosis↑, cl‑PARP↑, PKCδ↓, ROS↓, ERK↓, NF-kB↓, survivin↓, ROS↑, PI3K↓, Akt↓, mTOR↓, MAPK↓, p38↓, HER2/EBBR2↓, EMT↓, PTEN↑, HO-1↑, NRF2↑, MMP2↓, MMP9↓, MMP↓, Casp8↑, Casp9↑, TRAILR↑, Cyt‑c↑, XIAP↓, P53↑, CDK2↓, CDK4↓, CDC25↓, CDC2↓, VEGF↓, DNAdam↑, TET1↓, CHOP↑, CD44↓, CD133↓, uPA↓, CSCs↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
2841- FIS,    Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer
- in-vitro, Nor, RAW264.7 - in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B - in-vitro, Liver, HUH7
*Inflam↓, *TNF-α↓, *IL1β↓, *IL6↓, Apoptosis↓, ER Stress↑, Ca+2↑, PERK↑, ATF4↑, CHOP↑, GRP78/BiP↑, tumCV↓, LDH↑, Casp3↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, p‑eIF2α↑, RadioS↑,
4028- FulvicA,    Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells
- in-vitro, Liver, HUH7
Apoptosis↑, TumCP↓, ROS↑, NO↑, Dose↝, MMP↓, Cyt‑c↑, SOD↓, Catalase↓, GSH↑, lipid-P↑, miR-21↓, miR-22↑,
4023- FulvicA,    Shilajit (Mumio) Elicits Apoptosis and Suppresses Cell Migration in Oral Cancer Cells through Targeting Urokinase-type Plasminogen Activator and Its Receptor and Chemokine Signaling Pathways
- in-vitro, Oral, NA
tumCV↓, selectivity↑, Apoptosis↑, uPA↓, TumCMig↓, Dose↝, CXCc↓,
1300- GA,  PacT,  carbop,    Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, P53↑, BAX↑, Casp3↑, Bcl-2↓,
934- Gallo,    Galloflavin (CAS 568-80-9): a novel inhibitor of lactate dehydrogenase
- Analysis, NA, NA
LDH↓, Glycolysis↓, Apoptosis↑,
1973- GamB,    Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain
- in-vitro, Liver, SMMC-7721 cell
Apoptosis↑, ROS↑, Trx↓, Trx1↓, Trx2↓, Mich↑,
1969- GamB,    Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells
- in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
AntiTum↑, TumCI↓, Apoptosis↑, ROS↑, Cyt‑c↑, Akt↓, mTOR↓, TumCG↓, TumMeta↓,
1954- GamB,    Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase
- in-vitro, HCC, SMMC-7721 cell
AntiTum↑, TrxR↓, TrxR1↓, ROS↑, Apoptosis↑, Dose∅, Dose?,
1955- GamB,    Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer
- in-vitro, Pca, NA
ROS↑, Apoptosis↑, Ferroptosis↑, Trx↓, eff↑, TrxR↓, Dose∅, MMP↓, eff↑,
1956- GamB,    Gambogic Acid Inhibits Malignant Melanoma Cell Proliferation Through Mitochondrial p66shc/ROS-p53/Bax-Mediated Apoptosis
- in-vitro, Melanoma, A375
tumCV↓, Apoptosis↑, ROS↑, p66Shc↑,
1957- GamB,    Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy
- in-vitro, ESCC, EC9706
AntiCan↑, toxicity↓, TumCP↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, RadioS↑,
1961- GamB,    Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS
- in-vitro, Melanoma, RPMI-8226
TumCG↓, Apoptosis↑, ROS↑, Casp3↑, cl‑PARP↑, SIRT1↓, eff↓,
808- GAR,  CUR,    Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1
tumCV↓, Apoptosis↑, Casp3↑, Casp9↑,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
830- GAR,    Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells
- in-vitro, CRC, HT-29
TumCI↓, TumCMig↓, Apoptosis↑, p‑FAK↓, Src↓, MAPK↓, ERK↓, PI3K/Akt↓, Bax:Bcl2↑, Cyt‑c↑, MMP7↓,
817- GAR,    Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways
- vitro+vivo, SCC, KYSE150 - vitro+vivo, SCC, KYSE450
HATs↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, CBP↓, p300↓, TGF-β↓, Ki-67↓, SMAD2↓, SMAD3↓,
825- GAR,    Garcinol-induced apoptosis in prostate and pancreatic cancer cells is mediated by NF- kappaB signaling
- in-vitro, Pca, LNCaP - in-vitro, Pca, Bxpc-3 - in-vitro, Pca, PC3 - in-vitro, Pca, C4-2B
TumCG↓, Apoptosis↑, NF-kB↓,
820- GAR,    Garcinol in gastrointestinal cancer prevention: recent advances and future prospects
- Review, NA, NA
Fas↑, TRAIL↑, PARP↑, BAX↑, Bcl-2↓, ROS↑, STAT3↓, Apoptosis↑, MMP2↓, MMP9↓,
818- GAR,  GB,    Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs
- in-vitro, Lung, A549
miR-205↑, Let-7↑, Apoptosis↑, miR-200b↑, miR-218↑,
814- GAR,  PacT,    Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model
- in-vivo, BC, NA
Apoptosis↑, TumCCA↑, EMT↓, TumCI↓,
810- GAR,  GEM,    Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures
- in-vitro, PC, NA
TumCP↓, Apoptosis↑, PARP↝, VEGF↝, MMPs↝, Casp↝, NF-kB↝, miR-21↝,
807- GAR,    Garcinol inhibits cell proliferation and promotes apoptosis in pancreatic adenocarcinoma cells
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3
TumCG↓, Apoptosis↑, TumCCA↑,
806- GAR,    Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin
- vitro+vivo, Pca, HeLa - vitro+vivo, Cerv, SiHa
TumCI↓, TumCMig↓, TumCCA↑, Apoptosis↑, T-cadherin↑,
796- GAR,    Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression
- vitro+vivo, Pca, HeLa
HATs↓, PCAF↓, Apoptosis↑,
798- GAR,    Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol
- in-vitro, BC, MCF-7
TumCP↓, TumCCA↑, Apoptosis↑, ac‑H3↑, ac‑H4∅, NF-kB↓, ac‑p65↑, cycD1/CCND1↓, Bcl-2↓, Bcl-xL↓,
793- GAR,    Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer
- in-vitro, SCC, SCC9 - in-vitro, SCC, SCC4 - in-vitro, SCC, SCC25
TumCG↓, Apoptosis↑, TumCCA↑, NF-kB↓, COX2↓, VEGF↓,
799- GAR,    Apoptosis-inducing effect of garcinol is mediated by NF-kappaB signaling in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, NMSC, MCF10
TumCG↓, Apoptosis↑, NF-kB↓,
801- GAR,  Cisplatin,    Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers
- in-vivo, HNSCC, NA
Apoptosis↑, cycD1/CCND1↓, Bcl-2↓, survivin↓, VEGF↓, TumCG↓, Ki-67↓, CD31↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1/CCND1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
1186- Gb,    Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis
- in-vitro, PC, NA - in-vitro, Nor, HUVECs - in-vivo, PC, NA
tumCV↓, *toxicity∅, TumCMig↓, TumCI↓, Apoptosis↑, AMPK↑, lipoGen↓, ACC↓, FASN↓,
1187- Gb,    Ginkgolic Acid C 17:1, Derived from Ginkgo biloba Leaves, Suppresses Constitutive and Inducible STAT3 Activation through Induction of PTEN and SHP-1 Tyrosine Phosphatase
- in-vitro, Melanoma, U251 - in-vitro, Melanoma, MM.1S
STAT3↓, PTEN↑, Apoptosis↑, PTPN6↑,
1189- Gb,    New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer
- Review, NA, NA
Apoptosis↑, TumCP↓, TumCI↓, TumCMig↓, Inflam↓, antiOx↑, angioG↓,
3723- Gb,    Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies
- Review, AD, NA
*memory↑, *antiOx↑, *Casp3↓, *APP↓, *AChE↓, *Aβ↓, *5HT↑, *SOD↓, *MDA↓, *NO↓, *GSH↑, *Bcl-2↑, *BAX↑, *TNF-α↓, *IL1β↑, *iNOS↓, *IL10↓, *p‑tau↓, *ROS↓, *MAOB↓, *cognitive↑, *neuroP↑, *Apoptosis↓,
1292- Ge,  EGCG,    Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines
- in-vitro, Colon, Caco-2 - in-vitro, CRC, HCT8
TumCG↓, Apoptosis↑,
1504- GEN,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
DNMTs↓, P21↑, p16↑, ac‑H3↑, ac‑H4↑, TumCCA↑, Casp↑, Apoptosis↑, hTERT/TERT↓, BTG3↑,
2997- GEN,    Genistein Inhibition of Topoisomerase IIα Expression Participated by Sp1 and Sp3 in HeLa Cell
- in-vitro, Cerv, HeLa
TOP2↓, Sp1/3/4↓, Apoptosis↑, TumCCA↑,
1116- GI,    6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway
- in-vitro, Colon, Caco-2 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑, TumCMig↓, MMP2↓, N-cadherin↓, IKKα↓, p‑NF-kB↓, Snail↓, VEGF↓,
4247- GI,    6-Shogaol from Dried Ginger Protects against Intestinal Ischemia/Reperfusion by Inhibiting Cell Apoptosis via the BDNF/TrkB/PI3K/AKT Pathway
- vitro+vivo, NA, NA
*BDNF↑, *TrkB↑, *PI3K↑, *Akt↑, *Apoptosis↓, *Inflam↓, *antiOx↑,
4513- GLA,    Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines
- in-vitro, Liver, HUH7
TumCP↓, ROS↑, Apoptosis↑, HO-1↑, Trx↑, lipid-P↑, eff↓, MMP↓, DNAdam↑, selectivity↑,
4510- GLA,    Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies
- Review, NA, NA
Apoptosis↑, selectivity↑, eff↓, ROS↑, lipid-P↑, P53↑, radioP↑, chemoP↑,
4508- GLA,  aLinA,    α-Linolenic and γ-linolenic acids exercise differential antitumor effects on HT-29 human colorectal cancer cells
- in-vitro, Colon, HT29
Apoptosis↑, *Inflam↓, AntiCan↑, lipid-P↑, COX2↝, MKP1↝,
4506- GLA,    A basal level of γ-linolenic acid depletes Ca2+ stores and induces endoplasmic reticulum and oxidative stresses to cause death of breast cancer BT-474 cells
- in-vitro, BC, BT474
Apoptosis↓, Ca+2↑, MMP↓, p‑eIF2α↑, CHOP↑, ER Stress↑, ROS↑,
1904- GoldNP,  SNP,    Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis
- in-vitro, Lung, H157 - in-vitro, BC, MCF-7 - in-vitro, Colon, HCT15 - in-vitro, Melanoma, A375
TrxR↓, selectivity↑, eff↑, eff↝, ROS↑, MMP↓, Apoptosis↑, eff↑,
848- Gra,  SNP,    Synthesis, Characterization and Evaluation of Antioxidant and Cytotoxic Potential of Annona muricata Root Extract-derived Biogenic Silver Nanoparticles
- in-vitro, CRC, HCT116
ROS↑, PUMA↝, Casp3↑, Casp8↑, Casp9↑, Apoptosis↑,
845- Gra,    A Review on Annona muricata and Its Anticancer Activity
- Review, NA, NA
GlucoseCon↓, ATP↓, HIF-1↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ERK↓, Akt↓, Apoptosis↑, NF-kB↓, ROS↑, Bax:Bcl2↑, MMP↓, Casp3↑, Casp9↑, p‑JNK↓,
843- Gra,    Graviola (Annona muricata) Exerts Anti-Proliferative, Anti-Clonogenic and Pro-Apoptotic Effects in Human Non-Melanoma Skin Cancer UW-BCC1 and A431 Cells In Vitro: Involvement of Hedgehog Signaling
- in-vitro, NMSC, A431 - in-vitro, NMSC, UW-BCC1 - in-vitro, Nor, NHEKn
TumCG↓, TumCCA↑, Cyc↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, HH↓, Smo↓, Gli1↓, GLI2↓, Shh↓, Sufu↑, BAX↑, Bcl-2↓, *toxicity↓,
839- Gra,    Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway
- in-vitro, Liver, HepG2
tumCV↓, Apoptosis↑, HSP70/HSPA5↑, GRP94↑, ER Stress↑, p‑PERK↑, p‑eIF2α↑, GRP78/BiP↑, CHOP↑,
835- Gra,    Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB
- in-vitro, Lung, A549
ROS↑, MMP↓, BAX↑, Bcl-2↓, Cyt‑c↑, Casp9↑, Casp3↑, Apoptosis↑, TumCCA↑,
833- Gra,    Cytotoxic Effect of Annona muricata leaf extracts on tumor cell lines in vitro
- in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549
Apoptosis↑,
854- Gra,  SNP,    Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy
- vitro+vivo, AML, THP1 - in-vitro, AML, AMJ13 - vitro+vivo, lymphoma, HBL
TumCP↓, TumAuto↑, IL1↓, NLRP3↓, Apoptosis↑, mtDam↑, P53↑, LDH↓,
855- Gra,    Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniques
- in-vitro, BC, MCF-7
TumCG↓, TumCP↓, TumCCA↑, Apoptosis↑,
858- Gra,    Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells
- in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116
TumCCA↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Casp↑, BAX↑, Bcl-2↓, TumCMig↓, TumCI↓,
1232- Gra,    Graviola: A Systematic Review on Its Anticancer Properties
- Review, NA, NA
EGFR↓, cycD1/CCND1↓, Bcl-2↓, TumCCA↑, Apoptosis↑, ROS↑, MMP↓, BAX↑, Cyt‑c↑, Hif1a↓, NF-kB↓, GLUT1↓, GLUT4↓, HK2↓, LDHA↓, ATP↓,
1233- Gra,    THERAPEUTIC ELIGIBILITY OF GRAVIOLA VERSUS 5-FLUOROURACIL: APOPTOTIC EFFICACY ON HEAD AND NECK SQUAMOUS CELL CARCINOMA AND NORMAL EPITHELIUM CELLS
- in-vitro, HNSCC, NA
Apoptosis↑, MMP↓,
1234- Gra,    Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors
- in-vivo, BC, NA
Apoptosis↑, BAX↑, P53↑, Casp3↑, ER-α36↓, lipid-P↓,
3787- H2,    Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis
- Review, AD, NA
*Inflam↓, *antiOx↑, *ROS↓, *other↝, *NF-kB↓, *IL2↓, *IL6↓, *TNF-α↓, *HO-1↑, Apoptosis↑, TumAuto↑, *Sepsis↓, *NLRP3↓, Pyro↑,
4237- H2,    Hydrogen-Rich Saline Protects Against Spinal Cord Injury in Rats
- in-vitro, NA, NA
*Apoptosis↓, *ROS↓, *motorD↑, *BDNF↑,
2519- H2,    Hydrogen: an advanced and safest gas option for cancer treatment
- Review, Var, NA
antiOx↑, neuroP↓, BBB↑, toxicity∅, TumCP↓, Apoptosis↓, ROS↑, Hif1a↓, NF-kB↓, P53?, OS↑, chemoP↑,
2507- H2,    Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis
- in-vivo, NA, NA
*RenoP↑, *ROS↓, *Apoptosis↓, *ER Stress↓, *CHOP↓, *Casp12↓, *GRP78/BiP↓, *LC3‑Ⅱ/LC3‑Ⅰ↑, *Beclin-1↑, *p62↓, *mTOR↓,
2513- H2,    Hydrogen therapy: from mechanism to cerebral diseases
- Review, Stroke, NA
*BBB?, *antiOx↑, *Inflam↓, *Apoptosis↓, *NF-kB↓, *Dose↝,
2516- H2,    Hydrogen Gas in Cancer Treatment
- Review, Var, NA
*Half-Life↓, *ROS↓, *selectivity↑, *SOD↑, *HO-1↑, *NRF2↑, *chemoP↑, *radioP↑, ROS↑, *Inflam↓, eff↑, *TNF-α↓, *IL6↓, *cl‑Casp8↑, *Bax:Bcl2↓, *Apoptosis↓, *cardioP↑, *hepatoP↑, *RenoP↑, *chemoP↑, eff↝, chemoP↑, radioP↑, eff↑, TumCG↓, Ki-67↓, VEGF↓, selectivity↑,
3769- H2S,    Research progress of hydrogen sulfide in Alzheimer's disease from laboratory to hospital: a narrative review
- Review, AD, NA
*APP↓, *Apoptosis↓, *Inflam↓, *antiOx↑, *BP↓, *NLRP3↓, *ROS↓, *Aβ↓, *ER Stress↓,
1637- HCA,  OLST,    Orlistat and Hydroxycitrate Ameliorate Colon Cancer in Rats: The Impact of Inflammatory Mediators
- in-vivo, Colon, NA
TumVol↓, OS↑, *IL6↓, *NF-kB↓, *eff↑, *Casp3↓, *TNF-α↓, *Catalase↑, *NO↓, *ROS↓, *Inflam↓, *Apoptosis↓,
293- HCA,  Tam,    Hydroxycitric acid potentiates the cytotoxic effect of tamoxifen in MCF-7 breast cancer cells through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
TumCG↓, Apoptosis↑, ACLY↓, ACC-α↓, Fas↓,
1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓, Apoptosis↑, TumCMig↓, TumCI↓, Bcl-2↓, EGFR↓, CD133↓, Nestin↓, Akt↓, ERK↓, Casp3↑, p‑STAT3↓, TumCG↓,
960- HNK,    Honokiol Inhibits HIF-1α-Mediated Glycolysis to Halt Breast Cancer Growth
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231
OCR↑, ECAR↓, GlucoseCon↓, lactateProd↓, ATP↓, Glycolysis↓, Hif1a↓, GLUT1↓, HK2↓, PDK1↓, Apoptosis↑, LDHA↓,
1004- HNK,  RAPA,    Honokiol downregulates PD-L1 expression and enhances antitumor effects of mTOR inhibitors in renal cancer cells
- in-vitro, RCC, NA
Apoptosis↑, TumCCA↑, ROS↑, PD-L1↓, IFN-γ↓,
2881- HNK,    Honokiol Suppressed Pancreatic Cancer Progression via miR-101/Mcl-1 Axis
- in-vitro, PC, PANC1
tumCV↓, Casp3↑, Apoptosis↑, TumCCA↑, TumCI↓, Mcl-1↓, EMT↓,
2883- HNK,    Honokiol targets mitochondria to halt cancer progression and metastasis
- Review, Var, NA
ChemoSen↑, BBB↓, Ca+2↑, Cyt‑c↑, Casp3↑, chemoPv↑, OCR↓, mitResp↓, Apoptosis↑, RadioS↑, NF-kB↓, Akt↓, TNF-α↓, PGE2↓, VEGF↓, NO↝, COX2↓, RAS↓, EMT↓, Snail↓, N-cadherin↓, β-catenin/ZEB1↓, E-cadherin↑, ER Stress↑, p‑STAT3↓, EGFR↓, mTOR↓, mt-ROS↑, PI3K↓, Wnt↓,
2892- HNK,    Honokiol Induces Apoptosis, G1 Arrest, and Autophagy in KRAS Mutant Lung Cancer Cells
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vitro, Lung, H385 - in-vitro, Nor, BEAS-2B
TumCCA↑, Apoptosis↑, SIRT3↑, Hif1a↓, selectivity↑, p‑mTOR↓, p70S6↓,
2897- HNK,    Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells
- in-vitro, Lung, PC9 - in-vitro, Lung, A549
TumCP↓, Apoptosis↑, EGFR↓, PI3K↓, Akt↓, STAT3↓, TumCI↓, TNF-α↑, NF-kB↓, VEGF↓, MMP9↓, COX2↓,
2898- HNK,    Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism
- in-vitro, GC, AGS - in-vitro, GC, NCI-N87 - in-vitro, BC, MGC803 - in-vitro, GC, SGC-7901
TumCP↓, Apoptosis↑, TumCI↓, TumCMig↓, HER2/EBBR2↓, TumCCA↑, PI3K↓, Akt↓, MMP9↓, P21↑,
2879- HNK,    Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function
- in-vitro, Lung, H226 - in-vivo, NA, NA
tumCV↓, selectivity↑, TumCP↓, TumCCA↑, Apoptosis↑, mt-ROS↑, Casp3↑, Casp7↑, OCR↓, Cyt‑c↑, ATP↓, mitResp↓, AMP↑, AMPK↑,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
4523- HNK,  MAG,  BA,    Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent Pyroptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, LoVo - in-vivo, CRC, HCT116
AntiCan↑, eff↑, TumCP↓, TumCCA↓, cycD1/CCND1↓, Pyro↑, Apoptosis↑, cl‑GSDME↑, Bcl-2↓, Cyt‑c↑, Casp9↑, TumCG↓,
4659- HNK,    Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction
- in-vitro, Oral, NA
cl‑Casp3↑, survivin↓, Bcl-2↓, CD44↓, Wnt↓, β-catenin/ZEB1↑, EMT↓, Slug↓, Snail↓, CSCs↓, Apoptosis↑,
4241- HNK,    Effects of Honokiol on Neurological Injury and Cognitive Function in Mice with Intracerebral Hemorrhage by Regulating BDNF-TrkB-CREB Signaling Pathway
- in-vivo, Stroke, NA
*Apoptosis↓, *cognitive↑, *BDNF↑, *TrkB↑, *CREB↑,
4238- HNK,    Neuropharmacological potential of honokiol and its derivatives from Chinese herb Magnolia species: understandings from therapeutic viewpoint
- Review, AD, NA - NA, Park, NA
*BDNF↑, *hepatoP↑, *ALAT↓, *AST↓, *TNF-α↓, *SIRT3↑, *Aβ↓, *Apoptosis↓, *ROS↓, *MMP↑, *Ca+2↓, *Casp3↓, *Ach↑, *PPARγ↑, *PGC-1α↑, *motorD↑, *TNF-α↓, *IL1β↓,
2082- HNK,    Revealing the role of honokiol in human glioma cells by RNA-seq analysis
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
AntiCan↑, TumCP↑, TumAuto↑, Apoptosis↑, *BioAv↑, *neuroP↑, *NF-kB↑, MAPK↑, GPx4↑, Tf↑, BAX↑, Bcl-2↓, antiOx↑, Hif1a↓, Ferroptosis↑,
1286- HNK,    The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells
- in-vitro, CLL, NA
Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP↑, Bcl-2↓, BAX↑,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
886- HPT,    Impact of hyper- and hypothermia on cellular and whole-body physiology
- Analysis, NA, NA
MMP↓, OXPHOS↓, ATP↓, ROS↑, Apoptosis↑, Cyt‑c↑,
4633- HT,    Unlocking the effective alliance of β-lapachone and hydroxytyrosol against triple-negative breast cancer cells
- in-vitro, BC, NA
AntiCan↑, CSCs↓, antiOx↑, NQO1↑, TumCCA↑, ER Stress↑, Apoptosis↑, UPR↑,
4638- HT,    Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation
- in-vitro, CRC, DLD1 - NA, NA, 1-
selectivity↑, ROS↑, Akt↑, FOXO3↓, Apoptosis↑,
4639- HT,    Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TumCP↓, selectivity↑, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, P21↑, p27↑, Apoptosis↑, Casp↑, cl‑PARP↑, Bax:Bcl2↑, p‑Akt↓, p‑STAT3↓, NF-kB↓, AR↓, ROS↑, *BioAv↓, *toxicity∅,
4642- HT,    Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways
- in-vitro, HCC, HepG2 - NA, NA, Hep3B - NA, NA, SK-HEP-1
TumCP↓, TumCCA↑, Apoptosis↑, Akt↓, NF-kB↓, TumCG↓, angioG↓,
4644- HT,    The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma Cells
- in-vitro, Melanoma, NA
tumCV↓, Apoptosis↑, P53↑, γH2AX↑, Akt↓, ROS↑, DNAdam↑,
601- HTyr,    Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells
- in-vivo, NA, HT-29
TumCG↓, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, JNK↑, TNF-α↓, PPP2R1A↑,
4212- Hup,    Huperzine A Alleviates Oxidative Glutamate Toxicity in Hippocampal HT22 Cells via Activating BDNF/TrkB-Dependent PI3K/Akt/mTOR Signaling Pathway
- in-vitro, Nor, HT22
*ROS↓, *p‑Akt↓, *p‑mTOR↓, *p‑p70S6↓, *BDNF↑, *Apoptosis↓, *Casp3↓, *Bcl-2↑,
1277- I3C,  GEN,    Modulation of the constitutive activated STAT3 transcription factor in pancreatic cancer prevention: effects of indole-3-carbinol (I3C) and genistein
- in-vitro, PC, PANC1
STAT3↓, Apoptosis↑,
1167- IVM,    The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer
- vitro+vivo, NA, NA
Wnt↓, TCF↓, TumCP↓, Apoptosis↑, β-catenin/ZEB1↓, cycD1/CCND1↓,
1918- JG,    ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro
- in-vitro, Liver, HepG2 - in-vivo, NA, NA
TumCG↓, TumCP↓, Apoptosis↑, TumAuto↑, AMPK↑, mTOR↑, P53↑, H2O2↑, ROS↑, toxicity↝, p62↓, DR5↑, Casp8↑, PARP↑, cl‑Casp3↑,
1927- JG,    Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway
- in-vitro, GC, SGC-7901
Apoptosis↑, ROS↑, Bcl-2↓, BAX↑, MMP↓, Cyt‑c↑, Casp3?, Bax:Bcl2↑,
1919- JG,    The Anti-Glioma Effect of Juglone Derivatives through ROS Generation
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
ROS↑, Apoptosis↑, eff↓, eff↓,
1922- JG,    Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma
- in-vitro, GBM, U87MG
tumCV↓, TumCP↓, ROS↑, p‑p38↑, eff↓, Apoptosis↑, OS↑,
1924- JG,    Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway
- in-vitro, Lung, A549
TumCMig↓, TumCI↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, BAX↑, Cyt‑c↑, ROS↑, MDA↑, GPx4↓, SOD↓, PI3K↓, Akt↓, eff↓,
1306- LE,    Modulations of the Bcl-2/Bax family were involved in the chemopreventive effects of licorice root (Glycyrrhiza uralensis Fisch) in MCF-7 human breast cancer cell
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, Apoptosis↑, TumCCA↑,
1100- LT,    Luteolin, a flavonoid, as an anticancer agent: A review
- Review, NA, NA
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, E-cadherin↑, N-cadherin↓, Snail↓, Vim↓, ROS↑, ER Stress↑, mtDam↑, p‑eIF2α↝, p‑PERK↝, p‑CHOP↝, p‑ATF4↝, cl‑Casp12↝,
1171- LT,    The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma
- in-vitro, CCA, NA
Wnt↓, TumCCA↑, Apoptosis↑, TumCMig↓, β-catenin/ZEB1↓, cMyc↓, cycD1/CCND1↓,
973- LT,    Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells
- in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231
Apoptosis↑, necrosis↑, TumAuto↑, HIF-1↓,
1025- LT,  Api,    Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer
- in-vivo, Lung, NA
TumCG↓, Apoptosis↑, PD-L1↓, p‑STAT3↓,
1317- LT,    Luteolin Suppresses Teratoma Cell Growth and Induces Cell Apoptosis via Inhibiting Bcl-2
- vitro+vivo, Ovarian, PA1
Bcl-2↓, BAX↑, Apoptosis↑, TumCG↓,
1534- LT,  Api,  EGCG,  RES,    Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, PC, Bxpc-3
TumCP↓, Apoptosis↑, eff↓, *toxicity↑, Dose?, eff↓, eff↓,
2346- LT,    Luteolin suppressed PKM2 and promoted autophagy for inducing the apoptosis of hepatocellular carcinoma cells
- in-vitro, HCC, HepG2
TumCP↓, Apoptosis↓, PKM2↓, TumAuto↑,
2916- LT,    Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies
- Review, Var, NA - Review, AD, NA - Review, Park, NA
proCasp9↓, CDC2↓, CycB/CCNB1↓, Casp9↑, Casp3↑, Cyt‑c↑, cycA1/CCNA1↑, CDK2↓, APAF1↑, TumCCA↑, P53↑, BAX↑, VEGF↓, Bcl-2↓, Apoptosis↑, p‑Akt↓, p‑EGFR↓, p‑ERK↓, p‑STAT3↓, cardioP↑, Catalase↓, SOD↓, *BioAv↓, *antiOx↑, *ROS↓, *NO↓, *GSTs↑, *GSR↑, *SOD↑, *Catalase↑, *lipid-P↓, PI3K↓, Akt↓, CDK2↓, BNIP3↑, hTERT/TERT↓, DR5↑, Beclin-1↑, TNF-α↓, NF-kB↓, IL1↓, IL6↓, EMT↓, FAK↓, E-cadherin↑, MDM2↓, NOTCH↓, MAPK↑, Vim↓, N-cadherin↓, Snail↓, MMP2↓, Twist↓, MMP9↓, ROS↑, MMP↓, *AChE↓, *MMP↑, *Aβ↓, *neuroP↑, Trx1↑, ROS↓, *NRF2↑, NRF2↓, *BBB↑, ChemoSen↑, GutMicro↑,
2923- LT,    Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells
- in-vitro, NA, NA
Apoptosis↑, TumCD↑, Casp12↑, Casp9↑, Casp3↑, ER Stress↑, CHOP↑, GRP78/BiP↑, GRP94↑, cl‑ATF6↑, p‑eIF2α↑, MMP↓, JNK↓, p38↑, ERK↑, Cyt‑c↑,
2925- LT,    Luteolin Induces Carcinoma Cell Apoptosis through Binding Hsp90 to Suppress Constitutive Activation of STAT3
- in-vitro, Cerv, HeLa - in-vitro, Nor, HEK293 - in-vitro, BC, MCF-7
HSP90↓, p‑STAT3↓, Apoptosis↑, selectivity↑,
2913- LT,    Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells
- in-vitro, GC, HGC27 - in-vitro, BC, MCF-7 - in-vitro, GC, MKN45
TumCP↓, MMP↓, Apoptosis↑, ROS↑, SOD↓, ATP↓, Bax:Bcl2↑, TumCCA↑,
2906- LT,    Luteolin, a flavonoid with potentials for cancer prevention and therapy
- Review, Var, NA
*Inflam↓, AntiCan↑, antiOx⇅, Apoptosis↑, TumCP↓, TumMeta↓, angioG↓, PI3K↓, Akt↓, NF-kB↓, XIAP↓, P53↑, *ROS↓, *GSTA1↑, *GSR↑, *SOD↑, *Catalase↑, *other↓, ROS↑, Dose↝, chemoP↑, NF-kB↓, JNK↑, p27↑, P21↑, DR5↑, Casp↑, Fas↑, BAX↑, MAPK↓, CDK2↓, IGF-1↓, PDGF↓, EGFR↓, PKCδ↓, TOP1↓, TOP2↓, Bcl-xL↓, FASN↓, VEGF↓, VEGFR2↓, MMP9↓, Hif1a↓, FAK↓, MMP1↓, Twist↓, ERK↓, P450↓, CYP1A1↓, CYP1A2↓, TumCCA↑,
2909- LT,    Revisiting luteolin: An updated review on its anticancer potential
- Review, Var, NA
Apoptosis↑, TumCCA↑, angioG↓, TumMeta↓, TumCP↓, chemoP↑, MDR1↓,
4231- Lut,    Luteolin and its antidepressant properties: From mechanism of action to potential therapeutic application
- Review, AD, NA
*PSD95↑, *BDNF↑, *SOD↑, *GSTA1↑, *MDA↑, *Casp3↓, *Mood↑, *antiOx↑, *Apoptosis↓, *Inflam↓, *ER Stress↓,
3277- Lyco,    Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent
- Review, Var, NA
antiOx↑, TumCP↓, Apoptosis↑, TumMeta↑, ChemoSen↑, BioAv↓, Dose↝, BioAv↓, BioAv↑, SOD↑, Catalase↑, GPx↑, IL2↑, IL4↑, IL1↑, TNF-α↑, GSH↑, GPx↑, GSTA1↑, GSR↑, PPARγ↑, Casp3↑, NF-kB↓, COX2↓, Bcl-2↑, BAX↓, P53↓, CHK1↓, Chk2↓, γH2AX↓, DNAdam↓, ROS↓, P21↑, PCNA↓, β-catenin/ZEB1↓, PGE2↓, ERK↓, cMyc↓, cycE/CCNE↓, JAK1↓, STAT3↓, SIRT1↑, cl‑PARP↑, cycD1/CCND1↓, TNF-α↓, IL6↓, p65↓, MMP2↓, MMP9↓, Wnt↓,
3263- Lyco,    Lycopene protects against myocardial ischemia-reperfusion injury by inhibiting mitochondrial permeability transition pore opening
- in-vitro, Nor, H9c2 - in-vitro, Stroke, NA
*Apoptosis↓, *MMP↑, *Cyt‑c↓, *APAF1↓, *cl‑Casp9↓, *cl‑Casp3↓, *Bcl-2↑, *BAX↓, cardioP↑,
4228- Lyco,    A review for the pharmacological effect of lycopene in central nervous system disorders
- Review, AD, NA - Review, Park, NA
*cognitive↑, *memory↑, *Inflam↓, *Apoptosis↓, *ROS↓, *neuroP↑, *NF-kB↓, *JNK↓, *NRF2↑, *BDNF↑, *MDA↓, *GPx↑,
3532- Lyco,    Lycopene alleviates oxidative stress via the PI3K/Akt/Nrf2pathway in a cell model of Alzheimer’s disease
- in-vitro, AD, NA
*ROS↓, *PI3K↑, *Akt↑, *NRF2↑, *antiOx↑, *Aβ↓, *Apoptosis↓, *neuroP↑,
3531- Lyco,    Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system
- in-vivo, Nor, NA
*NRF2↑, *HO-1↑, *NQO1↑, *ROS↓, *mtDam↓, *Bcl-2↑, *BAX↓, *Casp9↓, *Casp3↓, *Apoptosis↓, *RenoP↑, *lipid-P↓, *SOD↑, *GPx↑, *Inflam↓, *TNF-α↓, *IL6↓, *IL10↓,
4777- Lyco,    Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells
- in-vitro, GC, AGS
*antiOx↑, tumCV↓, DNAdam↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bax:Bcl2↑, ROS↓, NF-kB↓, COX2↓, EGFR↓, p38↓,
4778- Lyco,    Lycopene exerts cytotoxic effects by mitochondrial reactive oxygen species–induced apoptosis in glioblastoma multiforme
- in-vitro, GBM, GBM8401
BBB↑, Apoptosis↑, TumCP↑, P53↑, CycB/CCNB1↓, cycD1/CCND1↓, TumCCA↓, mt-ROS↑, TumCG↓,
4779- Lyco,    Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, PANC1
ROS↓, NF-kB↓, tumCV↓, Casp3↑, Apoptosis↑, OCR↓, MMP↓, CIP2A↓, survivin↓, Casp3↑, Bax:Bcl2↑,
4803- Lyco,    Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines
- in-vitro, Pca, PC3 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A431 - in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
tumCV↓, GSH↓, MDA↑, ROS↑, Apoptosis↑,
4797- Lyco,    A mechanistic updated overview on lycopene as potential anticancer agent
- Review, Var, NA
AntiCan↑, antiOx↓, Apoptosis↓, TumCP↓, TumCCA↑, Risk↓, ROS↓, SOD↑, Catalase↑, GSTs↑, ARE↑, NRF2↑, cycD1/CCND1↓, cycE/CCNE↑, CDK2↑, p27↑, BAX↑, Bcl-2↓, P53↑, ChemoSen↑,
4795- Lyco,    Updates on the Anticancer Profile of Lycopene and its Probable Mechanism against Breast and Gynecological Cancer
- Review, BC, NA
TumCG↓, TumCCA↑, Apoptosis↑, P53↝, BAX↝, cycD1/CCND1↓, ERK↓, Akt↓, STAT3↓, NRF2↝, NF-kB↓, ITGB1↓, ITGA5↓, FAK↓, MMP9↓, EMT↓,
4794- Lyco,    Anticancer Effect of Lycopene in Gastric Carcinogenesis
- Review, GC, NA
*AntiCan↑, *ROS↓, *GSH↑, *GPx↑, *GSTs↑, TumCG↓, Apoptosis↑, ERK↓, Bcl-2↓, BAX↑, Cyt‑c↑, TumCCA↑, *DNAdam↓,
4791- Lyco,    Investigating into anti-cancer potential of lycopene: Molecular targets
- Review, Var, NA
*antiOx↑, TumCP↓, TumCCA↓, Apoptosis↑, TumCI↓, angioG↓, TumMeta↓, *Risk↓, cycD1/CCND1↓, CycD3↓, cycE/CCNE↓, CDK2↓, CDK4↓, Bcl-2↓, P21↑, p27↑, P53↑, BAX↑, selectivity↑, MMP↓, Cyt‑c↑, Wnt↓, eff↑, PPARγ↑, LDL↓, Akt↓, PI3K↓, mTOR↓, PDGF↓, NF-kB↓, eff↑,
4785- Lyco,    The Protective Anticancer Effect of Natural Lycopene Supercritical CO2 Watermelon Extracts in Adenocarcinoma Lung Cancer Cells
- in-vitro, Lung, A549
ROS↑, NF-kB↑, Apoptosis↑,
4783- Lyco,    Lycopene suppresses gastric cancer cell growth without affecting normal gastric epithelial cells
- in-vitro, GC, AGS - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
TumCG↓, TumCCA↑, Apoptosis↑, MMP↓, selectivity↑, cycE1↓, TP53↑, *antiOx↑,
4780- Lyco,    Potential inhibitory effect of lycopene on prostate cancer
- Review, Pca, NA
TumCP↓, TumCCA↑, Apoptosis↑, *neuroP↑, *NF-kB↓, *JNK↓, *NRF2↑, *BDNF↑, *Ca+2↝, *antiOx↑, *AntiCan↑, *Inflam↓, *IL1↓, *IL6↓, *IL8↓, *TNF-α↓, NF-kB↓, DNAdam↓, PSA↓, P53↓, cycD1/CCND1↓, NRF2↓, Akt2↓, PPARγ↓,
1013- Lyco,    Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells
- in-vitro, GC, AGS
Apoptosis↑, DNAdam↑, Bax:Bcl2↑, ROS↓, β-catenin/ZEB1↓, p‑GSK‐3β↓, APC↑, β-TRCP↑, cMyc↓, cycD1/CCND1↓,
1126- Lyco,    Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway
- vitro+vivo, Oral, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, EMT↓, PI3K↓, Akt↓, mTOR↓, E-cadherin↓, BAX↑, N-cadherin↓, p‑PI3K↓, p‑Akt↓, p‑mTOR↓, Bcl-2↓,
4526- MAG,  HNK,    Targeting apoptosis pathways in cancer with magnolol and honokiol, bioactive constituents of the bark of Magnolia officinalis
- Review, Var, NA
*antiOx↑, *Inflam↓, *Bacteria↓, *toxicity↓, AntiTum↑, Apoptosis↑, DR5↝,
4534- MAG,    Molecular mechanisms of apoptosis induced by magnolol in colon and liver cancer cells
- in-vitro, Liver, HepG2 - in-vitro, CRC, COLO205
AntiCan↑, Apoptosis↑, selectivity↑, Ca+2↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Bcl-2↓,
4533- MAG,    Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways
- in-vitro, GC, SGC-7901
AntiCan↑, DNAdam↑, Apoptosis↑, TumCCA↑, Bax:Bcl2↑, MMP↓, Casp3↑, PI3K↓, Akt↓,
4531- MAG,    Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway
- in-vitro, CRC, HCT116
Apoptosis↑, DNAdam↑, Casp3↑, cl‑PARP↑, p‑AMPK↑, Bcl-2↓, P53↑, BAX↑, Cyt‑c↑, TumCMig↓, TumCI↓,
4528- MAG,    Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update
- Review, Nor, NA
*Inflam↑, *cardioP↑, *angioG↓, *antiOx↑, *neuroP↑, *Bacteria↓, AntiTum↑, TumCG↓, TumCMig↓, TumCI↓, Apoptosis↑, E-cadherin↑, NF-kB↓, TumCCA↑, cycD1/CCND1↓, PCNA↓, Ki-67↓, MMP2↓, MMP7↓, MMP9↓, TumCG↓, Casp3↑, NF-kB↓, Akt↓, mTOR↓, LDH↓, Ca+2↑, eff↑, *toxicity↓, *BioAv↝, *PGE2↓, *TLR2↓, *TLR4↓, *MAPK↓, *PPARγ↓,
4527- MAG,    Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway
- in-vitro, ESCC, TE1 - in-vitro, ESCC, Eca109 - vitro+vivo, SCC, KYSE150
TumCP↓, TumCMig↓, MMP2↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, BAX↑, Bcl-2↓, p‑p38↓, TumCG↓,
4536- MAG,    Magnolol suppresses proliferation of cultured human colon and liver cancer cells by inhibiting DNA synthesis and activating apoptosis
- in-vitro, Liver, HepG2 - in-vivo, CRC, COLO205
AntiCan↑, selectivity↑, TumCCA↑, P21↑, Apoptosis↑,
4517- MAG,    Mitochondrion-targeted magnolol derivatives exert synergistic anticancer activity by modulating energy metabolism and tumor microenvironment
- vitro+vivo, Var, NA
eff↑, AntiCan↑, ROS↑, ER Stress↑, Apoptosis↑,
4516- MAG,    Magnolol Induces Apoptosis and Suppresses Immune Evasion in Non-small Cell Lung Cancer Xenograft Models
- in-vivo, NSCLC, NA
selectivity↑, Apoptosis↑, TumCCA↑, Casp3↑, cycD1/CCND1↓, CDK4↓, VEGF↓, FOXP3↓, IDO1↓,
4515- MAG,    Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight
- Review, Var, NA
AntiCan↑, TumCP↓, TumCCA↑, Apoptosis↑, TumCMig↑, angioG↓, PI3K↓, Akt↓, mTOR↓, MAPK↓, NF-kB↓,
4537- MAG,    Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action
- in-vivo, Melanoma, NA - in-vitro, Melanoma, A431
*cl‑Casp8↑, *PARP↑, *P21↑, tumCV↓, TumCP↓, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK4↓, CDC2↓, P21↑, Apoptosis↑,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1/CCND1↓, CDK4↓, CycB/CCNB1↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
1063- MEL,    HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways
- in-vitro, Lung, A549 - in-vitro, Lung, PC9
AntiCan↑, TumCMig↓, GSH↓, Casp3↑, Apoptosis↑, ROS↑, HDAC1↓, Ac-histone H3↑, PUMA↑, BAX↑, PCNA↓, Bcl-2↓,
2384- MET,    Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication
- in-vitro, Thyroid, BCPAP - in-vivo, NA, NA - in-vitro, Thyroid, TPC-1
Glycolysis↓, OXPHOS↑, tumCV↓, TumCI↓, TumCMig↓, EMT↓, Apoptosis↑, TumCCA↑, LDHA↓, PKM2↓, IDH1↑, TumCG↓,
2387- MET,  GEM,    Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis
- in-vitro, CCA, HCC9810
eff↑, tumCV↓, TumCMig↓, TumCI↓, Apoptosis↑, PKM2↓, PDHB↓,
2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, TumCI↓, TumCMig↓, Apoptosis↑, PARP↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, COX2↓,
2374- MET,    Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
eff↑, Apoptosis↑, Glycolysis↓, PKM2↓, mTOR↓, PARP↓,
994- MET,    Tumor metabolism destruction via metformin-based glycolysis inhibition and glucose oxidase-mediated glucose deprivation for enhanced cancer therapy
- in-vitro, Var, NA
Glycolysis↓, HK2↓, ATP↓, AMPK↑, P53↑, Warburg↓, Apoptosis↑,
2241- MF,    Pulsed electromagnetic therapy in cancer treatment: Progress and outlook
- Review, Var, NA
other↝, p‑ERK↝, P53↝, Cyt‑c↝, OXPHOS↑, Apoptosis↑, ROS↑,
2261- MF,    Tumor-specific inhibition with magnetic field
- in-vitro, Nor, GP-293 - in-vitro, Liver, HepG2 - in-vitro, Lung, A549
ROS↑, Ca+2↓, Apoptosis↑, *selectivity↑, TumCG↓, *i-Ca+2↓, i-Ca+2↑,
2255- MF,    Pulsed Electromagnetic Fields Induce Skeletal Muscle Cell Repair by Sustaining the Expression of Proteins Involved in the Response to Cellular Damage and Oxidative Stress
- in-vitro, Nor, SkMC
*HSP70/HSPA5↑, *Apoptosis↓, *Inflam↓, *Trx↓, *PONs↓, *SOD2↓, *TumCG↑, *Diff↑, *HIF2a↑, *Cyt‑c↑, P21↑,
4351- MF,    Inhibition of proliferation of human lymphoma cells U937 by a 50 Hz electromagnetic field
- in-vitro, lymphoma, NA
Apoptosis↑,
4352- MF,    Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields
- in-vitro, lymphoma, K562 - NA, NA, U937 - NA, NA, HL-60
Apoptosis↑, eff↑,
4353- MF,  Chemo,    Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, eff↑, TumCCA↑, Casp↝, p‑CDK2↓, cycE/CCNE↓, Fas↑, BAX↑, survivin↓, Mcl-1↓, cl‑PARP↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑,
4354- MF,  doxoR,    Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
selectivity↑, Apoptosis↑, TumCI↓, tumCV↓, TumVol↓, eff↓, eff↑, ROS↑, Ca+2↑, TumCMig↓,
3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, *VEGF↑, *angioG↑, Ca+2↑, ROS↑, Necroptosis↑, TumCCA↑, Apoptosis↑, *ATP↑, *FAK↑, *Wnt↑, *β-catenin/ZEB1↑, *ROS↑, p38↑, MAPK↑, β-catenin/ZEB1↓, CSCs↓, TumCP↓, ROS↑, RadioS↑, Ca+2↑, eff↓, NO↑,
3479- MF,    Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies
- Review, NA, NA
*eff↓, eff↝, *Hif1a↑, *VEGF↑, *TIMP1↑, *E2Fs↑, *MMP2↑, *MMP9↑, Apoptosis↑,
3474- MF,    Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration
- in-vitro, Nor, NA
*Inflam↓, *Apoptosis↓, *other↑, *PGE2↓, *COX2↓, *IL6↓, *IL8↓, *cAMP↑, *IL10↑,
3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, H2O2↑, ROS↑, eff↑, eff↑, Ca+2↑, MAPK↑, *Catalase↑, *SOD1↑, *GPx1↑, *GPx4↑, *NRF2↑, TumAuto↑, ER Stress↑, HSPs↑, SIRT3↑, ChemoSen↑, UPR↑, other↑, PI3K↓, JNK↑, p38↑, eff↓, *toxicity?,
3464- MF,    Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology
- Review, Var, NA
AntiTum↑, TumCG↓, TumCCA↑, Apoptosis↑, TumAuto↑, Diff↑, angioG↓, TumMeta↓, EPR↑, ChemoSen↑, ROS↑, DNAdam↑, P53↑, Akt↓, MAPK↑, Casp9↑, VEGFR2↓, P-gp↓,
3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, *necrosis↓, *IL6↑, *TGF-β↑, *iNOS↑, *MMP2↑, *MCP1↑, *HO-1↑, *Inflam↓, *IL1β↓, *IL6↓, *TNF-α↓, *BioAv↑, eff⇅, DNAdam↑, Apoptosis↑, ROS↑, TumCP↓, *ROS↓, *FGF↑,
3470- MF,    Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression
- in-vitro, Cerv, HeLa
TNF-α↑, IL6↑, ROS↑, Apoptosis↑, TumCP↓, TumCMig↓, TumCI↓,
3475- MF,    A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells
- in-vitro, Nor, HT22 - Review, AD, NA
*Apoptosis↓, *LDH↓, *neuroP↑, *toxicity∅, *IL1β↓, *Inflam↓, *IL10↑, *TNF-α↓,
4092- MF,    Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology
- Review, Var, NA
Apoptosis↑, selectivity↑, ROS↑, Catalase↓, TumVol↓, angioG↓,
4110- MF,    Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia
- Review, Stroke, NA
*ROS↓, *Inflam↓, *other↝, *neuroP↑, *Apoptosis↓, *Hif1a↝,
3728- MF,    Long-term exposure to ELF-MF ameliorates cognitive deficits and attenuates tau hyperphosphorylation in 3xTg AD mice
- in-vivo, AD, NA
*cognitive↑, *neuroP↑, *Apoptosis↓, *ROS↓, *p‑tau↓, *GSK‐3β↓, *CDK5↓,
1762- MF,  Fe,    Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
- in-vitro, RCC, NA
Dose∅, Apoptosis↑, Casp↑, tumCV↓, Casp3↑, Casp7↑, Ca+2↑, Cyt‑c↑,
495- MF,    How a High-Gradient Magnetic Field Could Affect Cell Life
- in-vitro, NA, HeLa
Apoptosis↑, CellMemb↑,
496- MF,    Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, ZR-75-1 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
ROS↑, PI3K↓, Akt↓, GSK‐3β↑, Apoptosis↑, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, CycB/CCNB1↓, TumCCA↑, p‑Akt↓, p‑Akt↓,
497- MF,    In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells
- vitro+vivo, NA, MCF-7 - vitro+vivo, NA, A549
TumCG↓, TumVol↓, Casp3↑, Casp7↑, Apoptosis↑, DNAdam↑, TumCCA↑, ChemoSen↑, EPR↑,
501- MF,    Low Intensity and Frequency Pulsed Electromagnetic Fields Selectively Impair Breast Cancer Cell Viability
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, ChemoSen↑, chemoP↑, selectivity↑, DNAdam↑,
502- MF,    Electromagnetic field investigation on different cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, Colon, SW480 - in-vitro, CRC, HCT116
TumCG↓, Apoptosis↑,
488- MF,    Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells
- in-vitro, NA, HeLa - in-vitro, NA, IMR90
DNAdam↑, p‑γH2AX↑, Chk2↑, p38↑, Apoptosis↑,
535- MF,    Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ Levels
- in-vitro, Pca, PC3 - in-vitro, GBM, A172 - in-vitro, Pca, HeLa
Apoptosis↑, miR-129-5p↑, Ca+2↑, eff↝,
537- MF,  immuno,    Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm
- Review, Var, NA
Apoptosis↑, ROS↑, TumAuto↑, Ca+2↑, ATP↓, eff↑, eff↑,
534- MF,    Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, Nor, MCF10
Ca+2↑, Apoptosis↑, eff↝, eff↑, selectivity↑, eff↝, eff↝,
508- MF,  doxoR,    Synergistic cytotoxic effects of an extremely low-frequency electromagnetic field with doxorubicin on MCF-7 cell line
- in-vitro, BC, MCF-7
ROS↑, Apoptosis↑, TumCCA↑,
509- MF,    Is extremely low frequency pulsed electromagnetic fields applicable to gliomas? A literature review of the underlying mechanisms and application of extremely low frequency pulsed electromagnetic fields
- Review, NA, NA
Ca+2↑, TumAuto↑, Apoptosis↑, angioG↓, ROS↑,
194- MF,    Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke
- Review, Stroke, NA
*BAD↓, *BAX↓, *Casp3↓, *Bcl-xL↑, *p‑Akt↑, *MMP9↓, *p‑ERK↑, *HIF-1↓, *ROS↓, *VEGF↑, *Ca+2↓, *SOD↑, *IL2↑, *p38↑, *HSP70/HSPA5↑, *Apoptosis↓, *ROS↓, *NO↓,
189- MFrot,  MF,    Cancer treatment by magneto-mechanical effect of particles, a review
- vitro+vivo, Var, NA
CellMemb↑, lysoMP↑, ERK↑, Apoptosis↑,
203- MFrot,  MF,    Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant Glioma
- vitro+vivo, GBM, U87MG
lysoMP↓, TumVol↓, eff↑, Apoptosis↑, Ca+2↑,
220- MFrot,  MF,    Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation
- in-vitro, Melanoma, B16-F10
OS↑, DCells↑, T-Cell↑, Apoptosis↑, IL1↑, IFN-γ↓, IL10↑, TumCG↓, ROS↑,
227- MFrot,  MF,    Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway
- in-vivo, Lung, A549 - in-vitro, Lung, A549
TumCG↓, miR-486↑, BCAP↓, Apoptosis↑, ROS↑, TumAuto↑, LC3II↑, ATG5↑, Beclin-1↑, p62↑, TumCP↓,
516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
3493- MFrot,  MF,    Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes
- in-vivo, GBM, NA
TumCD↑, MMP↓, Cyt‑c↑, Apoptosis↑, OS↑, DNAdam↑,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
777- Mg,    Biodegradable Mg Implants Suppress the Growth of Ovarian Tumor
- vitro+vivo, Ovarian, SKOV3
TumCG↓, Apoptosis↑,
775- Mg,    The Supplement of Magnesium Element to Inhibit Colorectal Tumor Cells
- vitro+vivo, CRC, DLD1
TumCCA↑, Apoptosis↑, Casp3↑, TumCG↓,
780- Mg,    Degradable magnesium implants inhibit gallbladder cancer
- vitro+vivo, Gall, NA
TumCG↓, Apoptosis↑, TumCCA↑,
1890- MGO,    The Dual-Role of Methylglyoxal in Tumor Progression – Novel Therapeutic Approaches
- Review, Var, NA
AntiCan?, TumCG↓, GAPDH↓, Apoptosis↑, TumCCA↑, MAPK↑, Bcl-2↓, MMP9↓, eff↑,
1891- MGO,    Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma
- in-vitro, SCC, NA
NADH↓, MMP↓, Cyt‑c↑, selectivity↑, Apoptosis↑, ROS↑, ATP↓,
656- MNPs,  MF,    Effects of combined delivery of extremely low frequency electromagnetic field and magnetic Fe3O4 nanoparticles on hepatic cell lines
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
BioAv↑, Apoptosis↑, *toxicity↓,
3847- MSM,    Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement
- Review, Arthritis, NA
*Inflam↓, *Pain↓, *ROS↓, *antiOx↑, *Dose↝, *Half-Life↝, *NF-kB↓, *IL1↓, *IL6↓, *TNF-α↓, *iNOS↓, *COX2↓, *NLRP3↓, *NRF2↑, *STAT↓, *Cartilage↑, *eff↑, *eff↑, *GSH↑, *uricA↓, tumCV↓, TumCCA↑, necrosis↑, Apoptosis↑, VEGF↓, HSP90↓, IGF-1?,
1182- MushCha,    Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29 - in-vitro, CRC, SW-620 - in-vitro, CRC, DLD1
Apoptosis↑, TumCG↓, FASN↓, β-catenin/ZEB1↓, cMyc↓, cycD1/CCND1↓, CDK8↓, Ki-67↓,
3809- mushLions,    The Monkey Head Mushroom and Memory Enhancement in Alzheimer's Disease
- Review, NA, NA
*cognitive↑, *Apoptosis↓, *Aβ↓, *AChE↓, *BACE↓,
2932- NAD,    Neuroprotective effects and mechanisms of action of nicotinamide mononucleotide (NMN) in a photoreceptor degenerative model of retinal detachment
- in-vitro, Nor, NA
*SIRT1↑, *HO-1↑, *neuroP↑, *Apoptosis↓, *Inflam↓, *ROS↓, *antiOx↑, *toxicity↓,
4225- NarG,    Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury
- in-vivo, NA, NA
*motorD↑, *BDNF↑, *VEGF↑, *Bax:Bcl2↓, *Casp3↓, *Apoptosis↓, *eff↑,
1798- NarG,    Naringenin: A potential flavonoid phytochemical for cancer therapy
- Review, NA, NA
*Inflam↓, *antiOx↓, neuroP↑, hepatoP↑, AntiCan↑, Apoptosis↑, TumCCA↑, angioG↓, ROS↝, SOD↑, TGF-β↓, Treg lymp↓, IL1β↓, *BioAv↝, ChemoSen↑, cardioP↑,
1797- NarG,    Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway
- in-vitro, BC, MDA-MB-231
TumCG↓, β-catenin/ZEB1↓, AntiTum↑, Apoptosis↑, TumCCA↑, P21↑, survivin↓,
1271- NCL,    Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics
- vitro+vivo, Ovarian, SKOV3
Wnt/(β-catenin)↓, mTOR↓, STAT3↓, NF-kB↓, NOTCH↓, TumCG↓, Apoptosis↑, MEK↓, ERK↓, mitResp↓, Glycolysis↓, ROS↑, JNK↑,
1269- NCL,    Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway
- in-vitro, Pca, DU145
STAT3↓, TumCG↓, Apoptosis↑, TumCCA↑, cycD1/CCND1↓, cMyc↓, Bcl-xL↓,
946- Nimb,    Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, pH regulation, and ROS homeostasis
- in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, P53↑, cl‑Casp3↑, Cyt‑c↑, ROS↑, SOD↓, Catalase↓, Glycolysis↓, GLUT3↓, LDHA↓, MCT1↓, NHE1↓, ATPase↓, CAIX↓,
4977- Nimb,    Nimbolide Inhibits SOD2 to Control Pancreatic Ductal Adenocarcinoma Growth and Metastasis
- vitro+vivo, PC, AsPC-1 - in-vitro, PC, PANC1
SOD2↑, TumCG↓, TumMeta↓, ROS↑, Apoptosis↑, PI3K↓, Akt↓, EMT↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, Bcl-2↓,
4976- Nimb,    Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
- vitro+vivo, PC, NA
ROS↑, Apoptosis↑, TumAuto↑, TumCP↓, TumCMig↓, TumCI↓, EMT↓, Dose↓, selectivity↑, Akt↓, eff↓, BAX↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓,
4975- Nimb,    Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma
- in-vitro, Oral, NA
Apoptosis↑, ROS↑, Ca+2↑, ER Stress↑, Casp↑, MMP↓, tumCV↓,
4974- Nimb,    Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma
- in-vitro, OS, NA
Apoptosis↑, ER Stress↑, mtDam↑, ROS↑, Casp↑, TumCMig↓, TumMeta↓,
4973- Nimb,    Nimbolide Exhibits Potent Anticancer Activity Through ROS-Mediated ER Stress and DNA Damage in Human Non-small Cell Lung Cancer Cells
- in-vitro, NSCLC, A549
tumCV↓, ROS↑, ER Stress↑, DNAdam↑, Apoptosis↑, eff↓,
4972- Nimb,    Chemopreventive and therapeutic effects of nimbolide in cancer: The underlying mechanisms
- Review, Var, NA
Apoptosis↑, TumCP↓, NF-kB↓, Wnt↓, PI3K↓, MAPK↓, JAK↓, STAT↓,
4971- Nimb,    Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal
- Review, Var, NA
TumCP↓, Apoptosis↓, TumCI↓, angioG↓, TumMeta↓, Inflam↓,
4970- Nimb,    Insights into Nimbolide molecular crosstalk and its anticancer properties
- Review, Var, NA
chemoPv↑, Apoptosis↑, TumCP↓, TumCD↑, TumMeta↓, angioG↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
4629- OLE,    Oleuropein exhibits anticancer effects by inducing apoptosis and inhibiting cell motility in MCF7 and MDA-MB231 breast cancer cells
- in-vitro, BC, MDA-MB-231 - NA, NA, MCF-7
TumCG↓, Apoptosis↑,
4649- OLEC,    Anticancer molecular mechanisms of oleocanthal
Apoptosis↑, HGF/c-Met↝, STAT3↝,
4648- OLEC,    The Effect of Dietary Intervention With High-Oleocanthal and Oleacein Olive Oil in Patients With Early-Stage Chronic Lymphocytic Leukemia: A Pilot Randomized Trial
- Trial, CLL, NA
Apoptosis↑, *QoL↑,
1226- OLST,    Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation
- vitro+vivo, GC, NA
PGM1∅, FASN↓, Apoptosis↑, lipidLev↑, GlucoseCon↑, eff↑,
1812- Oxy,    Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer
- in-vitro, Lung, A549 - in-vivo, Lung, NA - in-vitro, NA, BEAS-2B
TumCG↓, CD31↑, P53↓, Dose∅, other↑, Apoptosis↑, Hif1a↑, selectivity↑,
2396- PACs,    PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma
- in-vitro, HCC, HCCLM3 - in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, Bel-7402 - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2 - in-vitro, Nor, L02
TumCP↓, TumCCA↓, Apoptosis↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, HK2↓, PFK↓, OXPHOS↑, ChemoSen↑, HSP90↓, Hif1a↓,
1996- Part,    Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells
- in-vitro, CRC, COLO205
Apoptosis↑, GSH↓, ROS↑, Ca+2↑, GRP78/BiP↑, ER Stress↑, eff↓, eff↑, Thiols↓,
1995- Part,    The protective effect of parthenolide in an in vitro model of Parkinson's disease through its regulation of nuclear factor-kappa B and oxidative stress
- in-vitro, Park, SH-SY5Y
*Apoptosis↓, *ROS↓, *BAX↓, *NF-kB↓, *P53↓, *p‑NF-kB↓,
1992- Part,    Parthenolide induces ROS-dependent cell death in human gastric cancer cell
- in-vitro, BC, MGC803
TumCCA↑, Casp↑, Apoptosis↑, Necroptosis↑, RIP1↓, RIP3↑, MLKL↑, ROS↑, eff↓,
1991- Part,    A novel SLC25A1 inhibitor, parthenolide, suppresses the growth and stemness of liver cancer stem cells with metabolic vulnerability
- in-vitro, Liver, HUH7
TumCCA↑, Apoptosis↑, CSCs↓, ROS↑, OXPHOS↓, MMP↓, SLC25A1↓, IDH2↓,
1990- Part,    Parthenolide alleviates cognitive dysfunction and neurotoxicity via regulation of AMPK/GSK3β(Ser9)/Nrf2 signaling pathway
- in-vitro, AD, PC12
*Apoptosis↓, *ROS↓, *MMP↓, *memory↑, *eff↑,
1984- Part,    Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells
- in-vitro, Cerv, HeLa
AntiCan↑, TrxR1↓, TrxR2↓, ROS↑, Apoptosis↑, eff↓, eff↑,
2061- PB,  Chemo,    Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells
- in-vitro, PC, PANC1 - in-vitro, PC, COLO357 - in-vitro, PC, Bxpc-3
HDAC↓, Apoptosis↑, eff↑, selectivity↑, TumCCA↑, eff↑, selectivity↑,
2053- PB,    4-Phenyl butyric acid prevents glucocorticoid-induced osteoblast apoptosis by attenuating endoplasmic reticulum stress
- in-vitro, ostP, 3T3
*ER Stress↓, *mtDam↓, *Apoptosis↓, eff↑,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2046- PB,    Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-468 - in-vitro, Nor, MCF10
Apoptosis↑, i-ROS?, Casp↑, MMP?, selectivity↑, *ROS∅, HDAC↓, DNArepair↓, Casp3↑, Casp8↑, *toxicity↓, TumCCA↑,
2076- PB,    Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29
TumCP↓, TumAuto↑, Apoptosis↑, ER Stress↑, BID↑, CHOP↑, PDI↑, IRE1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, LC3B↑, Beclin-1↑, other↝, other↝,
2070- PB,    Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells
- in-vitro, CRC, HT-29
TumCG↓, Apoptosis↑, MMP↓, Casp3↑, PARP↓, NF-kB↓, eff↑,
2069- PB,    Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes
- in-vitro, Tong, NA
TumCG↓, ROS↑, P21↑, CycB/CCNB1↓, cDC2↓, CDC25↓, eff↓, TumCCA↑, Apoptosis↑,
2078- PB,    Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response
- in-vitro, CRC, HCT116
p38↑, ER Stress↑, Casp3↑, Casp7↑, TumCD↑, Apoptosis↑, TumCP↑, HSP27↓,
2421- PB,    Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway
- in-vitro, HCC, HCCLM3 - in-vivo, NA, NA - in-vitro, HCC, Bel-7402 - in-vitro, HCC, SMMC-7721 cell - in-vitro, Nor, L02
Glycolysis↓, Apoptosis↑, TumCP↓, lactateProd↓, GlucoseCon↓, HK2↓, ChemoSen↑, *toxicity↓, cMyc↓, PFK1↓, LDHA↓, cMyc↓, ChemoSen↑,
998- PB,    Phenyl butyrate inhibits pyruvate dehydrogenase kinase 1 and contributes to its anti-cancer effect
- in-vivo, NA, NA
p‑PDH↓, PDH↑, PDK1↓, HDAC↓, Glycolysis↓, MMP↓, Apoptosis↑,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1/CCNA1↓, CycB/CCNB1↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1/CCND1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, TumCCA↑, TumCP↓, Apoptosis↑, antiOx↓, ROS↑, COX2↑, ER(estro)↓, cycA1/CCNA1↓, CycB/CCNB1↓, CDK2↓, P21↑, p27↑, hTERT/TERT↓, HDAC↓, ROS⇅, Dose?, ROS↓, ROS↑, DNAdam↑, ChemoSen↑, LOX1↓, lipid-P↓, NO↑, Igs↑, NK cell↑, MMPs↓, VEGF↓, Hif1a↓, GLUT1↓, HK2↓, selectivity↑, RadioS↑, GlucoseCon↓, lactateProd↓, eff↓, *BioAv↓,
1667- PBG,    Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis
- in-vitro, Pca, LNCaP
NF-kB↓, Apoptosis↑, MMP↓,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1660- PBG,    Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents
- Review, Var, NA
MMPs↓, angioG↓, TumMeta↓, TumCCA↑, Apoptosis↑, ChemoSideEff↓, eff∅, HDAC↓, PTEN↑, p‑PTEN↓, p‑Akt↓, Casp3↑, p‑ERK↑, p‑FAK↑, Dose?, Akt↓, GSK‐3β↓, FOXO3↓, eff↑, IL2↑, IL10↑, NF-kB↓, VEGF↓, mtDam↑, ER Stress↑, AST↓, ALAT↓, ALP↓, COX2↓, eff↑, Bax:Bcl2↑,
1684- PBG,    Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Nor, HUVECs
Apoptosis?, ANXA7↑, ROS↑, NF-kB↓, MMP↓, selectivity↑,
1673- PBG,    An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms
- Review, Var, NA
TumCP↓, Apoptosis↑, TumCCA↑, MALAT1↓, P53↑, RadioS↑, OS↑, ROS↑, NF-kB↓, p65↑, MMP↓, ROS↑, MMP9↓, β-catenin/ZEB1↓, Vim↓, E-cadherin↓, VEGF↓, EMT↓,
1675- PBG,    Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, WM983B
tumCV↓, ROS↑, antiOx↑, Apoptosis↑, BAX↑, P53↑, Casp3↑, Casp9↑,
4929- PEITC,  PacT,    Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ChemoSen↑, Apoptosis↑, TumCCA↑, eff↑, CDK1↓, Bcl-2↓, BAX↑, cl‑PARP↑, SAL↑,
4934- PEITC,    Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
GSH↓, ROS↑, chemoPv↑, Apoptosis↑, Casp9↑, Casp3↑, eff↓, TumCG↓, TumCCA↑, BAX↑, Nrf1↑, GSH↓, GSSG↓, GSH/GSSG↓,
4935- PEITC,    Phenethyl Isothiocyanate Suppresses Inhibitor of Apoptosis Family Protein Expression in Prostate Cancer Cells in Culture and In Vivo
- in-vivo, Pca, LNCaP - in-vivo, Pca, PC3
Apoptosis↑, XIAP↓, survivin↓, *BioAv↑, tumCV↓, eff↓,
4925- PEITC,    PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells
- in-vitro, OS, NA
tumCV↓, TumCP↓, TumCCA↑, GSH↓, ROS↑, Ferroptosis↑, Apoptosis↑, TumAuto↑, MAPK↑, TumCG↓, Dose⇅,
4923- PEITC,    Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis
- Study, Var, NA
cl‑BID↑, Apoptosis↑, Bcl-xL↓, Casp8↑, Cyt‑c↑,
4922- PEITC,    Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms
- Review, Var, NA
Risk↓, AntiCan↑, TumCP↓, TumMeta↓, ChemoSen↑, *BioAv↑, *other↝, *Dose↝, Dose↓, *BioAv↑, *Dose↝, *Half-Life↝, *toxicity↝, GSH↓, ROS↑, CYP1A1↑, CYP1A2↑, P450↓, CYP2E1↑, CYP3A4↓, CYP2A3/CYP2A6↓, *ROS↓, *GPx1↑, *SOD1↑, *SOD2↑, Akt↓, EGFR↓, HER2/EBBR2↓, P53↑, Telomerase↓, selectivity↑, MMP↓, Cyt‑c↑, Apoptosis↑, DR4↑, Fas↑, XIAP↓, survivin↓, TumAuto↑, Hif1a↓, angioG↓, MMPs↓, ERK↓, NF-kB↓, EMT↓, TumCI↓, TumCMig↓, Glycolysis↓, ATP↓, selectivity↑, *antiOx↑, Dose↝, other↝, OCR↓, GSH↓, ITGB1↓, ITGB6↓, ChemoSen↑,
4921- PEITC,    The Potential Use of Phenethyl Isothiocyanate for Cancer Prevention
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, HDAC↓, Risk↓,
4919- PEITC,    Natural compound PEITC inhibits gain of function of p53 mutants in cancer cells by switching YAP-binding partners between p53 and p73
- in-vitro, Var, NA
Apoptosis↑, TumCCA↑, P53↓,
4918- PEITC,    Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights
- Review, Var, NA
Apoptosis↑, TumCP↓, angioG↓, TumMeta↓, NF-kB↓, Akt↓, MAPK↓,
4940- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, tumCV↓, ROS↑, Ca+2↑, CDC25↓, CDK6↓, cycD1/CCND1↓, CDK2↓, cycE/CCNE↓, P53↑, p27↑, P21↑, Casp9↑, Casp3↑, GRP78/BiP↑,
4955- PEITC,    Phenethyl isothiocyanate-induced cytoskeletal changes and cell death in lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCG↓, α-tubulin↓, TumCD↑, TumCCA↑, Apoptosis↑,
4951- PEITC,    ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis
- in-vitro, Ovarian, PA1 - in-vitro, Ovarian, SKOV3
ROS↑, TumCP↓, GSH↓, selectivity↑, UPR↑, CHOP↑, ER Stress↑, GRP78/BiP↑, PERK↑, ATF6↑, eff↓, TumCG↓, Apoptosis↑, toxicity↓,
4949- PEITC,    Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells
- in-vitro, Cerv, HeLa
ROS↑, selectivity↑, CSCs↓, Sp1/3/4↓, P-gp↓, ALDH↓, GSH↓, TumCP↓, Apoptosis↑,
4947- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G0/G1   Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
AntiCan↑, chemoPv↑, TumCG↓, Apoptosis↑, TumCCA↑, P53↑, P21↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
4946- PEITC,    Phenethyl Isothiocyanate Inhibits Oxidative Phosphorylation to Trigger Reactive Oxygen Species-mediated Death of Human Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, TumAuto↑, ROS↑, OXPHOS↓, ATP↓, selectivity↑, ETC↓, eff↓, eff↓, BAX↑,
4945- PEITC,    Phenethyl isothiocyanate (PEITC) promotes G2/M phase arrest via p53 expression and induces apoptosis through caspase- and mitochondria-dependent signaling pathways in human prostate cancer DU 145 cells
- in-vitro, Pca, DU145
AntiCan↑, TumCG↓, Apoptosis↑, tumCV↓, TumCCA↑, DNAdam↑, P53↑, CDC25↓, Casp9↑, Casp8↑, mtDam↑, Cyt‑c↑,
4944- PEITC,    Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations
- in-vitro, Oral, NA
TumCG↓, TumCCA↑, Apoptosis↑, ROS↑, NO↑, GSH↓, MMP↓, DNAdam↑, ATM↑, Chk2↑, P53↑, eff↓,
4943- PEITC,    Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation
- in-vitro, Ovarian, OVCAR-3
TumCD↑, TumCP↓, Apoptosis↑, Casp3↑, Casp9↑, Bcl-2↓, BAX↑, Akt↓, ERK↓, cMyc↓, p38↑, JNK↑, eff↓,
4942- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G(0)/G(1) Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
chemoPv↑, TumCG↓, TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑,
4941- PEITC,    PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
PKCδ↑, Apoptosis↓, selectivity↑, tumCV↓, p‑NRF2↑, cl‑PARP1↑, TumCMig↓, ROS↓, Hif1a↓,
1254- PI,  VitC,    Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway
- in-vivo, GC, NA
STAT3⇅, eff↑, ROS↑, Apoptosis↑,
1256- PI,    Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models
- in-vitro, adrenal, PHEO - in-vivo, NA, NA
Apoptosis↑, ROS↑, TumCMig↓, TumCI↓, EMT↓, angioG↓, Necroptosis↑, MAPK↑, ERK↑,
1938- PL,    Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation
- Study, PSA, NA - in-vivo, NA, NA
ROS↑, Apoptosis↑, MMP↓, TumCCA↑, DNAdam↑, STAT3↓, Akt↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, Bcl-2↓, K17↓, HDAC↓, ROS↑, *IL1β↓, *IL6↓, *TNF-α↓, *IL17↓, *IL22↓,
1945- PL,  SANG,    The Synergistic Effect of Piperlongumine and Sanguinarine on the Non-Small Lung Cancer
- in-vitro, Lung, A549
toxicity∅, Apoptosis↑, TumMeta↓, ROS↑, TumCCA↑,
1948- PL,  born,    Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy
- in-vitro, GBM, NA
selectivity↑, ROS↑, BioAv↓, BioAv↑, Apoptosis↑, TumCCA↑, eff↑,
2947- PL,    Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer
- Review, Var, NA
TumCP↓, Apoptosis↑, TumCCA↑, ROS↑,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
2941- PL,    Selective killing of cancer cells by a small molecule targeting the stress response to ROS
- in-vivo, BC, MDA-MB-231 - in-vitro, OS, U2OS - in-vitro, BC, MDA-MB-453
ROS↑, Apoptosis↑, selectivity↑, *ROS∅, GSH↓, GSSG↑, H2O2↑, NO↑, Half-Life?,
2940- PL,    Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors
- in-vitro, PC, PANC1 - in-vitro, Lung, A549 - in-vitro, Kidney, 786-O - in-vitro, BC, SkBr3
ROS↑, TumCP↓, Apoptosis↑, eff↓, Sp1/3/4↓, cycD1/CCND1↓, survivin↓, cMyc↓, EGFR↓, cMET↓,
2649- PL,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
AntiCan↑, ROS↑, GSH↓, TrxR↓, Trx↓, Apoptosis↑, TumCCA↑, ER Stress↑, DNAdam↑, ChemoSen↑, BioAv↓,
2995- PL,    Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover
- in-vitro, Lung, H1975 - in-vitro, Lung, PC9 - in-vivo, NA, NA
Sp1/3/4↓, cMET↓, Apoptosis↑, Cyt‑c↑, p‑ERK↓, p‑Akt↓, TumCG↓,
2970- PL,    Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways
- in-vitro, AML, NA
AntiAg↑, TumCG↓, Apoptosis↑, PI3K↓, Akt↓, mTOR↓, p38↑, Casp3↑,
2006- Plum,    Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
tumCV↓, selectivity↑, mtDam↑, Ca+2↓, ER Stress↑, ROS↑, Casp3↑, Casp9↑, Apoptosis↑, eff↓,
4968- PSO,    Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer
- in-vitro, Cerv, NA
*Inflam↓, *antiOx↑, *neuroP↑, *AntiDiabetic↑, *Bacteria↓, AntiTum↑, CSCs↓, ROS↑, TumAuto↑, Apoptosis↑, ChemoSen↑, RadioS↑, BioAv↓, *cardioP↑, *ROS↓, *LDH↓, TumCP↓, TRAIL⇅, TumCMig↓, EMT↓, NF-kB↓, P53↑, Casp3↑, NOTCH↓, CSCs↓, angioG↓, VEGF↓, Ki-67↓, CD31↓, TRAILR↑, MMP↓, BioAv↓, BioAv↑,
4967- PSO,    Psoralidin's Anti-Cancer Mechanisms: A Technical Guide
- Review, Var, NA
NF-kB↓, PI3K↓, Akt↓, ITGB1↓, FAK↓, BAX↑, Casp3↑, Apoptosis↑, Bcl-2↓, DR5↑, TumCCA↑, TumAuto↑, TumMeta↓,
4969- PSO,    The Coumarin Psoralidin Enhances Anticancer Effect of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)
- in-vitro, Cerv, HeLa
AntiCan↑, chemoPv↑, TRAIL↑, selectivity↑, toxicity↓, MMP↓, Apoptosis↑,
5034- PTS,    Pterostilbene in Cancer Therapy
- Review, Var, NA
BioAv↓, Half-Life↓, iNOS↓, Apoptosis↑, STAT3↓, Akt↓, mTOR↓, NF-kB↓, NRF2↓, ChemoSen↑, BBB↑,
4692- PTS,    Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol
- in-vitro, Cerv, HeLa
TumCG↓, TumMeta↓, TumCCA↑, ROS↑, Apoptosis↑, MMP2↓, MMP9↓, CD133↓, OCT4↓, SOX2↓, Nanog↓, STAT3↓, CSCs↓,
4697- PTS,    Pterostilbene and cancer: current review
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumMeta↑, toxicity↓, BioAv↑,
4690- PTS,  immuno,    Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies
- Review, Var, NA
eff↑, Half-Life↑, TumCG↓, TumMeta↓, angioG↓, CSCs↓, Apoptosis↑, eff↑, CD44↓, CD24↓,
4689- PTS,    Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol
eff↑, TumCCA↑, ROS↑, MMP2↓, MMP9↓, CSCs↓, CD133↓, OCT4↓, SOX2↓, Nanog↓, STAT3↓, BioAv↑, TumCI↓, ROS↑, Apoptosis↑,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3340- QC,    Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression
- in-vitro, Nor, H9c2
*Inflam↓, *ROS↓, *Apoptosis↓,
3347- QC,    Recent Advances in Potential Health Benefits of Quercetin
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *Inflam↓, TumCP↓, Apoptosis↑, *cardioP↑, *BP↓, TumMeta↓, MDR1↓, NADPH↓, ChemoSen↑, MMPs↓, TIMP2↑, *NLRP3↓, *IFN-γ↑, *COX2↓, *NF-kB↓, *MAPK↓, *CRP↓, *IL6↓, *TNF-α↓, *IL1β↓, *TLR4↑, *PKCδ↓, *AP-1↓, *ICAM-1↓, *NRF2↑, *HO-1↑, *lipid-P↓, *neuroP↑, *eff↑, *memory↑, *cognitive↑, *AChE↓, *BioAv↑, *BioAv↑, *BioAv↑, *BioAv↑, *BioAv↑,
3346- QC,    Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2
- in-vitro, Liver, HepG2 - in-vitro, Liver, HUH7
TumCCA↑, Apoptosis↑, P53↑, TumCP↓, ROS↓, antiOx↑, HO-1↑, CDK1↓,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB/CCNB1↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3376- QC,    Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
CDK6↓, tumCV↓, Apoptosis↑, ROS↓, eff↑,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
3373- QC,    The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway
- in-vitro, Pca, DU145
TumCP↓, Casp3↑, Bcl-2↓, Apoptosis↑, TumCI↓, TumCMig↓, CXCL12↓, CXCR4↓,
3362- QC,    The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action
- in-vitro, Cerv, HeLa
Apoptosis↑, cycD1/CCND1↓, Casp3↑, GRP78/BiP↑, CHOP↑, tumCV↓, IRE1↑, p‑PERK↑, c-ATF6↑, ER Stress↑,
3371- QC,    Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways
- in-vitro, GBM, T98G
TIMP2↑, TumCG↓, TumCMig↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, Bax:Bcl2↑, cl‑Casp9↑, cl‑Casp3↑, DNAdam↑, γH2AX↑, MGMT↓, cl‑PARP↑,
3366- QC,    Quercetin Attenuates Endoplasmic Reticulum Stress and Apoptosis in TNBS-Induced Colitis by Inhibiting the Glucose Regulatory Protein 78 Activation
- in-vivo, IBD, NA
*Apoptosis↓, *Inflam↓, *ROS↓, *ER Stress↓, *TNF-α↓, *MPO↓, *p‑JNK↓, *Casp12↓, *GRP78/BiP↓, *antiOx↑, *NF-kB↓,
3363- QC,    The Protective Effect of Quercetin on Endothelial Cells Injured by Hypoxia and Reoxygenation
- in-vitro, Nor, HBMECs
*Apoptosis↓, *angioG↑, *NRF2↑, *Keap1↓, *ATF6↓, *GRP78/BiP↓, *CLDN5↑, *ZO-1↑, *MMP↑, *BBB↑, *ROS↓, *ER Stress↓,
3605- QC,    Protective effect of quercetin in primary neurons against Aβ(1–42): relevance to Alzheimer's disease
- Review, AD, NA
*Aβ↓, *ROS↓, *lipid-P↓, *Apoptosis↓,
2431- QC,    The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells
- in-vitro, Nor, TM4
*Apoptosis↓, *ROS↓, *antiOx↓, *MMP↑, *GPI↑, *HK2↑, *ALDOA↑, *PKM1↑, *LDHA↑, *PFKL↑,
2343- QC,    Pharmacological Activity of Quercetin: An Updated Review
- Review, Nor, NA
*ROS↓, *GSH↑, *Catalase↑, *SOD↑, *MDA↓, *GPx↑, *Copper↓, *Iron↓, Apoptosis↓, TumCCA↑, MMP2↓, MMP9↓, GlucoseCon↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, ROS↑,
1201- QC,    Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1
- in-vivo, BC, NA
mitResp↓, Glycolysis↓, ATP↓, ROS↑, GSH↓, TumMeta↓, Apoptosis↑, FAO↓,
63- QC,    Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells
- in-vitro, Pca, NA
RAGE↓, PI3K↓, mTOR↓, Akt↓, Apoptosis↑, TumAuto↑,
912- QC,  2DG,    Selected polyphenols potentiate the apoptotic efficacy of glycolytic inhibitors in human acute myeloid leukemia cell lines. Regulation by protein kinase activities
Apoptosis↑, ROS↓, GSH∅, other↑,
914- QC,    Quercetin and Cancer Chemoprevention
- Review, NA, NA
GSH↓, ROS↑, TumCCA↑, Ca+2↑, MMP↓, Casp3↑, Casp8↑, Casp9↑, β-catenin/ZEB1↓, AMPKα↑, ASK1↑, p38↑, TRAIL↑, DR5↑, cFLIP↓, Apoptosis↑,
916- QC,    Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells
- Review, Ovarian, NA
COX2↓, CRP↓, ER Stress↑, Apoptosis↑, GRP78/BiP↑, CHOP↑, p‑STAT3↓, PI3K↓, Akt↓, mTOR↓, cMyc↓, cycD1/CCND1↓, cFLIP↓, IL6↓, IL10↓,
919- QC,    Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells
- in-vitro, CRC, HCT116
Apoptosis↑, ROS↑, SESN2↑, P53↑, AMPKα↑, mTOR↓,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
910- QC,    The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism
tumCV↓, Apoptosis↑, PI3k/Akt/mTOR↓, Wnt/(β-catenin)↓, MAPK↝, ERK↝, TumCCA↑, H2O2↑, ROS↑, TumAuto↑, MMPs↓, P53↑, Casp3↑, Hif1a↓, cFLIP↓, IL6↓, IL10↓, lactateProd↓, Glycolysis↓, PKM2↓, GLUT1↓, COX2↓, VEGF↓, OCR↓, ECAR↓, STAT3↓, MMP2↓, MMP9:TIMP1↓, mTOR↓,
894- QC,    The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis
- in-vitro, Nor, NA
Apoptosis↑, *NF-kB↓, *AP-1↓, *P53↝, *ROS↓,
4787- QC,    Quercetin: A Phytochemical with Pro-Apoptotic Effects in Colon Cancer Cells
- Review, CRC, NA
Inflam↓, AntiCan↑, Apoptosis↑, MMP↓, P53↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, NF-kB↓, IL6↓, IL1β↓, *antiOx↑, *lipid-P↓, *ROS↓, MAPK↓, JAK↓, STAT↓, PI3K↓, Akt↓, chemoP↑, ROS⇅, DNAdam↑, ChemoSen↝,
5031- QC,    Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cells
- in-vitro, AML, APL NB4
NRF2↓, ROS↑, Apoptosis↑,
882- RES,    Resveratrol: A Double-Edged Sword in Health Benefits
- Review, NA, NA
AntiTum↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Bcl-xL↓, P53↑, NAF1↓, NRF2↑, ROS↑, Apoptosis↑, HDAC↓, TumCCA↑, TumAuto↑, angioG↓, iNOS↓,
883- RES,    Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy
HDAC↓, TumCCA↑, Apoptosis↑, angioG↓, ROS↑,
2329- RES,    Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis
- in-vitro, Melanoma, A375
P53↑, Bcl-2↓, BAX↑, Cyt‑c↑, ERK↓, PKM2↓, Apoptosis↑, γH2AX↑, Casp3↑, cl‑PARP1↑,
2330- RES,    Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission
- in-vitro, CRC, DLD1 - in-vitro, Cerv, HeLa - in-vitro, BC, MCF-7
TumCP↓, Apoptosis↑, PKM2↓, ER Stress↑,
3070- RES,    Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma
- in-vitro, RCC, ACHN - in-vitro, RCC, 786-O - in-vivo, NA, NA
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, NLRP3↓,
3072- RES,    Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway
- in-vitro, GBM, LN229 - in-vitro, GBM, U87MG
tumCV↓, TumCP↓, TumCMig↓, Apoptosis↑, NLRP3↓, JAK2↓, STAT3↓, IL1β↓, IL18↓, IL6↓, TNF-α↓, Inflam↓,
3078- RES,    The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment
- Review, Pca, NA
*ROS↓, ROS↑, DNAdam↑, Apoptosis↑, Hif1a↑, Casp3↑, Casp9↑, Cyt‑c↑, Dose↝, MMPs↓, MMP2↓, MMP9↓, EMT↓, E-cadherin↑, N-cadherin↓, AR↓,
3067- RES,    Proteomic Profiling Reveals That Resveratrol Inhibits HSP27 Expression and Sensitizes Breast Cancer Cells to Doxorubicin Therapy
- in-vitro, BC, MCF-7
Apoptosis↑, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, HSP27↓,
3057- RES,    The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway
- Review, Var, NA - Review, AD, NA - Review, Stroke, NA
*NRF2↑, *Keap1↓, *ROS↓, *Apoptosis↓, *Inflam↓, *antiOx↑, *hepatoP↑, *neuroP↑, *cardioP↑, *RenoP↑, *AntiCan↑, *memory↑, *SOD↑, *GPx↑, *Catalase↑, *MDA↓, *NRF2↑, *HO-1↑, *ROS↓, *Aβ↓, *iNOS↓, *COX2↓, *GSH↑, *HO-1⇅, *SIRT1↑,
2981- RES,    Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways
- in-vitro, Colon, HT-29 - in-vitro, Colon, SW48
TumCCA↑, p27↑, cycD1/CCND1↓, TumCP↓, IGF-1R↓, Akt↓, Wnt↓, P53↑, Apoptosis↑, Sp1/3/4↓, cl‑PARP↑, β-catenin/ZEB1↓, MDM2↓,
2982- RES,    The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1
- in-vitro, Melanoma, MSTO-211H
tumCV↓, Apoptosis↑, Sp1/3/4↓, p27↓, P21↓, cycD1/CCND1↓, Mcl-1↓, survivin↓,
2983- RES,    Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagy
- in-vitro, Nor, NA
*Beclin-1↑, *p62↓, *Sp1/3/4↓, *Apoptosis↓,
3096- RES,    Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
TumCP↓, Apoptosis↑, Akt↓, mTOR↓, p38↑, MAPK↑, STAT3↓, ROS↑, SIRT1↑, SOX2↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
3091- RES,    Protein kinase CK2 modulates apoptosis induced by resveratrol and epigallocatechin-3-gallate in prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, ALVA-41
CK2↓, Apoptosis↑,
4666- RES,    Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway
- in-vitro, Lung, H23 - in-vitro, Lung, H292 - in-vitro, Lung, A549
CSCs↓, eff↑, Akt↓, GSK‐3β↑, SOX2↓, cMyc↓, TumCCA↑, ROS↑, Apoptosis↑,
1744- RosA,    Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity
- Review, Var, NA
chemoR↓, ChemoSideEff↓, RadioS↑, ROS↓, ChemoSen↑, BioAv↑, Half-Life↝, antiOx↑, ROS↑, Fenton↑, DNAdam↑, Apoptosis↑, CSCs↓, HH↓, Bax:Bcl2↑, MDR1↓, P-gp↓, eff↑, eff↑, FOXO4↑, *eff↑, *ROS↓, *JNK↓, *ERK↓, *GSH↑, *H2O2↑, *MDA↓, *SOD↑, *HO-1↑, *CardioT↓, selectivity↑,
1746- RosA,    Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells
- in-vitro, AML, U937
TNF-α↓, ROS↓, Casp↑, NF-kB↓, IκB↓, p50↓, p65↓, IAP1↓, IAP2↓, XIAP↓, Apoptosis↑,
1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, TNF-α↑, GADD45A↑, BNIP3↑, survivin↓, Bcl-2↓, BAX↑, HH↓, eff↑, ChemoSen↑, RadioS↑, TumCP↓, TumCMig↓, Apoptosis↑, RenoP↑, CardioT↓,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3029- RosA,    Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, tumCV↓, Apoptosis↑, HDAC2↓, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21↑, DNAdam↑, Casp3↑,
3028- RosA,    Network pharmacology mechanism of Rosmarinus officinalis L.(Rosemary) to improve cell viability and reduces apoptosis in treating Alzheimer’s disease
- in-vitro, AD, HT22 - in-vivo, NA, NA
*Aβ↓, *Apoptosis↓, *antiOx↑, *neuroP↑, *eff↑, *IGF-1↑, *MMP9↑, *Src↓, *MAPK↓, *MMP↑,
3027- RosA,    Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway
- in-vitro, HCC, SMMC-7721 cell
TumCP↓, TumCCA↑, Apoptosis↑, EMT↓, TumCI↓, PI3K↓, Akt↓, mTOR↓, TumCMig↓, MMPs↓, Vim↓,
3010- RosA,    Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation
- in-vitro, Lung, A549 - in-vivo, NA, NA
TumCG↓, Ki-67↓, FABP4↑, PPARα↑, ROS↑, Apoptosis↑, MMP9↓, IGFBP3↓, MMP2↓, EMT↓, TumCI↓, PI3K↓, Akt↓, mTOR↓, Gli1↓, PPARγ↑, Cyt‑c↑,
3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, Inflam↓, *antiOx↑, *AntiAge↑, *ROS↓, BioAv↑, Dose↝, NRF2↑, P-gp↑, ATP↑, MMPs↓, cl‑PARP↓, Hif1a↓, GlucoseCon↓, lactateProd↓, Warburg↓, TNF-α↓, COX2↓, IL6↓, HDAC2↓, GSH↑, ROS↓, ChemoSen↑, *BG↓, *IL1β↓, *TNF-α↓, *IL6↓, *p‑JNK↓, *p38↓, *Catalase↑, *SOD↑, *GSTs↑, *VitC↑, *VitE↑, *GSH↑, *GutMicro↑, *cardioP↑, *ROS↓, *MMP↓, *lipid-P↓, *NRF2↑, *hepatoP↑, *neuroP↑, *P450↑, *HO-1↑, *AntiAge↑, *motorD↓,
1251- RT,  OLST,    Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions
- in-vitro, BC, MCF-7 - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumVol↓, *CEA↓, *FASN↓, *ROS↓, *MDA↓, *GSH↑, Apoptosis↑,
2040- SAHA,    The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin
- in-vitro, Pca, LNCaP - in-vitro, CRC, T24 - in-vitro, BC, MCF-7
HDAC↓, TumCG↓, Diff↑, Apoptosis↑, TXNIP↑,
4910- Sal,    A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent
Apoptosis↑, CSCs↓, ChemoSen↑, RadioS↑, selectivity↑, Wnt↓, toxicity⇅,
4909- Sal,    Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model
- vitro+vivo, CRC, NA
AntiTum↑, Apoptosis↑, mtDam↑, ROS↑, SOD1↓, ChemoSen↑, CSCs↑, ALDH↓, TumCG↓, TumCP↓, TumCD↑, ATP↓,
4900- Sal,    Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications
- Review, BC, NA
CSCs↓, Apoptosis↑, TumAuto↑, necrosis↑, TumCP↓, TumCI↓, TumCMig↓, TumCG↓, TumMeta↓, eff↑, Bcl-2↓, cMyc↓, Snail↓, ALDH↓, Myc↓, AR↓, ROS↑, NF-kB↓, PTCH1↓, Smo↓, Gli1↓, GLI2↓, Wnt↓, mTOR↓, GSK‐3β↓, cycD1/CCND1↓, survivin↓, P21↑, p27↑, CHOP↑, Ca+2↑, DNAdam↑, Hif1a↓, VEGF↓, angioG↓, MMP↓, ATP↓, p‑P53↑, γH2AX↑, ChemoSen↑,
4902- Sal,  OXA,    Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivo
- vitro+vivo, CRC, NA
RadioS↑, ChemoSen↑, TumCP↓, Apoptosis↑, ROS↑, MMP↓, MAPK↑, eff↓, TumCG↓, TumCCA↑,
4905- Sal,    Salinomycin as a drug for targeting human cancer stem cells
- Review, Var, NA
CSCs↓, selectivity↑, Apoptosis↑, Casp3↑, ROS↑, Wnt↓, cycD1/CCND1↓, Fibronectin↓, OXPHOS↓, Diff↑, Dose↝,
4906- Sal,    A Concise Review of Prodigious Salinomycin and Its Derivatives Effective in Treatment of Breast Cancer: (2012–2022)
- Review, BC, NA
CSCs↓, Casp3↑, cl‑PARP↝, Apoptosis↑, ROS↑, ABC↓, OXPHOS↓, Glycolysis↓, eff↑, TumAuto↑, DNAdam↑, Wnt↓, Ferritin↓, Iron↑,
4907- Sal,    A comprehensive review of salinomycin derivatives as potent anticancer and anti-CSCs agents
- Review, Var, NA
Apoptosis↑, MDR1↓, CSCs↓,
4994- Sal,  Rad,    Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation
AntiCan↑, RadioS↓, Apoptosis↑, NRF2↓, ROS↑, DNAdam↑,
4995- Sal,    Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway
- vitro+vivo, BC, MDA-MB-231
ALDH↓, Nanog↓, OCT4↓, SOX2↓, CSCs↓, tumCV↓, cycD1/CCND1↓, P21↑, TumCG↓, CD44↓, Apoptosis∅,
5002- Sal,  SFN,    Salinomycin and Sulforaphane Exerted Synergistic Antiproliferative and Proapoptotic Effects on Colorectal Cancer Cells by Inhibiting the PI3K/Akt Signaling Pathway in vitro and in vivo
- in-vivo, CRC, Caco-2 - vitro+vivo, CRC, CX-1
Apoptosis↑, PI3K↓, Akt↓, P53↑, BAX↑, Bax:Bcl2↑, p‑PARP↑, TumCMig↓,
323- Sal,  SNP,    Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy
- in-vitro, BC, MDA-MB-231 - in-vitro, Ovarian, A2780S
TumCD↑, LDH↓, MDA↑, SOD↓, ROS↑, GSH↓, Catalase↓, MMP↓, P53↑, P21↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑, Apoptosis↑, TumAuto↑,
1307- SANG,    Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway
- in-vitro, CRC, HT-29
Apoptosis↑, BAX↑, Bcl-2↓, Casp3↑, Casp9↑,
1208- SANG,    Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region
- in-vitro, OS, NA
SSBP1↑, mtDam↑, Apoptosis↑, JAK↓, STAT3↓, PI3k/Akt/mTOR↓, ROS↑, MMP↓,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
4611- Se,  Rad,    Radioprotective Effect of Selenium Nanoparticles: A Mini Review
- Review, Var, NA
*antiOx↑, *Inflam↓, *radioP↑, *ROCK1↓, *DNAdam↓, *Apoptosis↓, *RadioS↑, *Dose↝,
4714- Se,    Selenium in cancer management: exploring the therapeutic potential
- Review, Var, NA
Risk↓, *BioAv↑, eff↝, *ROS↓, MMP↓, ROS↑, P53↑, *toxicity↓, TumCP↓, Casp↑, Apoptosis↑,
4742- Se,    Antitumor Effects of Selenium
- Review, Var, NA - Review, Arthritis, NA - Review, Sepsis, NA
*antiOx↓, *Inflam↓, Risk↓, TumCI↓, TumMeta↓, radioP↑, chemoP↑, Apoptosis↑, ROS↑, DNAdam↑, Dose↑, selectivity↑, *other↓, *BioAv↑, ROS↑, MMP↓, Casp↑, *Imm↑, *Pain↓, Sepsis↓, MMP2↓, MMP9↓, *Half-Life↓,
4726- Se,  Oxy,    Oxygen therapy accelerates apoptosis induced by selenium compounds via regulating Nrf2/MAPK signaling pathway in hepatocellular carcinoma
- in-vivo, HCC, NA
eff↝, NRF2↓, p‑p38↑, Apoptosis↑, eff↑, TumVol↓, other↝, toxicity↓, Dose↝, NRF2↝, HO-1↓, Catalase↓, SOD↓, e-pH↓, pH∅, MAPK↑, eff↑,
4739- Se,  Chemo,  Rad,    Therapeutic Benefits of Selenium in Hematological Malignancies
- Review, Var, NA
ChemoSen↑, radioP↑, QoL↑, Risk↓, *selenoP↑, TumCP↓, Inflam↓, ChemoSen↑, TumCCA↑, Apoptosis↑, angioG↓, Dose⇅, ROS↑, eff↑, Risk↓, eff∅, CSCs↓, ROS↑,
4734- Se,  CPT-11,    Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles
- in-vitro, CRC, HCT8 - in-vivo, NA, NA
chemoP↑, ChemoSen↑, P53↑, Apoptosis↑, TumCG↓, Casp↑, Dose↝, NRF2↓, selectivity↑, *NRF2↑,
4469- Se,    Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential
- Review, Var, NA
antiOx↑, selectivity↑, eff↑, AntiCan↑, Apoptosis↑, ROS↑, MMP↓, Casp3↑, Casp9↑, AntiTum↑, TumCG↓, TumMeta↓, angioG↓, Cyt‑c↑, DNAdam↑, RadioS↑, BBB↑, *toxicity↓, ChemoSen↑,
4501- Se,    Mechanisms of the Cytotoxic Effect of Selenium Nanoparticles in Different Human Cancer Cell Lines
- in-vitro, GBM, A172 - in-vitro, Colon, Caco-2 - in-vitro, Pca, DU145 - in-vitro, BC, MCF-7 - in-vitro, Nor, L929
*BioAv↑, selectivity↑, AntiCan↑, Apoptosis↑, CHOP↑, GADD34↑, BIM↑, PUMA↑, Ca+2↝,
4504- Se,  Chit,  FA,  doxoR,    pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells
- in-vitro, Var, NA
ChemoSen↑, Apoptosis↑, Casp3↑, PARP↝,
4453- Se,    Selenium Nanoparticles: Green Synthesis and Biomedical Application
- Review, NA, NA
*toxicity↓, *Bacteria↓, ROS↑, MMP↓, ER Stress↑, P53↑, Apoptosis↑, Casp9↑, DNAdam↑, TumCCA↑, eff↑, Catalase↓, SOD↓, GSH↓, selectivity↓, selectivity↑, PCNA↓, eff↑, *ALAT↓, *AST↓, *ALP↓, *creat↓, *Inflam↓, *toxicity↓, selectivity↑,
4451- Se,    Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies
- in-vitro, Liver, HepG2
*antiOx↑, Apoptosis↑, TumCCA↑,
4449- Se,    PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction
- in-vitro, Liver, HepG2
MMP↓, selectivity↑, Apoptosis↑, ROS↑,
4471- Se,    Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis
- in-vitro, Liver, HepG2
eff↑, ROS↑, MMP↓, Casp9↑, Bcl-2↓, selectivity↑, Apoptosis↑,
4480- Se,  Chit,    Biogenic synthesized selenium nanoparticles combined chitosan nanoparticles controlled lung cancer growth via ROS generation and mitochondrial damage pathway
- in-vitro, Lung, A549 - in-vitro, Nor, HK-2
selectivity↑, *toxicity↓, ROS↑, mtDam↑, Apoptosis↑, LDH↑,
4488- Se,  Chit,  PEG,    Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats
- in-vivo, Liver, HepG2 - in-vivo, Nor, HL7702
tumCV↓, Apoptosis↑, *GSH↑, *VitC↑, *VitE↑, *SOD↑, *GPx↑, *GR↑, ALAT↓, ALP↓, AST↓, LDH↓, selectivity↑, eff↑,
4486- Se,  Chit,    Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis
- in-vitro, Liver, HepG2
Apoptosis↑, TumCCA↑, MMP↓, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Risk↓, *BioAv↑, *toxicity↑, TumCG↓, AntiTum↑, ROS↑, Cyt‑c↑, Fas↑, FasL↑, FADD↑,
4484- Se,  Chit,  PEG,    Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
tumCV↓, selectivity↑, ROS↑, MMP↓, Apoptosis↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
4483- Se,  Chit,    Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular docking
- in-vitro, OS, NA
AntiCan↑, TumCP↓, Apoptosis↑, ROS↑, eff↑, other↝, eff↑, TumCCA↑,
1003- Sel,    Sodium selenite inhibits proliferation of lung cancer cells by inhibiting NF-κB nuclear translocation and down-regulating PDK1 expression which is a key enzyme in energy metabolism expression
- vitro+vivo, Lung, NA
NF-kB↓, PDK1↓, p‑p65↑, p‑IκB↑, BAX↑, lactateProd↓, MMP↓, Cyt‑c↑, mitResp↑, Apoptosis↑,
1002- Sel,  Osi,  Adag,    Selenite as a dual apoptotic and ferroptotic agent synergizes with EGFR and KRAS inhibitors with epigenetic interference
- in-vitro, Lung, H1975 - in-vitro, Lung, H385
Apoptosis↑, Ferroptosis↑, DNMT1↓, TET1↑, TumCCA↑, cl‑PARP↑, cl‑Casp3↑, Cyt‑c↑, BIM↑, NOXA↑, Apoptosis↑, ROS↑, ER Stress↑, UPR↑,
1062- Sel,    Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells
- in-vitro, GBM, LN229 - in-vitro, GBM, T98G - in-vitro, GBM, U87MG
HDAC↓, TumCP↓, TumCCA↑, Apoptosis↑, Casp3↝, MMP2↓, *BioAv↝,
1017- Sel,    Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis
- vitro+vivo, CRC, NA
Akt↓, β-catenin/ZEB1↓, cycD1/CCND1↓, survivin↓, Apoptosis↑, ROS↑,
1014- SFN,    Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer Cells
- in-vitro, BC, MDA-MB-231
Zeb1↓, Apoptosis↑, Fibronectin↓, CLDN1↓, β-catenin/ZEB1↓, EMT↓,
2555- SFN,    Chemopreventive functions of sulforaphane: A potent inducer of antioxidant enzymes and apoptosis
- Review, Var, NA
chemoPv↑, HDAC↓, TumCCA↑, Apoptosis↑, Mets↑, *NRF2↑, ROS⇅,
3180- SFN,    Exploring the therapeutic effects of sulforaphane: an in-depth review on endoplasmic reticulum stress modulation across different disease contexts
- Review, Var, NA
*cardioP↑, *ER Stress↓, GRP78/BiP↑, XBP-1↑, Apoptosis↑, *NRF2↑, UPR↑,
3181- SFN,    Effect of sulforaphane on protein expression of Bip/GRP78 and caspase-12 in human hapetocelluar carcinoma HepG-2 cells
- in-vitro, HCC, HepG2
GRP78/BiP↑, Casp12↑, Apoptosis↑, ER Stress↑,
2448- SFN,    Sulforaphane and bladder cancer: a potential novel antitumor compound
- Review, Bladder, NA
Apoptosis↑, TumCG↓, TumCI↓, TumMeta↓, glucoNG↓, ChemoSen↑, TumCCA↑, Casp3↑, Casp7↑, cl‑PARP↑, survivin↓, EGFR↓, HER2/EBBR2↓, ATP↓, Glycolysis↓, mt-OXPHOS↓, AKT1↓, HK2↓, Hif1a↓, ROS↑, NRF2↑, EMT↓, COX2↓, MMP2↓, MMP9↓, Zeb1↓, Snail↓, HDAC↓, HATs↓, MMP↓, Cyt‑c↓, Shh↓, Smo↓, Gli1↓, BioAv↝, BioAv↝, Dose↝,
1733- SFN,    Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal
- in-vitro, PC, PanCSC - in-vitro, Nor, HPNE - in-vitro, Nor, HNPSC
CSCs↓, Shh↓, Gli↓, Nanog↓, OCT4↓, PDGFRA↓, cycD1/CCND1↑, Apoptosis↑, Casp↑, Smo↓, Gli1↓, GLI2↓, Bcl-2↓, Casp3↑, Casp7↑,
1722- SFN,    Sulforaphane as an anticancer molecule: mechanisms of action, synergistic effects, enhancement of drug safety, and delivery systems
- Review, Var, NA
TumCCA↑, CYP1A1↓, CYP3A4↓, Cyt‑c↑, Casp9↑, Apoptosis↑, ROS↑, MAPK↑, P53↑, BAX↑, ChemoSen↑, HDAC↓, GSH↓, HO-1↑,
1735- SFN,    Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane
- in-vitro, GBM, T98G - in-vitro, GBM, U87MG
Apoptosis↑, Ca+2↑, Bax:Bcl2↑, cal2↑, Casp12↑, Casp9↑, Cyt‑c↑,
1730- SFN,    Sulforaphane: An emergent anti-cancer stem cell agent
- Review, Var, NA
BioAv↓, BioAv↑, GSTA1↑, P450↓, TumCCA↑, HDAC↓, P21↑, p27↑, DNMT1↓, DNMT3A↓, cycD1/CCND1↑, DNAdam↑, BAX↑, Cyt‑c↑, Apoptosis↑, ROS↑, AIF↑, CDK1↑, Casp3↑, Casp8↑, Casp9↑, NRF2↑, NF-kB↓, TNF-α↓, IL1β↓, CSCs↓, CD133↓, CD44↓, ALDH↓, Nanog↓, OCT4↓, hTERT/TERT↓, MMP2↓, EMT↓, ALDH1A1↓, Wnt↓, NOTCH↓, ChemoSen↑, *Ki-67↓, *HDAC3↓, *HDAC↓,
1723- SFN,    Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review
- Review, Var, NA
*NRF2↑, ROS↑, MMP↓, Cyt‑c↑, cl‑PARP↑, Apoptosis↑, AMPK↑, GSH↓,
1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓, Apoptosis↑, Cyt‑c↑, Bax:Bcl2↑, Casp9↑, Casp3↑, Casp8∅, cl‑PARP↑, ROS↑, MMP↓, eff↓, ER Stress↑, p‑NRF2↑, HO-1↑,
1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓, ac‑H3↑, ChemoSen↑, tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, TumCI↓, VEGF↓, VEGFR2↓, Hif1a↓, eNOS↓, EMT?, TumCG↓, Ki-67↓, TUNEL↑, P21↑, p‑Chk2↑, CDC25↓, BAX↑, *ROS↓, NQO1?,
1497- SFN,    Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells
- in-vitro, Nor, PrEC - in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
HDAC↓, selectivity↑, TumCCA↑, Apoptosis↑, selectivity↑, H3↑, P21↑, selectivity↑,
1498- SFN,    Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells
- in-vitro, CRC, HCT116 - in-vitro, Nor, NCM460
selectivity↑, TumCCA↑, Apoptosis↑, *p‑ERK↑, cMYB↓, selectivity↑, selectivity↑,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1461- SFN,    Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives
- Review, BC, NA
TumCP↓, Apoptosis↑, TumCCA↑, antiOx↑,
1463- SFN,    Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
tumCV↓, CycB/CCNB1↑, p‑CDK1↑, Apoptosis↑, Casp8↑, Casp9↑, Casp3↑, cl‑PARP↑, ROS↑, eff↓,
1464- SFN,    d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway
- in-vitro, GBM, NA
Apoptosis↑, Casp3↑, BAX↑, Bcl-2↓, ROS↑, p‑STAT3↓, JAK2↓, eff↓,
1465- SFN,    TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells
- NA, Bladder, NA
eff↑, Apoptosis↑, Casp↑, MMP↓, BID↑, DR5↑, ROS↑, NRF2↑, eff↑, eff↓,
1466- SFN,    Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway
- vitro+vivo, Thyroid, FTC-133
TumCP↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, EMT↓, Slug↓, Twist↓, MMP2↓, MMP9↓, TumCG↓, p‑Akt↓, P21↑, ERK↑, p38↑, ROS↑, *toxicity∅, MMP↓, eff↓,
1467- SFN,    Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells
- in-vitro, AML, U937
Apoptosis↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, eff↓,
1480- SFN,    Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116
tumCV↓, TumCCA↑, Apoptosis↑, cycA1/CCNA1↑, CycB/CCNB1↑, CDC25↓, CDK1↓, ROS↑, eff↓, Cyt‑c↑, AIF↑, ER Stress↑,
1471- SFN,    ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells
- in-vitro, GC, AGS
TumCP↓, Apoptosis↑, TumCCA↑, CycB/CCNB1↑, P21↑, p‑H3↑, p‑AMPK↑, eff↓, MMP↓, Cyt‑c↑, ROS↑, eff↓,
1474- SFN,    Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway
- in-vitro, Colon, SW480
TumCG↓, Apoptosis↑, MMP↓, Bax:Bcl2↑, Casp3↑, Casp7↑, Casp9↑, ROS↑, e-ERK↑, p38↑, P53∅, eff↓, ChemoSen↑,
1477- SFN,    Sulforaphane Induces Oxidative Stress and Death by p53-Independent Mechanism: Implication of Impaired Glutathione Recycling
- in-vitro, OS, MG63
tumCV↓, Apoptosis↑, Casp3↑, ROS↑, GSR↓, GPx↓,
2167- SFN,    The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
Casp8↑, MMP↓, Casp3↑, Apoptosis↑, GSH↓, GSH↑,
1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, tumCV↓, Apoptosis↑, P21↑, PI3K↓, Akt↓, mTOR↓, 5HT↓, NRF2↑,
1509- SFN,    Combination therapy in combating cancer
- Review, NA, NA
NRF2↑, ChemoSideEff↓, eff↑, TumCP↓, Apoptosis↑, TumCCA↑, eff↑, PSA↓, P53↑, Hif1a↓, CAIX↓, chemoR↓, 5HT↓,
3648- SIL,    Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years
- Review, NA, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *necrosis↓, *hepatoP↑, *IL1↓, *IL6↓, *TNF-α↓, *IFN-γ↓, MAPK↓, Apoptosis↑, Cyt‑c↑, Casp3↑, Casp9↑, *PPARγ↑, *GLUT4↑, *HSPs↓, *HSP27↑, *Trx↑, *SIRT1↑, *ALAT↓, *GSH↑, *lipid-P↓, *TNF-α↓, TumCG↓, P21↑, CDK4↑,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB/CCNB1↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1/CCND1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3306- SIL,  Rad,    Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation
- Review, Var, NA
radioP↑, RadioS↑, TumCMig↓, TumCI↓, angioG↓, Apoptosis↑, DNAdam↓, ROS↑, *ROS↓, *Inflam↓,
3300- SIL,    Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy
- Review, Var, NA
*ROS↓, *SOD↑, *hepatoP↑, *AST↓, *ALAT↓, *lipid-P↓, *GSH↑, *Catalase↑, *GSTs↑, *GSR↑, *TNF-α↓, *IFN-γ↓, *IL4↓, *IL2↓, *NF-kB↓, *IL10↑, *Inflam↓, COX2↓, Apoptosis↑, ChemoSen↑, PGE2↓, VEGF↓,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1/CCND1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE/CCNE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, *BioAv↓, Fas↑, FasL↑, FADD↑, pro‑Casp8↑, Apoptosis↑, DR5↑, Bcl-2↑, BAX↑, Casp3↑, PI3K↓, FOXM1↓, p‑mTOR↓, p‑P70S6K↓, Hif1a↓, Akt↑, angioG↓, STAT3↓, NF-kB↓, lipid-P↓, eff↑, CDK1↓, survivin↓, CycB/CCNB1↓, Mcl-1↓, Casp9↑, AP-1↓, BioAv↑,
3319- SIL,    Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *BBB?, *tau↓, *NF-kB↓, *IL1β↓, *TNF-α↓, *IL4↓, *MAPK↓, *memory↑, *cognitive↑, *Aβ↓, *ROS↓, *lipid-P↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *AChE↓, *BChE↓, *p‑ERK↓, *p‑JNK↓, *p‑p38↓, *GutMicro↑, *COX2↓, *iNOS↓, *TLR4↓, *neuroP↑, *Strength↑, *AMPK↑, *MMP↑, *necrosis↓, *NRF2↑, *HO-1↑,
978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓, Akt↓, NF-kB↓, Wnt/(β-catenin)↓, MAPK↓, TumCP↓, TumCCA↑, Apoptosis↑, p‑EGFR↓, JAK2↓, STAT5↓, cycD1/CCND1↓, hTERT/TERT↓, AP-1↓, MMP9↓, miR-21↓, miR-155↓, Casp9↑, BID↑, ERK↓, Akt2↓, DNMT1↓, P53↑, survivin↓, Casp3↑, ROS↑,
1073- SK,  Chemo,    Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells
- in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3
PAK1↓, TumCP↓, Apoptosis↑, ChemoSen↑, ROS↑,
2360- SK,    Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway
- in-vitro, NPC, HONE1 - in-vitro, NPC, SUNE-1
TumCP↓, Apoptosis↑, TumCMig↓, TumCI↓, GlucoseCon↓, lactateProd↓, ATP↓, PKM2↓, PI3K↓, Akt↓, MMP3↓, MMP9↓, TIMP1↑,
2355- SK,    Pharmacological properties and derivatives of shikonin-A review in recent years
- Review, Var, NA
AntiCan↑, TumCP↓, TumCMig↓, Apoptosis↑, TumAuto↑, Necroptosis↑, ROS↑, TrxR1↓, PKM2↓, RIP1↓, RIP3↓, Src↓, FAK↓, PI3K↓, Akt↓, mTOR↓, GRP58↓, MMPs↓, ATF2↓, cl‑PARP↑, Casp3↑, p‑p38↑, p‑JNK↑, p‑ERK↓,
2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, TumCMig↓, TumCI↓, TumAuto↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, AMPK↑, mTOR↑, TumVol↓, OS↑, LC3I↑,
2231- SK,    Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways
- in-vitro, CRC, SNU-407
Apoptosis↑, ER Stress↑, PERK↑, eIF2α↑, CHOP↑, mt-Ca+2↑, MMP↓, Bcl-2↓, Casp3↑, Casp9↑, ERK↑, JNK↑, p38↓,
2229- SK,    Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways
- in-vitro, Melanoma, A375
Apoptosis↑, TumAuto↑, TumCP↓, TumCCA↑, P21↑, cycD1/CCND1↓, ER Stress↑, p‑eIF2α↑, CHOP↑, cl‑Casp3↑, p38↑, LC3B-II↑, Beclin-1↑, ROS↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
2221- SK,    Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression
- in-vitro, Lung, A549
Apoptosis↑, TumCP↓, tumCV↓, Necroptosis↑, P53↑, ROS↑, NF-kB↓,
2218- SK,    Shikonin Alleviates Endothelial Cell Injury Induced by ox-LDL via AMPK/Nrf2/HO-1 Signaling Pathway
- in-vitro, Nor, HUVECs
*Dose↝, *Apoptosis↓, *Casp3↓, *Bcl-2↑, *Inflam↓, *VCAM-1↓, *ICAM-1↓, *E-sel↓, *ROS↓, *SOD↑, *AMPK↑, *NRF2↑, *HO-1↑, *TNF-α↓, *IL1β↓, *IL6↓,
2415- SK,    Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways
- in-vivo, Arthritis, NA
Apoptosis?, TumAuto↑, ROS↑, ATP↓, Glycolysis↓, PI3K↓, Akt↓, mTOR↓, *Apoptosis↓, *Inflam↓, *TNF-α↓, *IL6↓, *IL8↓, *IL10↓, *IL17↓, *hepatoP↑, *RenoP↑, PKM2↓, GLUT1↓, HK2↓,
2469- SK,    Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2
- in-vitro, Lung, H1975
Apoptosis↑, Pyro↑, Casp↑, cl‑PARP↑, GSDME↑, ROS↑, COX2↓, PDK1↓, Akt↓, ERK↓, eff↓, eff↓, eff↑,
3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, *BioAv↓, *BioAv↑, *BioAv↑, *Inflam↓, *TNF-α↓, *other↑, *MPO↓, *COX2↓, *NF-kB↑, *STAT3↑, *antiOx↑, *ROS↓, *neuroP↑, *SOD↑, *Catalase↑, *GPx↑, *Bcl-2↑, *BAX↓, cardioP↑, AntiCan↑, NF-kB↓, ROS↑, PKM2↓, TumCCA↑, Necroptosis↑, Apoptosis↑, DNAdam↑, MMP↓, Cyt‑c↑, LDH↝,
3043- SK,    Apoptosis-by-Inhibiting">Shikonin Induces Apoptosis by Inhibiting Phosphorylation of IGF-1 Receptor in Myeloma Cells.
- in-vitro, Melanoma, RPMI-8226
IGF-1↓, Apoptosis↑, TumCCA↑, MMP↓, Casp3↑, P53↑, BAX↑, Mcl-1↓, EGFR↓, Src↑, KDR/FLK-1↓, p‑IGF-1↓, PI3K↓, Akt↓,
3047- SK,    Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
TumCG↓, p‑STAT3↓, ADAM17↓, Apoptosis↑, Casp3↑, cl‑PARP↑, cycD1/CCND1↓, cycE/CCNE↓, TumCCA↑, JAK1?, p‑JAK1↓, p‑JAK2↓, p‑eIF2α↑, eff↓, ROS↑, IL6↓,
3051- SK,    Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation
- Review, Var, NA
Nrf1↑, Apoptosis↑, TumCP↓, eff⇅, chemoP↑, eff↑, VCAM-1↓, Hif1a↓,
1312- SK,    Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells
- in-vitro, OS, 143B
ROS↑, p‑ERK↑, Bcl-2↓, cl‑PARP↑, Apoptosis↑, TumCCA↑, Bcl-2↑, proCasp3↓,
1346- SK,    An Oxidative Stress Mechanism of Shikonin in Human Glioma Cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683
NRF2↓, ROS↑, Apoptosis↑, Cyt‑c↑, GSH↓, MMP↓, P53↑, HO-1⇅,
2010- SK,    Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway
- in-vitro, Lung, H1975 - in-vitro, Lung, H1650 - in-vitro, Nor, CCD19
EGFR↓, selectivity↑, Casp↑, PARP↑, Apoptosis↑, ROS↑, eff↓, selectivity↑,
2190- SK,    Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway
- in-vitro, HCC, HCCLM3
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, MMP↓, ROS↑, OCR↓, ATP↓, PKM2↓,
2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, EGFR↓, PI3K↓, Akt↓, angioG↓, Apoptosis↑, Necroptosis↑, GSH↓, Ca+2↓, MMP↓, ERK↓, p38↑, proCasp3↑, eff↓, VEGF↓, FOXO3↑, EGR1↑, SIRT1↑, RIP1↑, RIP3↑, BioAv↓, NF-kB↓, Half-Life↓,
2186- SK,    Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line
- in-vitro, HCC, HepG2 - in-vitro, HCC, HCCLM3
Glycolysis↓, PKM2↓, Apoptosis↑, ROS↑, OXPHOS⇅, eff↓,
2182- SK,  Cisplatin,    Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway
- in-vitro, Lung, A549 - in-vitro, Lung, PC9 - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, PKM2↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, ChemoSen↑, TumVol↓, TumW↓, GLUT1↓,
2203- SK,    Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation
- in-vitro, Lung, NA
TumCP↓, Apoptosis↓, TumCMig↓, TumCI↓, Ferroptosis↑, ERK↓, GPx4↓, 4-HNE↑, ROS↑, GSH↓, ATF3↑, HDAC1↓, ac‑Histones↑,
2194- SK,    Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
tumCV↓, TumCCA↑, Apoptosis↑, EGFR↓, PI3K↓, Hif1a↓, PKM2↓, cycD1/CCND1↓, AntiTum↑,
336- SNP,  PDT,    Photodynamic ability of silver nanoparticles in inducing cytotoxic effects in breast and lung cancer cell lines
- in-vitro, BC, MCF-7
Apoptosis↑,
338- SNP,    Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer
- vitro+vivo, Bladder, 5637
TumCD↑, Apoptosis↑, TumCMig↓, TumCP↓,
342- SNP,    Silver nanoparticles; a new hope in cancer therapy?
- Review, NA, NA
ROS↑, DNAdam↑, Apoptosis↑, mtDam↑,
347- SNP,    The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?
- Review, NA, NA
ROS↑, Apoptosis↑, ER Stress↑,
348- SNP,    Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant)
- in-vitro, BC, MCF-7
Apoptosis↑, ROS↑, MMP↓, P53↑, BAX↑, cl‑Casp3↑,
349- SNP,    Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto-reduced silver nanoparticles in MCF-7 breast cancer cell lines
- in-vitro, BC, MCF-7
Apoptosis↑, ROS↑, CellMemb↑,
353- SNP,    The mechanism of cell death induced by silver nanoparticles is distinct from silver cations
- in-vitro, BC, SUM159
lipid-P↑, H2O2↑, ROS↑, Apoptosis↑,
355- SNP,    Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines
- in-vitro, Lung, A549 - in-vitro, NA, BEAS-2B
ROS↑, DNAdam↑, Apoptosis↑,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
306- SNP,    Cancer Therapy by Silver Nanoparticles: Fiction or Reality?
- Analysis, NA, NA
EPR↝, ROS↑, IL1↑, IL8↑, ER Stress↑, MMP9↑, MMP↓, Cyt‑c↑, Apoptosis↑, Hif1a↑, BBB↑, GutMicro↝, eff↑, eff↑, RadioS↑,
319- SNP,    Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis
Apoptosis↑, Ca+2↑, ER Stress↑, PERK↑, IRE1↑, cl‑ATF6↑,
325- SNP,    Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer
Apoptosis↑, ABC↓,
326- SNP,  TSA,    Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles
- in-vitro, Cerv, HeLa
Apoptosis↑, ChrMod↝, eff↑,
327- SNP,  MS-275,    Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells
- in-vitro, Lung, A549
Apoptosis↑, ROS↑, LDH↓, TNF-α↑, mtDam↑, TumAuto↑, Casp3↑, Casp9↑, DNAdam↑,
328- SNP,  Rad,    Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma
- vitro+vivo, GBM, U251
Apoptosis↑, TumAuto↑,
329- SNP,  Rad,    Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells
- in-vitro, GBM, U251
Apoptosis↑, TumAuto↑,
381- SNP,    Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression
- in-vitro, Bladder, 5637
ROS↑, BAX↑, Bcl-2↓, Casp3↑, Casp7↑, Apoptosis↑,
382- SNP,    Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways
- in-vitro, BC, MDA-MB-231
Apoptosis↑, BAX↑, Bcl-2↓, P53↑, PTEN↑, hTERT/TERT↓, p‑ERK↓, cycD1/CCND1↓,
403- SNP,  RF,    Synergetic effects of silver and gold nanoparticles in the presence of radiofrequency radiation on human kidney cells
- in-vitro, NA, HNK
Apoptosis↝,
400- SNP,  MF,    Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field
- in-vitro, Laryn, HEp2
TumCP↓, Casp3↑, P53↑, Beclin-1↑, TumAuto↑, GSR↑, ROS↑, MDA↑, ROS↑, SIRT1↑, Ca+2↑, Endon↑, DNAdam↑, Apoptosis↑, NF-kB↓,
385- SNP,    Probiotic-derived silver nanoparticles target mTOR/MMP-9/BCL-2/dependent AMPK activation for hepatic cancer treatment
- in-vitro, Hepat, HepG2 - in-vitro, Hepat, WI38
TNF-α↑, IL33↑, mTOR↓, MMP9↓, Bcl-2↓, ROS↑, Apoptosis↑,
361- SNP,    Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines
- in-vitro, Lung, A549
Apoptosis↑, Casp↑, TumCCA↑,
363- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
ROS↑, lipid-P↑, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, Casp9↑, JNK↑,
369- SNP,    Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
- in-vitro, Liver, NA
ROS↑, GSH↓, DNAdam↑, lipid-P↝, Apoptosis↑, BAX↑, Bcl-2↓, MMP↓, Casp9↑, Casp3↑, JNK↑,
374- SNP,    Silver nanoparticles selectively treat triple‐negative breast cancer cells without affecting non‐malignant breast epithelial cells in vitro and in vivo
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
ER Stress↑, DNAdam↑, ROS↑, Apoptosis↑, GSH/GSSG↓, NADPH/NADP+↓, TumCG↓, UPR↑,
376- SNP,    Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
- in-vitro, BC, MCF-7
Apoptosis↑, LDH↓, SOD↑, DNAdam↑,
377- SNP,    Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis
- in-vitro, BC, SkBr3
ROS↑, Apoptosis↑, Bax:Bcl2↑, VEGF↑, Akt↓, PI3K↓, TAC↓, TOS↑, OSI↑, MDA↑, Casp3↑, Casp7↑,
2288- SNP,    Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model
- Review, Var, NA
*ROS↑, Akt↓, ERK↓, DNAdam↑, Ca+2↑, ROS↑, MMP↓, Cyt‑c↑, TumCCA↑, DNAdam↑, Apoptosis↑, P53↑, p‑ERK↑, ER Stress↑, cl‑ATF6↑, GRP78/BiP↑, CHOP↑, UPR↑,
4555- SNP,    Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Liver, HepG2
*Bacteria↓, tumCV↓, selectivity↑, ROS↑, Apoptosis↑, TumCMig↓, AntiCan↑,
4552- SNP,  ART/DHA,    Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS)
- in-vitro, GC, AGS
AntiCan↑, Apoptosis↑, eff↑,
4551- SNP,  Fenb,    Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy
- in-vivo, Lung, NA
eff↑, eff↑, Apoptosis↑, selectivity↓, TumCG↓,
4546- SNP,    Chapter 2 - Silver nanoparticles in cancer therapy
- Study, Var, NA
AntiTum↑, Apoptosis↑,
4542- SNP,    Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update
- Review, NA, NA
AntiCan↑, DNAdam↑, ATP↓, Apoptosis↑, ROS↓, TumCCA↑, *Bacteria↓, *BMD↑,
4432- SNP,    Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions
- Review, NA, NA
ROS↑, TumCP↓, Apoptosis↑,
4428- SNP,    p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells
- in-vitro, AML, Jurkat
toxicity↝, tumCV↓, ROS↑, p38↑, NRF2↓, NF-kB↝, DNAdam↑, Apoptosis↑,
4435- SNP,  Gluc,    Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
selectivity↑, ROS↑, mtDam↑, TumCCA↑, TumCP↓, Apoptosis↑, MMP↓,
4436- SNP,    Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma
- in-vitro, Kidney, 786-O
ROS↑, MMP↑, TumCCA↑, TumCP↓, Apoptosis↑, RadioS↑,
4438- SNP,  ART/DHA,    Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer
- in-vitro, Lung, A549
EPR↑, BAX↑, Bcl-2↑, Casp3↑, Casp9↑, DNAdam↑, TumCCA↑, Apoptosis↑,
4439- SNP,    Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA)
- in-vitro, Cerv, HeLa
ROS↑, lipid-P↑, MMP↓, GSH↓, TumCCA↑, Apoptosis↑, Necroptosis↑, TumCD↑, Dose↝,
4564- SNP,  GoldNP,  Cu,  Chemo,  PDT  Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A review
- Review, Var, NA
ROS↑, DNAdam↑, TumCCA↑, eff↑, Apoptosis↑, eff↓, ChemoSen↑,
4563- SNP,  Rad,    Silver nanoparticles enhance neutron radiation sensitivity in cancer cells: An in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Ovarian, SKOV3 - in-vitro, GBM, U87MG - in-vitro, Melanoma, A431
RadioS↑, ROS↑, TumCCA↑, Apoptosis↑, ER Stress↑,
4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, TumCCA↑, ROS↑, selectivity↑, *AntiViral↑, *toxicity↝, ETC↓, MMP↓, DNAdam↑, Apoptosis↑, lipid-P↑, other↝, UPR↑, *GRP78/BiP↑, *p‑PERK↑, *cl‑eIF2α↑, *CHOP↑, *JNK↑, Hif1a↓, AntiCan↑, *toxicity↓, eff↑,
4559- SNP,    Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation
- in-vitro, BC, SkBr3 - in-vitro, CRC, HT-29 - in-vitro, CRC, HCT116 - in-vitro, Colon, Caco-2
MMP2↓, MMP9↓, ROS↑, TumAuto↑, Apoptosis↑, ER Stress↑,
4383- SNP,    Exploring the Potentials of Silver Nanoparticles in Overcoming Cisplatin Resistance in Lung Adenocarcinoma: Insights from Proteomic and Xenograft Mice Studies
- in-vitro, Lung, A549 - in-vivo, Lung, A549
Apoptosis↑, VEGF↓, P53↓, TumCCA↑, ROS↑, AntiTum↑, eff↑, ATP↓, eff↑, CTR1↑,
4377- SNP,    Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates
- in-vitro, NA, NA
eff↑, Apoptosis↑,
4375- SNP,    The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells
- in-vitro, AML, K562
eff↑, ROS↑, Apoptosis↑, eff↓,
4371- SNP,    Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro
- in-vitro, Liver, HUH7
ROS↑, selectivity↑, DNAdam↑, Apoptosis↑, GSH↓, lipid-P↑, MMP↓, DNAdam↑,
4370- SNP,    Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line
- in-vitro, Liver, HepG2
tumCV↓, ROS↑, Apoptosis↑,
4403- SNP,    Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vitro, GBM, GL26 - in-vitro, Cerv, HeLa - in-vitro, CRC, RKO
AntiCan↑, eff↑, EPR↑, selectivity↑, ROS↑, Casp↑, Apoptosis↑, DNAdam↑, tumCV↓, eff↑,
4398- SNP,    Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier
- in-vitro, Colon, HT29
Apoptosis↑, MMP↓, Casp3↑, ROS↑, eff↑,
4394- SNP,    Silver nanoparticles provoke apoptosis of Dalton's ascites lymphoma in vivo by mitochondria dependent and independent pathways
- in-vivo, lymphoma, NA
OS↑, TumVol↓, Weight↑, AntiTum↑, Apoptosis↑, mtDam↑,
4391- SNP,    Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria
- NA, Liver, HepG2
Apoptosis↑,
4388- SNP,    Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells
- in-vitro, Cerv, NA
tumCV↓, CSCs↓, selectivity↑, Apoptosis↑, ROS↑, LDH↓, Casp3↑, BAX↑, Bak↑, cMyc↑, MMP↓,
4417- SNP,    Caffeine-boosted silver nanoparticles target breast cancer cells by triggering oxidative stress, inflammation, and apoptotic pathways
- in-vitro, BC, MDA-MB-231
ROS↑, MDA↑, COX2↑, IL1β↑, TNF-α↑, GSH↓, Cyt‑c↑, Casp3↑, BAX↑, Bcl-2↓, LDH↓, cycD1/CCND1↓, CDK2↓, TumCCA↑, mt-Apoptosis↑,
4416- SNP,    Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells
- in-vitro, BC, MCF-7
TumCMig↓, Apoptosis↑, BAX↑, P53↑, Bcl-2↓,
4414- SNP,    Silver nanoparticles: Forging a new frontline in lung cancer therapy
- Review, Lung, NA
tumCV↑, ROS↑, MMP↓, TumCCA↑, Apoptosis↑, angioG↓,
4411- SNP,    Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities
- in-vitro, Lung, A549 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
AntiCan↑, selectivity↑, Apoptosis↑, TumCCA↑, Bacteria↓, tumCV↓, selectivity↑, Apoptosis↑, TumCCA↑,
4406- SNP,    Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
TumCD↑, other↓, P53↑, TumCCA↑, Apoptosis↑, ChemoSen↑, tumCV↓, γH2AX↑, SOX4↓,
4405- SNP,    Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis
- in-vitro, OS, NA
Apoptosis↑, other↑, ROS↑, eff↑, P53↝, Apoptosis↑, cl‑Casp3↑, survivin↓, MMP↓, Cyt‑c↑,
4897- Sper,    Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms
- Review, Var, NA
Inflam↓, TumAuto↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑, Bcl-2↓,
4894- Sper,    Application of Spermidine in Cancer Research Models: Notes and Protocols
- Review, Var, NA
TumAuto↑, AntiTum↑, Apoptosis↑, ROS↑, MMP↓, Cyt‑c↑,
4891- Sper,    Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms
- Review, Var, NA - Review, AD, NA
TumCCA↑, TumCP↓, TumCG↓, *Inflam↓, *antiOx↑, *neuroP↑, *cognitive↑, *Aβ↓, *mitResp↑, AntiCan↑, TumCD↑, TumAuto↑, *AntiAge↑, LC3B-II↑, ATG5↑, Beclin-1↑, mt-ROS↑, H2O2↑, Apoptosis↑, *ROS↑, ChemoSen↑, MMP↓, Cyt‑c↑,
4895- Sper,    Spermidine as a target for cancer therapy
- Review, Var, NA - Review, AD, NA
TumAuto↑, Apoptosis↑, OS↑, CRM↑, TumCG⇅, cardioP↑, cognitive↑, *Dose⇅,
3950- Taur,    Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes
- Review, Diabetic, NA - Review, Stroke, NA - Review, AD, NA
*Ca+2↝, *neuroP↑, *other↝, *pH↝, *ROS∅, eff↑, *MMP↑, *Apoptosis↓, *other↝, *ER Stress↓, *Bcl-xL↓, *BAX↑, *Cyt‑c↑, *cal2↓, *Casp3↓, *UPR↓, *other↝, *NF-kB↓, *NRF2↑, *GLUT1↑, *GLUT3↑, *memory↑,
3955- Taur,    Mechanism of neuroprotective function of taurine
- in-vitro, NA, NA
*Ca+2↓, *MMP↑, *Apoptosis↓, *Bcl-2↑, *cal2↓, *LDH↓,
3957- Taur,    Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases
*UPR↑, *Inflam↓, *antiOx↑, *ROS↓, *Apoptosis↓, *Ca+2↓, *neuroP↑,
962- TQ,    Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways
- in-vitro, PC, PANC1 - in-vitro, Nor, hTERT-HPNE - in-vitro, PC, AsPC-1 - in-vitro, PC, Bxpc-3
TumCMig↓, TumCI↓, Apoptosis↑, Hif1a↓, PI3k/Akt/mTOR↓, TumCCA↑, *toxicity↓, *TumCI∅, *TumCMig∅,
1052- TQ,    Thymoquinone Anticancer Effects Through the Upregulation of NRF2 and the Downregulation of PD-L1 in MDA-MB-231 Triple-Negative Breast Cancer Cells
- in-vitro, BC, MDA-MB-231
NRF2↑, PD-L1↓, Apoptosis↑,
3571- TQ,    The Role of Thymoquinone in Inflammatory Response in Chronic Diseases
- Review, Var, NA - Review, Stroke, NA
*BioAv↓, *BioAv↑, *Inflam↓, *antiOx↑, *ROS↓, *GSH↑, *GSTs↑, *MPO↓, *NF-kB↓, *COX2↓, *IL1β↓, *TNF-α↓, *IFN-γ↓, *IL6↓, *cardioP↑, *lipid-P↓, *TAC↑, *RenoP↑, Apoptosis↑, TumCCA↑, TumCP↓, TumCMig↓, angioG↓, TNF-α↓, NF-kB↓, ROS↑, EMT↓, *Aβ↓, *p‑tau↓, *BACE↓, *TLR2↓, *TLR4↓, *MyD88↓, *IRF3↓, *eff↑, eff↑, DNAdam↑, *iNOS↓,
3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, *Inflam↓, *AChE↓, AntiCan↑, *cardioP↑, *RenoP↑, *neuroP↑, *hepatoP↑, TumCG↓, Apoptosis↑, PI3K↓, Akt↑, TumCCA↑, angioG↓, *NF-kB↓, *TLR2↓, *TLR4↓, *MyD88↓, *TRIF↓, *IRF3↓, *IL1β↓, *IL6↓, *IL12↓, *NRF2↑, *COX2↓, *VEGF↓, *MMP9↓, *cMyc↓, *cycD1/CCND1↓, *TumCP↓, *TumCI↓, *MDA↓, *TGF-β↓, *CRP↓, *Casp3↓, *GSH↑, *IL10↑, *iNOS↑, *lipid-P↓, *SOD↑, *H2O2↓, *ROS↓, *LDH↓, *Catalase↑, *GPx↑, *AChE↓, *cognitive↑, *MAPK↑, *JNK↑, *BAX↓, *memory↑, *Aβ↓, *MMP↑,
3417- TQ,    Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress
- in-vitro, BC, MCF-7 - in-vitro, Liver, HepG2
TumCP↓, NF-kB↓, cl‑Casp3↑, GRP78/BiP↑, ER Stress↑, Apoptosis↑,
3420- TQ,    Thymoquinone alleviates the accumulation of ROS and pyroptosis and promotes perforator skin flap survival through SIRT1/NF-κB pathway
- in-vitro, Nor, HUVECs - in-vitro, NA, NA
*NF-kB↓, *NLRP3↓, *angioG↑, *MMP9↑, *VEGF↑, *OS↑, *Pyro?, *ROS↓, *Apoptosis↓, *SIRT1↑, *SOD1↑, *HO-1↑, *eNOS↑, *ASC?, *Casp1↓, *IL1β↓, *IL18↓,
3416- TQ,    Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway
- in-vitro, Bladder, T24 - in-vitro, Bladder, 253J - in-vitro, Nor, SV-HUC-1
TumCP↓, Apoptosis↑, ER Stress↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp7↑, cl‑PARP↑, Cyt‑c↑, PERK↑, IRE1↑, ATF6↑, p‑eIF2α↑, ATF4↑, GRP78/BiP↑, CHOP↑,
3429- TQ,    Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells
- in-vitro, AML, NA - in-vivo, NA, NA
DNMT1↓, Sp1/3/4↓, NF-kB↓, Apoptosis↑, Casp↑, Bcl-xL↓, COX2↓, iNOS↓, 5LO↓, TNF-α↓, cycD1/CCND1↓, BioAv↝, TumCG↓,
3397- TQ,    Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
ChemoSen↑, *Half-Life↝, *BioAv↝, *antiOx↑, *Inflam↓, *hepatoP↑, TumCP↓, TumCCA↑, Apoptosis↑, angioG↑, selectivity↑, JNK↑, p38↑, p‑NF-kB↑, ERK↓, PI3K↓, PTEN↑, Akt↓, mTOR↓, EMT↓, Twist↓, E-cadherin↓, ROS⇅, *Catalase↑, *SOD↑, *GSTA1↑, *GPx↑, *PGE2↓, *IL1β↓, *COX2↓, *MMP13↓, MMPs↓, TumMeta↓, VEGF↓, STAT3↓, BAX↑, Bcl-2↑, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, GSK‐3β↓, β-catenin/ZEB1↓, chemoP↑,
3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TumCP↓, TumCI↓, TumMeta↓, ChemoSen↑, angioG↓, Inflam↓, NF-kB↓, PI3K↓, Akt↓, TGF-β↓, Jun↓, p38↑, MAPK↑, MMP9↓, PKM2↓, ROS↑, JNK↑, MUC4↓, TGF-β↑, Dose↝, FAK↓, NOTCH↓, PTEN↑, mTOR↓, Warburg↓, XIAP↓, COX2↓, Casp9↑, Ki-67↓, CD34↓, VEGF↓, MCP1↓, survivin↓, Cyt‑c↑, Casp3↑, H4↑, HDAC↓,
3424- TQ,    Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex
- Review, Var, NA
DNMT1↓, HDAC1↓, TumCCA↑, ROS↑, Apoptosis↑, angioG↓, TumMeta↓, selectivity↑, BioAv↓, BioAv↓, HDAC1↓, HDAC4↓, UHRF1↓, selectivity↑, G9a↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3409- TQ,    Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives
- in-vivo, Nor, NA
*MDA↓, *TGF-β↓, *CRP↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *Casp3↓, *GSH↑, *NRF2↑, *IL10↑, *neuroP↑, *ROS↓, *Apoptosis↓, *Inflam↓,
3412- TQ,    Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells
- in-vitro, Melanoma, SK-MEL-28 - in-vivo, NA, NA
Apoptosis↑, JAK2↓, STAT3↓, cycD1/CCND1↓, survivin↓, ROS↑, eff↓,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, EGFR↓, ROS↑,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1/CCND1↓, ROS↑, eff↓,
4173- TQ,    Thymoquinone Can Improve Neuronal Survival and Promote Neurogenesis in Rat Hippocampal Neurons
- in-vivo, NA, NA
*neuroP↑, *Casp3↓, *Apoptosis↓, *ERK↑, *JNK↑, *CREB↑, *iNOS↑, *BDNF∅,
1935- TQ,    Potential anticancer properties and mechanisms of thymoquinone in osteosarcoma and bone metastasis
- Review, OS, NA
Apoptosis↑, TumCCA↑, angioG↓, TumMeta↓, ROS↑, P53↑, Twist↓, E-cadherin↑, N-cadherin↓, NF-kB↓, IL8↓, XIAP↓, Bcl-2↓, STAT3↓, MAPK↓, PI3K↓, Akt↓, ERK↓, MMP2↓, MMP9↓, *ROS↓, HO-1↑, selectivity↑, TumCG↓,
1933- TQ,    Thymoquinone: potential cure for inflammatory disorders and cancer
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCCA↑, ROS↑, angioG↓, Apoptosis↑, Casp↑, eff↑, eff↝,
1308- TQ,    Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells
- in-vitro, BC, MCF-7
tumCV↓, TumCP↓, BAX↑, P53⇅, Apoptosis↑,
1309- TQ,  QC,    Thymoquinone and quercetin induce enhanced apoptosis in non-small cell lung cancer in combination through the Bax/Bcl2 cascade
- in-vitro, Lung, NA
Bcl-2↓, BAX↑, Apoptosis↑,
2129- TQ,  doxoR,    Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells
- in-vitro, BC, MCF-7
ChemoSen↑, PTEN↑, p‑Akt↓, TumCCA↑, P53↑, P21↑, Apoptosis↑, MMP↓, Casp↑, cl‑PARP↑, Bax:Bcl2↑, eff↓, DNAdam↓, p‑γH2AX↑, ROS↑,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2120- TQ,    Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3
- in-vitro, Melanoma, A431
ROS↑, Apoptosis↑, P53↑, BAX↑, MDM2↓, Bcl-2↓, Bcl-xL↓, Casp9↑, Casp7↑, Casp3↑, STAT3↓, cycD1/CCND1↓, survivin↓, eff↓,
2119- TQ,    Dual properties of Nigella Sativa: anti-oxidant and pro-oxidant
- Review, Var, NA
*ROS↓, ROS↑, chemoP↑, RenoP↑, hepatoP↑, NLRP3↓, neuroP↑, NF-kB↓, P21↑, HDAC↓, Apoptosis↑, TumCP↓, GSH↓, GADD45A↑, GSK‐3β↑,
2099- TQ,  Cisplatin,    Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo
- in-vitro, Lung, H460 - in-vitro, Lung, H146 - in-vivo, NA, NA
ChemoSen↑, TumCP↓, tumCV↓, Apoptosis↑, NF-kB↓,
2097- TQ,    Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells
- in-vitro, Cerv, HeLa
Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8↑, cl‑PARP↑, cMyc↓, hTERT/TERT↓, cycD1/CCND1↓, CDK4↓, P53↑, P21↑, TumCP↓, Apoptosis↓, selectivity↑,
2095- TQ,    Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis
- Review, Var, NA
TumCCA↑, Apoptosis↑, ROS↑, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, cl‑PARP↑, P53↑, P21↑, cMyc↓, hTERT/TERT↓, cycD1/CCND1↓, CDK4↓, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, COX2↓, MMP9↓, VEGF↓, eff↑,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,
2106- TQ,    Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy
- Review, Var, NA
Apoptosis↑, TumCCA↑, ROS↑, *Catalase↑, *SOD↑, *GR↑, *GSTA1↓, *GPx↑, *H2O2↓, *ROS↓, *lipid-P↓, *HO-1↑, p‑Akt↓, AMPKα↑, NK cell↑, selectivity↑, Dose↝, eff↑, GSH↓, eff↓, P53↑, p‑STAT3↓, PI3K↑, MAPK↑, GSK‐3β↑, ChemoSen↑, RadioS↑, BioAv↓, NRF2↑,
2104- TQ,    The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa
TumCP↓, Apoptosis↑, UHRF1↓, DNMT1↓, HDAC1↓, eff↝,
2109- TQ,    Thymoquinone Induces Mitochondria-Mediated Apoptosis in Acute Lymphoblastic Leukaemia in Vitro
- in-vitro, AML, CEM
Apoptosis↓, Bcl-2↓, BAX↑, ROS↑, HSP70/HSPA5↑, Casp3↑, Casp8↑,
2112- TQ,    Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells
- in-vitro, BC, MCF-7
Apoptosis↑, DNAdam↑, ROS↑, GSH↓, MMP↓, Casp3↑, Casp7↑, Casp9↑, Bax:Bcl2↑, P53↑, P21↑, cycD1/CCND1↓, GSSG↑, GSH/GSSG↓,
1930- TQ,    Therapeutic implications and clinical manifestations of thymoquinone
- Review, Var, NA
AntiCan↑, antiOx↑, Inflam↓, TumCP↓, TumCCA↑, Apoptosis↑, ROS↑, TumMeta↓, TumCI↓,
2350- UA,    Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Akt↓, Glycolysis↓, HK2↓, PKM2↓, ATP↓, lactateProd↓, AMPK↑, TumAuto↑, Apoptosis↑, ERK↓, MMP↓, NO↑, ROS↑, DNAdam↑,
1020- UA,    Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway
- in-vitro, Melanoma, RPMI-8226
β-catenin/ZEB1↓, TCF↓, cMyc↓, cycD1/CCND1↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, cl‑PARP↑, Casp7↑,
5017- UA,    Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells
- in-vitro, Cerv, INT-407 - in-vitro, CRC, HCT116
AntiCan↑, TumCG↓, ROS↑, Apoptosis↑, TumCMig↓, CTNNB1↓, Twist↓, Bcl-2↓, survivin↓, NF-kB↓, Sp1/3/4↓, BAX↑, P21↑, P53↑, eff↓, TumCMig↓,
5022- UA,    Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks
- Review, Var, NA
TumCP↓, Apoptosis↑, angioG↑, TumMeta↓, BioAv↓, Hif1a↓, Glycolysis↓, mitResp↓, Akt↓, MAPK↓, ERK↓, mTOR↓, P53↑, P21↑, E2Fs↑, STAT3↓, MMP↓, NLRP3↓, iNOS↓, CHK1↓, Chk2↓, BRCA1↓, E-cadherin↑, N-cadherin↓, Casp↑, p62↓, LC3II↑, Vim↓, ROS↑, CSCs↓, DNAdam↑, GutMicro↑, VEGF↓,
5021- UA,    Anticancer effect of ursolic acid via mitochondria-dependent pathways
- Review, Var, NA
Inflam↓, TNF-α↓, IL6↓, IL17↓, NF-kB↓, COX2↓, *AntiDiabetic↑, *hepatoP↑, ALAT↓, AST↓, TumCP↓, Apoptosis↑, TumCCA↑, TumAuto↑, tumCV↓, TumCMig↓, Glycolysis↓, ATP↓, lactateProd↓, HK2↓, PKA↓, COX2↓, mtDam↑, Casp3↑, Casp8↑, Casp9↑, Akt↓, ROS↑, MMP↓, P53↑,
5020- UA,    Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathway
- in-vitro, Ovarian, NA
tumCV↓, selectivity↑, BAX↑, Bcl-2↓, Apoptosis↑, ROS↑, TumCCA↑, Akt↓, PI3K↓,
5019- UA,    Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directions
- Review, Var, NA
TumCP↓, Diff↑, Apoptosis↑, TumCI↓, angioG↓,
4856- Uro,    Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro
- in-vitro, NPC, CNE1 - in-vitro, NPC, CNE2
Apoptosis↑, MMP↓, ROS↑, E-cadherin↑, BAX↑, cl‑Casp3↑, PARP↑, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, Snail↓, eff↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓,
4854- Uro,    Urolithins: Emerging natural compound targeting castration-resistant prostate cancer (CRPC)
- Review, Pca, NA
AR↓, ROS↓, Apoptosis↑, selectivity↑, Dose↑, MDA↓, SOD↑, GPx↑, ROS↑, Casp3↑, Casp9↑,
4853- Uro,    Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer
- vitro+vivo, PC, MIA PaCa-2 - in-vitro, NA, PANC1
p‑Akt↓, p‑p70S6↓, TumCG↓, OS↑, PI3K↓, mTOR↓, TumCP↓, TumCMig↓, Apoptosis↑, TAMS↓, Treg lymp↓, Wnt↓, IGF-1↓, *toxicity↓, *BioAv↑, Half-Life↝,
4852- Uro,    Dietary Urolithin B Suppresses Lung Tumorigenesis Correlating with Autophagy Induction and Gut Microbiota Remodeling
- vitro+vivo, Lung, NA
TumCG↓, *GutMicro↑, *Inflam↓, *antiOx↑, AntiTum↑, TumCCA↑, Apoptosis↑,
4849- Uro,    Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway
- vitro+vivo, GC, NA
TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, TumAuto↑, TumCG↓, chemoP↑, ChemoSen↑,
4847- Uro,    Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells
- in-vitro, CRC, SW-620
TumCP↓, TumCMig↓, MMP9↓, TumAuto↑, Apoptosis↑, TumCCA↓, TumMeta↓, ChemoSen↓,
4846- Uro,    Urolithin A exerts anti-tumor effects on gastric cancer via activating autophagy-Hippo axis and modulating the gut microbiota
- in-vivo, GC, NA
TumCG↓, Hippo↑, Warburg↓, Apoptosis↑, GutMicro↑,
4841- Uro,    Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells
- in-vitro, CRC, HT29 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
TumCP↓, TumCCA↑, Apoptosis↑, P53↑, P21↑, Bcl-2↓, Cyt‑c↑, Casp↑, ROS↑, *ROS↓,
4840- Uro,    Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancer
- vitro+vivo, BC, NA
MMP↓, TumCP↓, Apoptosis↑, tumCV↓, ER-α36↝, *toxicity↓,
4839- Uro,    Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP
tumCV↓, Apoptosis↓, P53↑, P21↑, PUMA↑, NOXA↑, MDM2↓, XIAP↓,
4837- Uro,    Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review
- Review, Var, NA
AntiCan↑, TumCCA↑, Apoptosis↑, TumAuto↑, *BioAv↝, *BioAv↑, RAS↓, ERK↓, AR↓, TumCP↓, PI3K↓, Akt↓, NF-kB↓, COX2↓, IL6↓, IL1β↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, P53↑, Casp3↑, PARP↑, ROS↓, toxicity↓,
4835- Uro,    Urolithin A, induces apoptosis and autophagy crosstalk in Oral Squamous Cell Carcinoma via mTOR /AKT/ERK1/2 pathway
- in-vitro, SCC, NA
TumCD↑, ER Stress↑, Akt↓, mtDam↓, p‑mTOR↓, *BioAv↝, ROS↑, TumCCA↑, Apoptosis↑, ERK↓,
4833- Uro,    Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine
- Review, Var, NA - Review, AD, NA - Review, IBD, NA
BioAv↝, TumAuto↝, TumCG↓, TumMeta↓, ChemoSen↑, Imm↑, RadioS↑, BioAv↑, other↝, eff↓, *antiOx↓, *Inflam↓, AntiCan↓, AntiAge↑, chemoP↑, *neuroP↑, *ROS↓, *cognitive↑, *lipid-P↓, *cardioP↑, *TNF-α↓, *IL6↓, GutMicro↑, TumCCA↑, Apoptosis↑, angioG↓, NF-kB↓, PI3K↓, Akt↓, Casp↑, survivin↓, TumCP↓, cycD1/CCND1↓, cMyc↑, BAX↑, Bcl-2↓, COX2↓, P53↑, p38↑, *ROS↓, *SOD↑, *GPx↑, SIRT1↑, FOXO1↑, eff↑, ChemoSen↑,
4878- Uro,    Activation of the Gut–Brain Interaction by Urolithin A and Its Molecular Basis
- Review, AD, NA
*memory↑, *SIRT1↑, *cognitive↑, *BDNF↑, *Apoptosis↓, *neuroG↑,
4870- Uro,    Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice
- in-vivo, AD, NA
*cognitive↑, *Apoptosis↓, *neuroP↑, *Aβ↓, *AMPK↑, *NF-kB↓, *MAPK↓, *BACE↑, *neuroG↑, *Inflam↓, *memory↑,
4862- Uro,    Neuroprotective effect of Urolithin A via downregulating VDAC1-mediated autophagy in Alzheimer's disease
- in-vivo, AD, NA - in-vitro, Nor, PC12
*cognitive↑, *p‑PI3K↓, *p‑Akt↓, *AMPK↑, *VDAC1↓, *neuroP↑, *PARK2↑, *PTEN↑, *LC3‑Ⅱ/LC3‑Ⅰ↑, *p62↓, *Aβ↓, *Apoptosis↓,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
4871- Uro,  DHA,  LT,    A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer’s Disease
- in-vitro, AD, NA
*ATP↑, *Apoptosis↓,
4033- VitB3,    Can nicotinamide riboside protect against cognitive impairment?
- in-vivo, AD, NA
*memory↑, *DNAdam↓, *Inflam↓, *Apoptosis↓, *cognitive↑, *BACE↓, *Aβ↓, *BBB↑, *GutMicro↑, *eff↑,
1836- VitC,  VitK3,  Chemo,    Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib
- in-vitro, AML, NA
tumCV↓, selectivity↑, Apoptosis↑, eff↑, ChemoSen↑,
633- VitC,    Diverse antitumor effects of ascorbic acid on cancer cells and the tumor microenvironment
- Analysis, NA, NA
Fenton↑, ROS↑, EMT↓, DNAdam↑, PARP↑, NAD↓, ATP↓, Apoptosis↑,
631- VitC,    Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2
- vitro+vivo, Liver, NA
SVCT-2∅, ROS↑, DNAdam↑, ATP↓, TumCCA↑, Apoptosis↑, OS↑, CD133↓, EpCAM↓, OV6↓, γH2AX↑,
599- VitC,    Generation of Hydrogen Peroxide in Cancer Cells: Advancing Therapeutic Approaches for Cancer Treatment
- Review, NA, NA
H2O2↑, DNAdam↑, ROS↑, Fenton↑, Apoptosis↑, necrosis↑,
610- VitC,    Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues
- in-vitro, lymphoma, JPL119 - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, Nor, NA
Apoptosis↑, necrosis↑, H2O2↑, *toxicity↓,
3109- VitC,    Vitamin C Inhibited Pulmonary Metastasis through Activating Nrf2/HO-1 Pathway
- in-vitro, Lung, H1299
TumMeta↓, NRF2↑, HO-1↑, cl‑Casp3↑, cl‑Casp9↑, DNAdam↑, Apoptosis↑, other↑, selectivity↑,
3142- VitC,    Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF12A
TET2↑, Apoptosis↑, TRAIL↑, BAX↑, Casp↑, Cyt‑c↑, HK2↓, PDK1↓, BNIP3↓,
3139- VitC,    Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress
- in-vitro, Nor, H9c2
*Apoptosis∅, *LDH∅, *MDA∅, *SOD↓, eff↝,
4618- VitD3,    Vitamin D sensitizes cervical cancer to radiation-induced apoptosis by inhibiting autophagy through degradation of Ambra1
- in-vivo, Cerv, NA
Risk↓, RadioS↑, Apoptosis↑, EMT↝,
2366- VitD3,    Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells
- in-vitro, BC, MCF-7
Glycolysis↓, tumCV↓, Apoptosis↑, mTOR↓, AMPK↑, EMT↓, E-cadherin↑, F-actin↑, Vim↓,
4309- VitK2,    Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases
- Review, NA, NA
*Apoptosis↓, *ROS↓, *antiOx↑, *cognitive↑, *memory↑, *Risk↓, *p‑tau↓,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
1816- VitK2,    Role of Vitamin K in Selected Malignant Neoplasms in Women
- Review, Var, NA
TumCP↓, TumMeta↓, TumAuto↑, Apoptosis↑, Apoptosis↑, Casp3↑, Casp7↑, ROS↑, AR↓, EMT↓, Wnt↓, MMP↓, Cyt‑c↑, NF-kB↓, cycD1/CCND1↓, TumCCA↓,
1840- VitK2,    The mechanisms of vitamin K2-induced apoptosis of myeloma cells
- in-vitro, Melanoma, NA
TumCG↓, Apoptosis↑, Casp3↑, ROS↑, p‑MAPK↑,
1824- VitK2,    Vitamin K and its analogs: Potential avenues for prostate cancer management
- Review, Pca, NA
AntiCan↑, toxicity∅, Risk↓, Apoptosis↑, ROS↑, TumCCA↑, eff↑, DNAdam↑, MMP↓, Cyt‑c↑, pro‑Casp3↑, FasL↑, Fas↑, TumAuto↑, ChemoSen↑, RadioS↑,
1822- VitK2,    Vitamin K: A novel cancer chemosensitizer
- Review, Var, NA
ChemoSen↑, Apoptosis↑, TumCCA↑, P-gp↓,
1817- VitK2,    Research progress on the anticancer effects of vitamin K2
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, TumCI↓, TumCG↓, ChemoSen↓, ChemoSideEff↓, toxicity∅, eff↑, cycD1/CCND1↓, CDK4↓, eff↑, IKKα↓, NF-kB↓, other↑, p27↑, cMyc↓, i-ROS↑, Bcl-2↓, BAX↑, p38↑, MMP↓, Casp9↑, p‑ERK↓, RAS↓, MAPK↓, p‑P53↑, Casp8↑, Casp3↑, cJun↑, MMPs↓, eff↑, eff↑,
1839- VitK3,    Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, Apoptosis↑, TumCCA↑, ROS↑, eff↓, AR↓, Trx↓, Bcl-2↓,
1838- VitK3,  PDT,    Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways
- in-vitro, Cerv, NA
eff↑, ROS↑, tumCV↓, TumCG↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bcl-xL↑, Cyt‑c↑, Bcl-2↓,
1756- WBV,    Low-frequency mechanical vibration induces apoptosis of A431 epidermoid carcinoma cells
- in-vitro, MB, A431
Apoptosis↑, GlucoseCon↝, other↓,
5015- Xan,  PEITC,    Comparison of the Impact of Xanthohumol and Phenethyl Isothiocyanate and Their Combination on Nrf2 and NF-κB Pathways in HepG2 Cells In Vitro and Tumor Burden In Vivo
- in-vitro, HCC, HepG2
NRF2↓, ROS↑, NF-kB↓, COX2↓, Apoptosis↑, NRF2↑, SOD↑, NQO1↑,
4890- ZER,    Zerumbone, a Southeast Asian ginger sesquiterpene, markedly suppresses free radical generation, proinflammatory protein production, and cancer cell proliferation accompanied by apoptosis: the alpha,beta-unsaturated carbonyl group is a prerequisite
- in-vitro, Nor, RAW264.7
*iNOS↓, *COX2↓, *EP2↓, TumCP↓, selectivity↑, Apoptosis↑, *chemoP↑, *Inflam↓,
4886- ZER,    Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio
- in-vitro, Liver, HepG2
TumCP↓, Apoptosis↑, BAX↑, Bcl-2↓, *selectivity↑,
4887- ZER,  Rad,  Cisplatin,    Zerumbone acts as a radiosensitizer in head and neck squamous cell carcinoma
- in-vitro, HNSCC, CAL27
Apoptosis↑, ChemoSen↑, RadioS↑, tumCV↓,
604- ZO,    Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications
- Review, NA, NA
ROS↑, Apoptosis↑, DNAdam↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 950

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 12,  

Redox & Oxidative Stress

4-HNE↑, 1,   antiOx↓, 3,   antiOx↑, 19,   antiOx⇅, 1,   ARE↑, 1,   ATF3↓, 1,   ATF3↑, 1,   Catalase↓, 11,   Catalase↑, 6,   compI↓, 1,   CYP1A1↓, 3,   CYP1A1↑, 2,   CYP2E1↑, 1,   DJ-1↓, 1,   Fenton↑, 12,   Ferroptosis↑, 11,   GCLM↓, 1,   GPx↓, 4,   GPx↑, 4,   GPx1↓, 1,   GPx4↓, 6,   GPx4↑, 1,   GSH↓, 50,   GSH↑, 4,   GSH∅, 1,   GSH/GSSG↓, 5,   GSR↓, 1,   GSR↑, 2,   GSSG↓, 1,   GSSG↑, 2,   GSTA1↓, 1,   GSTA1↑, 2,   GSTs↓, 1,   GSTs↑, 2,   H2O2↓, 1,   H2O2↑, 16,   mt-H2O2↑, 1,   HNE↑, 1,   HO-1↓, 5,   HO-1↑, 18,   HO-1⇅, 1,   ICD↑, 2,   Iron↑, 4,   lipid-P↓, 6,   lipid-P↑, 13,   lipid-P↝, 1,   MAD↓, 1,   MDA↓, 3,   MDA↑, 10,   Mets↑, 1,   Mich↑, 1,   MPO↓, 1,   NADH↓, 1,   NADHdeh↓, 1,   NADPH/NADP+↓, 2,   NAF1↓, 1,   NOX4↑, 1,   NQO1?, 1,   NQO1↑, 5,   Nrf1↑, 2,   NRF2↓, 19,   NRF2↑, 19,   NRF2↝, 3,   NRF2∅, 1,   p‑NRF2↑, 2,   OSI↑, 2,   OXPHOS↓, 9,   OXPHOS↑, 6,   OXPHOS⇅, 1,   mt-OXPHOS↓, 1,   p66Shc↑, 1,   PYCR1↓, 1,   ROS?, 1,   ROS↓, 26,   ROS↑, 424,   ROS⇅, 8,   ROS↝, 3,   ROS∅, 2,   i-ROS?, 1,   i-ROS↑, 3,   mt-ROS↑, 11,   SIRT3↓, 1,   SIRT3↑, 2,   SOD↓, 15,   SOD↑, 10,   SOD1↓, 2,   SOD2↓, 3,   SOD2↑, 2,   TAC↓, 1,   TBARS↑, 1,   Thiols↓, 1,   TOS↓, 1,   TOS↑, 2,   Trx↓, 5,   Trx↑, 1,   Trx1↓, 2,   Trx1↑, 1,   Trx2↓, 1,   TrxR↓, 8,   TrxR1↓, 3,   TrxR2↓, 1,   xCT↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 4,   FTH1↓, 2,   IronCh↑, 2,   NCOA4↑, 1,   Tf↑, 2,   TfR1/CD71↑, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 2,   AIF↑, 10,   ATP↓, 38,   ATP↑, 1,   i-ATP↑, 1,   BCR-ABL↓, 1,   CDC2↓, 5,   CDC25↓, 11,   compIII↓, 1,   EGF↓, 2,   ETC↓, 2,   FGFR1↓, 1,   MEK↓, 3,   mitResp↓, 6,   mitResp↑, 1,   MMP?, 1,   MMP↓, 177,   MMP↑, 4,   MMP↝, 1,   Mortalin↓, 1,   MPT↑, 1,   mtDam↓, 1,   mtDam↑, 26,   OCR↓, 10,   OCR↑, 3,   Raf↓, 1,   SSBP1↑, 1,   XIAP↓, 24,  

Core Metabolism/Glycolysis

12LOX↓, 2,   Ac-histone H3↑, 1,   ACC↓, 1,   ACC↑, 1,   ACC-α↓, 1,   ACLY↓, 3,   AKT1↓, 1,   ALAT↓, 4,   ALDOA↓, 1,   ALDOAiso2↓, 1,   AminoA↓, 1,   AMP↓, 2,   AMP↑, 1,   AMPK↑, 24,   p‑AMPK↑, 2,   ANXA7↑, 1,   ATG7↑, 2,   ATP:AMP↓, 1,   BCAP↓, 1,   CAIX↓, 3,   CAIX↑, 1,   Cav1↓, 1,   cMyc↓, 37,   cMyc↑, 2,   p‑CREB↓, 1,   CRM↑, 1,   CYP3A4↓, 2,   ECAR↓, 3,   p‑ENO1↓, 1,   ENO2↓, 1,   FABP4↑, 1,   FAO↓, 1,   FASN↓, 9,   FBI-1↓, 1,   FBPase↑, 1,   FDG↓, 1,   GAPDH↓, 1,   GLO-I↓, 1,   GLS↓, 2,   glucoNG↓, 1,   glucoNG↑, 1,   glucose↓, 1,   GlucoseCon↓, 20,   GlucoseCon↑, 1,   GlucoseCon↝, 1,   GLUT2↓, 2,   GlutMet↓, 2,   Glycolysis↓, 43,   Histones↝, 1,   ac‑Histones↑, 1,   HK2↓, 27,   HMG-CoA↓, 3,   IDH1↑, 1,   IDH2↓, 1,   IDO1↓, 1,   lact/pyru↓, 1,   lactateProd↓, 23,   lactateProd↑, 1,   LDH?, 1,   LDH↓, 18,   LDH↑, 3,   LDH↝, 1,   LDHA↓, 11,   LDHB↓, 1,   LDL↓, 1,   lipidLev↑, 1,   lipoGen↓, 2,   NAD↓, 1,   NADPH↓, 4,   NADPH↑, 1,   PDH↓, 2,   PDH↑, 3,   PDH↝, 1,   p‑PDH↓, 1,   PDHB↓, 1,   PDK1↓, 8,   PDKs↓, 3,   PFK↓, 7,   PFK1↓, 3,   PFKP↓, 2,   PGAM1↓, 1,   PGK1↓, 2,   PGM1↓, 1,   PGM1∅, 1,   PI3K/Akt↓, 3,   PI3k/Akt/mTOR↓, 6,   PI3k/Akt/mTOR↝, 1,   PIK3CA↓, 1,   PKM2↓, 28,   PKM2∅, 1,   POLD1↓, 1,   PPARα↑, 1,   PPARγ↓, 2,   PPARγ↑, 5,   PPP↓, 1,   Pyruv↓, 1,   p‑S6↓, 1,   SIRT1↓, 4,   SIRT1↑, 7,   SLC25A1↓, 1,   TCA?, 1,   TCA↓, 2,   TCA↑, 1,   Warburg↓, 11,   β-oxidation↓, 1,  

Cell Death

Akt↓, 115,   Akt↑, 5,   Akt↝, 1,   p‑Akt↓, 36,   p‑Akt↑, 1,   p‑Akt↝, 1,   APAF1↑, 1,   Apoptosis?, 4,   Apoptosis↓, 22,   Apoptosis↑, 838,   Apoptosis↝, 3,   Apoptosis∅, 2,   m-Apoptosis↑, 1,   mt-Apoptosis↑, 5,   ASK1↑, 1,   ATF2↓, 1,   BAD↑, 9,   p‑BAD↓, 1,   Bak↑, 10,   BAX↓, 4,   BAX↑, 166,   BAX↝, 2,   Bax:Bcl2↑, 44,   Bcl-2↓, 174,   Bcl-2↑, 7,   Bcl-2↝, 1,   Bcl-2∅, 1,   cl‑Bcl-2↑, 1,   Bcl-xL↓, 26,   Bcl-xL↑, 1,   Bcl-xL↝, 1,   BID↑, 9,   cl‑BID↑, 3,   BIM↑, 7,   BTG3↑, 1,   Casp↑, 45,   Casp↝, 2,   Casp1↓, 2,   proCasp1↓, 1,   Casp10↑, 1,   Casp10∅, 1,   Casp12↑, 5,   cl‑Casp12↝, 1,   Casp3?, 1,   Casp3↓, 3,   Casp3↑, 193,   Casp3↝, 3,   Casp3∅, 1,   cl‑Casp3↓, 1,   cl‑Casp3↑, 50,   proCasp3↓, 1,   proCasp3↑, 1,   pro‑Casp3↑, 1,   Casp7↑, 20,   cl‑Casp7↑, 2,   Casp8↓, 1,   Casp8↑, 34,   Casp8↝, 1,   Casp8∅, 3,   cl‑Casp8↑, 11,   pro‑Casp8↑, 1,   Casp9?, 1,   Casp9↑, 102,   Casp9↝, 1,   cl‑Casp9↓, 1,   cl‑Casp9↑, 19,   proCasp9↓, 1,   proCasp9↑, 1,   CBP↓, 1,   cFLIP↓, 7,   Chk2↓, 2,   Chk2↑, 4,   p‑Chk2↓, 1,   p‑Chk2↑, 2,   CK2↓, 3,   Cupro↑, 2,   Cyt‑c↓, 1,   Cyt‑c↑, 128,   Cyt‑c↝, 3,   Diablo↑, 3,   DR4↑, 4,   DR4∅, 2,   DR5↑, 22,   DR5↝, 1,   DR5∅, 1,   Endon↑, 2,   FADD↑, 7,   FADD∅, 1,   Fap1↓, 1,   Fas↓, 1,   Fas↑, 17,   FasL↑, 10,   Ferroptosis↑, 11,   GADD34↑, 1,   GRP58↓, 1,   GSDME↑, 1,   cl‑GSDME↑, 1,   HGF/c-Met↝, 1,   Hippo↑, 1,   hTERT/TERT↓, 13,   IAP1↓, 4,   IAP2↓, 3,   ICAD↓, 1,   iNOS↓, 9,   iNOS↑, 2,   JNK↓, 2,   JNK↑, 28,   JNK↝, 2,   p‑JNK↓, 2,   p‑JNK↑, 6,   JWA↑, 1,   lysoMP↓, 1,   lysoMP↑, 1,   MAPK↓, 20,   MAPK↑, 22,   MAPK↝, 1,   p‑MAPK↓, 1,   p‑MAPK↑, 1,   Mcl-1↓, 10,   MCT1↓, 1,   MDM2↓, 8,   miR-497↑, 1,   miR-7641↓, 1,   MKP1↝, 1,   MLKL↑, 3,   p‑MLKL↓, 1,   Myc↓, 3,   Myc↑, 1,   Necroptosis↑, 11,   necrosis↑, 11,   NOXA↑, 3,   oncosis↑, 2,   p27↓, 1,   p27↑, 24,   P2X7↓, 1,   p38↓, 5,   p38↑, 29,   p‑p38↓, 3,   p‑p38↑, 5,   Paraptosis↑, 3,   PPP2R1A↑, 1,   PUMA↑, 5,   PUMA↝, 1,   Pyro↑, 5,   RIP1↓, 2,   RIP1↑, 1,   p‑RSK↓, 1,   Set9↑, 1,   survivin↓, 51,   Telomerase↓, 7,   TNFR 1↑, 2,   TRAIL↑, 8,   TRAIL⇅, 1,   TRAILR↑, 3,   TRPV1↑, 2,   TumCD↓, 1,   TumCD↑, 25,   TUNEL↑, 2,   β-TRCP↑, 2,  

Kinase & Signal Transduction

AMPKα↑, 5,   CaMKII ↓, 2,   cSrc↓, 1,   FOXD3↑, 1,   HER2/EBBR2↓, 9,   p70S6↓, 2,   p‑p70S6↓, 1,   RET↓, 1,   SOX9?, 1,   Sp1/3/4↓, 16,   TSC2↑, 2,  

Transcription & Epigenetics

ChrMod↝, 1,   cJun↓, 2,   cJun↑, 1,   p‑cJun↑, 1,   COMP↓, 1,   EZH2↓, 2,   H3↓, 2,   H3↑, 1,   p‑H3↑, 1,   ac‑H3↑, 5,   H4↑, 1,   ac‑H4↑, 3,   ac‑H4∅, 1,   HATs↓, 5,   KCNQ1OT1↓, 1,   miR-129-5p↑, 1,   miR-192-5p↑, 1,   miR-205↑, 1,   miR-21↓, 8,   miR-21↝, 1,   miR-218↑, 1,   miR-27a-3p↓, 3,   miR-30a-5p↑, 1,   other↓, 5,   other↑, 11,   other↝, 11,   other∅, 1,   OV6↓, 1,   PCAF↓, 1,   p‑pRB↓, 1,   PRC2↓, 1,   tumCV↓, 107,   tumCV↑, 2,   YMcells↓, 1,  

Protein Folding & ER Stress

ATF6↑, 3,   cl‑ATF6↑, 3,   c-ATF6↑, 1,   CHOP↑, 34,   p‑CHOP↝, 1,   eIF2α↓, 2,   eIF2α↑, 7,   p‑eIF2α↑, 8,   p‑eIF2α↝, 1,   ER Stress↑, 75,   ERStress↑, 1,   GRP78/BiP↓, 1,   GRP78/BiP↑, 25,   GRP78/BiP↝, 1,   GRP94↑, 3,   HSF1↓, 1,   HSP27↓, 3,   HSP27↑, 1,   HSP70/HSPA5↓, 4,   HSP70/HSPA5↑, 4,   HSP70/HSPA5⇅, 1,   e-HSP70/HSPA5↓, 1,   HSP90↓, 9,   HSPs↑, 1,   IRE1↓, 1,   IRE1↑, 6,   PERK↑, 10,   p‑PERK↓, 1,   p‑PERK↑, 3,   p‑PERK↝, 1,   UPR↓, 1,   UPR↑, 16,   XBP-1↑, 2,  

Autophagy & Lysosomes

ATG3↓, 1,   ATG3↑, 2,   ATG5↑, 7,   Beclin-1↓, 2,   Beclin-1↑, 17,   BNIP3?, 1,   BNIP3↓, 1,   BNIP3↑, 4,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 6,   LC3B↑, 4,   LC3B-II↑, 3,   LC3I↓, 1,   LC3I↑, 1,   LC3II↓, 1,   LC3II↑, 12,   LC3s↓, 1,   LC3s↑, 2,   lysosome↓, 1,   p62↓, 10,   p62↑, 8,   SESN2↑, 1,   TumAuto↑, 79,   TumAuto↝, 1,  

DNA Damage & Repair

ATM↑, 4,   p‑ATM↑, 1,   ATR↑, 2,   p‑ATR↑, 1,   BRCA1↓, 1,   CHK1↓, 3,   CHK1↑, 2,   p‑CHK1↑, 1,   DFF45↓, 1,   DFF45↑, 1,   DNA-PK↑, 1,   DNAdam↓, 4,   DNAdam↑, 95,   DNArepair↓, 1,   DNArepair↑, 1,   DNMT1↓, 11,   DNMT3A↓, 2,   DNMTs↓, 4,   m-FAM72A↓, 1,   G9a↓, 2,   GADD45A↑, 3,   HR↓, 2,   MGMT↓, 1,   p16↑, 5,   P53?, 1,   P53↓, 8,   P53↑, 103,   P53⇅, 1,   P53↝, 4,   P53∅, 1,   p‑P53↑, 6,   p73↑, 1,   PARP↓, 5,   PARP↑, 11,   PARP↝, 2,   p‑PARP↑, 2,   cl‑PARP↓, 1,   cl‑PARP↑, 74,   cl‑PARP↝, 1,   PARP1↓, 1,   PARP1↑, 1,   cl‑PARP1↑, 4,   PCLAF↓, 1,   PCNA↓, 17,   RAD51↓, 3,   SMG1↑, 1,   TP53↓, 2,   TP53↑, 3,   UHRF1↓, 2,   γH2AX↓, 1,   γH2AX↑, 9,   p‑γH2AX↑, 4,  

Cell Cycle & Senescence

CDK1↓, 10,   CDK1↑, 2,   p‑CDK1↓, 1,   p‑CDK1↑, 1,   CDK2↓, 16,   CDK2↑, 3,   p‑CDK2↓, 1,   CDK4↓, 23,   CDK4↑, 3,   CDK4∅, 1,   Cyc↓, 3,   Cyc↝, 1,   cycA1/CCNA1↓, 6,   cycA1/CCNA1↑, 3,   CycB/CCNB1↓, 19,   CycB/CCNB1↑, 3,   cycD1/CCND1↓, 84,   cycD1/CCND1↑, 3,   cycD1/CCND1↝, 1,   cycD1/CCND1∅, 1,   CycD3↓, 1,   cycE/CCNE↓, 13,   cycE/CCNE↑, 3,   cycE1↓, 3,   E2Fs↓, 1,   E2Fs↑, 1,   P21↓, 3,   P21↑, 68,   P21↝, 1,   RB1↑, 3,   Securin↓, 1,   TFAP2A↓, 1,   TumCCA?, 2,   TumCCA↓, 8,   TumCCA↑, 288,  

Proliferation, Differentiation & Cell State

ALDH↓, 5,   ALDH1A1↓, 2,   AR-V7?, 1,   AXIN1↓, 1,   AXIN1↑, 1,   CD133↓, 12,   CD24↓, 2,   CD34↓, 1,   CD44↓, 9,   cDC2↓, 2,   CDK8↓, 2,   CEBPA↑, 1,   cFos↓, 3,   cFos↑, 1,   CIP2A↓, 2,   cMET↓, 4,   p‑cMET↑, 1,   cMYB↓, 2,   CREB2↓, 1,   CREBBP↓, 1,   CSCs↓, 40,   CSCs↑, 1,   CTNNB1↓, 1,   Diff↑, 6,   EMT?, 1,   EMT↓, 59,   EMT↑, 1,   EMT↝, 1,   EpCAM↓, 1,   ERK↓, 42,   ERK↑, 9,   ERK↝, 1,   p‑ERK↓, 13,   p‑ERK↑, 6,   p‑ERK↝, 1,   e-ERK↑, 1,   FGF↓, 1,   FOXM1↓, 2,   FOXO↑, 1,   FOXO1↑, 1,   FOXO3↓, 3,   FOXO3↑, 3,   FOXO4↓, 1,   FOXO4↑, 1,   Gli↓, 1,   Gli1↓, 9,   GSK‐3β↓, 6,   GSK‐3β↑, 7,   p‑GSK‐3β↓, 3,   HDAC↓, 30,   HDAC1↓, 11,   HDAC10↑, 1,   HDAC2↓, 6,   HDAC3↓, 5,   HDAC4↓, 1,   HDAC8↓, 4,   HH↓, 5,   HMGCR↑, 1,   IGF-1?, 1,   IGF-1↓, 7,   p‑IGF-1↓, 1,   IGF-1R↓, 2,   IGF-1R↑, 1,   IGFBP3↓, 1,   IGFBP3↑, 1,   Jun↓, 1,   Let-7↑, 2,   LGR5↓, 1,   miR-34a↑, 4,   miR-99↑, 1,   mTOR↓, 61,   mTOR↑, 3,   mTOR↝, 1,   p‑mTOR↓, 15,   mTORC1↓, 2,   mTORC2↓, 1,   n-MYC↓, 1,   Nanog↓, 11,   Nestin↓, 3,   NKD2↑, 1,   NOTCH↓, 9,   NOTCH↑, 1,   NOTCH1↓, 5,   NOTCH1↑, 1,   NOTCH2↓, 1,   NOTCH3↓, 2,   OCT4↓, 9,   p300↓, 2,   P70S6K↓, 1,   p‑P70S6K↓, 3,   p85S6K↓, 1,   P90RSK↓, 1,   p‑P90RSK↑, 1,   PDGFRA↓, 1,   PI3K↓, 80,   PI3K↑, 4,   PI3K↝, 1,   p‑PI3K↓, 5,   p‑PI3K↑, 1,   circ‑PLEKHM3↑, 1,   PTCH1↓, 2,   PTEN↑, 18,   PTEN↝, 1,   p‑PTEN↓, 1,   PTPN6↑, 1,   RAS↓, 6,   RAS↑, 1,   SAL↑, 1,   SCF↓, 2,   Shh↓, 6,   SHP1↑, 1,   Smo↓, 5,   SOX2↓, 9,   Src↓, 2,   Src↑, 1,   STAT↓, 3,   STAT1↓, 1,   STAT3↓, 49,   STAT3↑, 1,   STAT3⇅, 1,   STAT3↝, 1,   p‑STAT3↓, 17,   p‑STAT3↑, 1,   STAT5↓, 1,   p‑STAT5↓, 1,   STAT6↓, 1,   Sufu↑, 1,   TCF↓, 4,   TCF↑, 1,   TCF-4↓, 1,   TOP1↓, 5,   TOP2↓, 3,   TPM4↓, 1,   TumCG↓, 143,   TumCG↑, 4,   TumCG⇅, 1,   TumCG∅, 2,   Wnt?, 1,   Wnt↓, 30,   Wnt↑, 1,   Wnt/(β-catenin)↓, 6,   Wnt/(β-catenin)↑, 1,  

Migration

5LO↓, 1,   67LR↓, 1,   AGRN↓, 1,   Akt2↓, 2,   annexin II↓, 1,   AntiAg↑, 2,   AP-1↓, 7,   AP-1↑, 1,   AP-1↝, 1,   APC↑, 1,   ATPase↓, 1,   AXL↓, 1,   Ca+2↓, 5,   Ca+2↑, 45,   Ca+2↝, 2,   i-Ca+2?, 1,   i-Ca+2↑, 3,   mt-Ca+2↑, 1,   CAFs/TAFs↓, 1,   cal2↑, 1,   CD31↓, 3,   CD31↑, 1,   CDK4/6↓, 1,   CDKN1C↑, 1,   CLDN1↓, 2,   CLDN2↓, 1,   COL1↓, 1,   COL2A1↓, 1,   COL3A1↓, 1,   COL9A3↓, 1,   CXCL12↓, 2,   E-cadherin↓, 6,   E-cadherin↑, 25,   ER-α36↓, 1,   ER-α36↝, 1,   F-actin↓, 1,   F-actin↑, 1,   FAK↓, 8,   p‑FAK↓, 1,   p‑FAK↑, 1,   Fibronectin↓, 5,   FTO↑, 1,   GLI2↓, 5,   GP1BB↓, 1,   ITGA5↓, 1,   ITGB1↓, 3,   ITGB1↑, 1,   ITGB4↓, 1,   ITGB6↓, 2,   Ki-67↓, 17,   KRAS↓, 1,   LAMA5↓, 1,   LAMs↓, 2,   LEF1↓, 1,   LysoPr↑, 1,   MALAT1↓, 1,   MARK4↓, 1,   MET↑, 1,   miR-130a↓, 2,   miR-155↓, 2,   miR-200b↑, 2,   miR-215-5p↑, 1,   miR-22↑, 1,   miR-29b↑, 2,   miR-320a↓, 1,   miR-340↑, 1,   miR-486↑, 1,   MMP-10↓, 1,   MMP1↓, 4,   MMP13↓, 2,   MMP2↓, 49,   MMP2↝, 1,   MMP3↓, 2,   MMP7↓, 4,   MMP9↓, 58,   MMP9↑, 1,   MMP9:TIMP1↓, 1,   MMPs↓, 22,   MMPs↝, 1,   MUC1-C↓, 1,   MUC4↓, 1,   N-cadherin↓, 18,   NCAM↓, 1,   NCAM↑, 1,   NEDD9↓, 3,   PAK1↓, 1,   PDGF↓, 2,   PKA↓, 3,   PKCδ↓, 4,   PKCδ↑, 1,   RAGE↓, 2,   Rho↓, 1,   RIP3↓, 1,   RIP3↑, 3,   p‑RIP3↑, 2,   ROCK1↓, 2,   serineP↓, 1,   Slug↓, 11,   SMAD2↓, 2,   p‑SMAD2↓, 1,   SMAD3↓, 3,   Snail?, 1,   Snail↓, 20,   SOX4↓, 1,   SPARC↑, 1,   STAC2↓, 1,   T-cadherin↑, 1,   TET1↓, 1,   TET1↑, 4,   TGF-β↓, 16,   TGF-β↑, 3,   TIMP1↓, 1,   TIMP1↑, 5,   TIMP2↑, 4,   Treg lymp↓, 3,   Trop2↓, 1,   TSP-1↑, 2,   TumCA↓, 1,   TumCI↓, 90,   TumCMig↓, 103,   TumCMig↑, 2,   TumCP↓, 222,   TumCP↑, 5,   TumMeta↓, 55,   TumMeta↑, 5,   Twist↓, 14,   TXNIP↑, 1,   uPA↓, 7,   VCAM-1↓, 1,   Vim?, 1,   Vim↓, 22,   Vim↑, 1,   Zeb1↓, 7,   Zeb1↑, 1,   ZEB2↓, 1,   α-SMA↓, 2,   α-SMA↑, 1,   α-tubulin↓, 2,   ac‑α-tubulin↑, 1,   β-catenin/ZEB1↓, 36,   β-catenin/ZEB1↑, 1,   β-catenin/ZEB1↝, 1,  

Angiogenesis & Vasculature

angioG↓, 58,   angioG↑, 4,   ATF4↑, 10,   p‑ATF4↝, 1,   ECM/TCF↓, 1,   EGFR↓, 28,   EGFR↝, 1,   p‑EGFR↓, 2,   EGR1↑, 1,   EGR4↓, 1,   eNOS↓, 2,   eNOS↑, 1,   EPR↑, 5,   EPR↝, 1,   HIF-1↓, 3,   Hif1a↓, 54,   Hif1a↑, 4,   KDR/FLK-1↓, 2,   LOX1↓, 2,   miR-210↓, 1,   NO↓, 3,   NO↑, 7,   NO↝, 1,   PDI↑, 1,   TAMS↓, 1,   VEGF↓, 69,   VEGF↑, 1,   VEGF↝, 2,   VEGFR2↓, 8,   ZBTB10↑, 1,  

Barriers & Transport

AQPs↓, 1,   BBB↓, 1,   BBB↑, 6,   CellMemb↑, 3,   CTR1↑, 2,   GLUT1↓, 16,   GLUT1↑, 2,   GLUT3↓, 2,   GLUT3↑, 1,   GLUT4↓, 2,   NHE1↓, 1,   P-gp↓, 10,   P-gp↑, 1,   SVCT-2∅, 1,  

Immune & Inflammatory Signaling

ASC↓, 1,   CCL20↑, 1,   CD4+↓, 1,   CD4+↑, 1,   COX1↓, 1,   COX2↓, 44,   COX2↑, 3,   COX2↝, 2,   CRP↓, 2,   CXCc↓, 1,   CXCR4↓, 7,   DCells↑, 1,   FOXP3↓, 2,   HMGB1↑, 1,   IFN-γ↓, 4,   Igs↑, 1,   IKKα↓, 6,   IKKα↑, 2,   p‑IKKα↓, 1,   IL1↓, 8,   IL1↑, 3,   IL10↓, 5,   IL10↑, 2,   IL12↑, 1,   IL17↓, 1,   IL18↓, 1,   IL1α↓, 1,   IL1β↓, 12,   IL1β↑, 2,   IL2↓, 1,   IL2↑, 2,   IL33↑, 1,   IL4↓, 3,   IL4↑, 1,   IL6↓, 25,   IL6↑, 1,   IL6↝, 1,   IL8↓, 4,   IL8↑, 1,   Imm↑, 2,   Inflam↓, 23,   IκB↓, 1,   IκB↑, 1,   p‑IκB↓, 1,   p‑IκB↑, 1,   JAK↓, 6,   JAK1?, 1,   JAK1↓, 3,   p‑JAK1↓, 1,   JAK2↓, 8,   p‑JAK2↓, 2,   pol-M1↑, 1,   M2 MC↓, 1,   pol-M2 MC↓, 1,   MCP1↓, 2,   MIP2↓, 1,   NF-kB↓, 125,   NF-kB↑, 7,   NF-kB↝, 3,   p‑NF-kB↓, 2,   p‑NF-kB↑, 1,   NK cell↑, 3,   p50↓, 3,   p65↓, 9,   p65↑, 1,   p‑p65↑, 1,   ac‑p65↑, 1,   PD-1↓, 2,   PD-1↝, 1,   PD-L1↓, 6,   PD-L1↑, 3,   PGE2↓, 7,   PSA↓, 4,   PSA↝, 1,   SOCS1↑, 1,   T-Cell↑, 3,   Th1 response↑, 2,   TLR4↓, 4,   TNF-α↓, 23,   TNF-α↑, 8,   TNF-α↝, 2,   TNF-α∅, 1,   TNF-β↓, 1,  

Cellular Microenvironment

ADAM17↓, 1,   pH↝, 1,   pH∅, 1,   e-pH↓, 1,  

Synaptic & Neurotransmission

5HT↓, 2,  

Protein Aggregation

NLRP3↓, 5,  

Hormonal & Nuclear Receptors

AR↓, 11,   AR↝, 1,   CDK6↓, 9,   CDK6↑, 2,   CDK6∅, 1,   CYP19?, 1,   ER(estro)↓, 1,   ERα/ESR1↓, 2,   RANKL↓, 1,  

Drug Metabolism & Resistance

ABC↓, 2,   BioAv↓, 25,   BioAv↑, 25,   BioAv↝, 8,   BioAv∅, 1,   BioEnh↑, 2,   chemoR↓, 2,   ChemoSen↓, 4,   ChemoSen↑, 117,   ChemoSen⇅, 1,   ChemoSen↝, 1,   ChemoSen∅, 3,   CYP1A2↓, 1,   CYP1A2↑, 1,   CYP2A3/CYP2A6↓, 1,   Dose?, 4,   Dose↓, 3,   Dose↑, 4,   Dose⇅, 2,   Dose↝, 29,   Dose∅, 15,   eff↓, 109,   eff↑, 230,   eff⇅, 2,   eff↝, 15,   eff∅, 3,   Half-Life?, 1,   Half-Life↓, 6,   Half-Life↑, 2,   Half-Life↝, 3,   Half-Life∅, 2,   MDR1↓, 4,   P450↓, 5,   RadioS↓, 1,   RadioS↑, 51,   selectivity↓, 3,   selectivity↑, 123,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 4,   ALP↓, 4,   AR↓, 11,   AR↝, 1,   AST↓, 4,   BG↓, 1,   BMPs↑, 1,   BRCA1↓, 1,   CRP↓, 2,   E6↓, 1,   E7↓, 1,   EGFR↓, 28,   EGFR↝, 1,   p‑EGFR↓, 2,   ERα/ESR1↓, 2,   EZH2↓, 2,   Ferritin↓, 4,   FOXM1↓, 2,   GutMicro↑, 5,   GutMicro↝, 1,   HER2/EBBR2↓, 9,   hTERT/TERT↓, 13,   IL6↓, 25,   IL6↑, 1,   IL6↝, 1,   Ki-67↓, 17,   KRAS↓, 1,   LDH?, 1,   LDH↓, 18,   LDH↑, 3,   LDH↝, 1,   Myc↓, 3,   Myc↑, 1,   PD-L1↓, 6,   PD-L1↑, 3,   PSA↓, 4,   PSA↝, 1,   RAGE↓, 2,   TP53↓, 2,   TP53↑, 3,  

Functional Outcomes

AntiAge↑, 1,   AntiCan↓, 2,   AntiCan↑, 59,   AntiCan?, 1,   antiNeop↑, 1,   antiNeop∅, 1,   AntiTum↓, 1,   AntiTum↑, 26,   cardioP↑, 6,   CardioT↓, 1,   chemoP↑, 24,   ChemoSideEff↓, 8,   ChemoSideEff∅, 1,   cognitive↑, 2,   hepatoP↓, 1,   hepatoP↑, 4,   K17↓, 1,   NDRG1↑, 1,   neuroP↓, 1,   neuroP↑, 6,   OS↑, 20,   PARP16↓, 1,   PDE4↓, 1,   QoL↑, 1,   radioP↑, 9,   RenoP↑, 4,   Risk↓, 15,   Symptoms↓, 1,   toxicity↓, 10,   toxicity⇅, 1,   toxicity↝, 3,   toxicity∅, 8,   TumVol↓, 30,   TumW↓, 11,   Weight↑, 1,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 1,   Bacteria↑, 1,   CD8+↑, 1,   Sepsis↓, 1,  
Total Targets: 1134

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 4,  

Redox & Oxidative Stress

antiOx?, 1,   antiOx↓, 4,   antiOx↑, 68,   Catalase↑, 29,   Copper↓, 1,   Ferroptosis↓, 2,   GPx↓, 1,   GPx↑, 20,   GPx1↑, 2,   GPx4↑, 1,   GSH↑, 30,   GSR↓, 1,   GSR↑, 3,   GSTA1↓, 1,   GSTA1↑, 3,   GSTs↑, 7,   H2O2↓, 4,   H2O2↑, 1,   HDL↑, 1,   HO-1↑, 21,   HO-1⇅, 1,   Iron↓, 2,   Keap1↓, 3,   lipid-P↓, 23,   MDA↓, 17,   MDA↑, 1,   MDA∅, 1,   MPO↓, 4,   NOX4↓, 1,   NQO1↑, 1,   Nrf1↑, 1,   NRF2↓, 1,   NRF2↑, 41,   PARK2↑, 3,   ROS↓, 111,   ROS↑, 3,   ROS∅, 7,   SAM-e↑, 1,   selenoP↑, 1,   SIRT3↑, 2,   SOD↓, 2,   SOD↑, 35,   SOD1↑, 3,   SOD2↓, 1,   SOD2↑, 1,   TAC↑, 1,   TBARS↓, 1,   Trx↓, 1,   Trx↑, 1,   Trx1↑, 1,   uricA↓, 2,   VDAC1↓, 1,   VitC↑, 3,   VitE↑, 2,  

Metal & Cofactor Biology

IronCh↑, 3,  

Mitochondria & Bioenergetics

AIF↓, 1,   ATP↑, 4,   ATP↝, 1,   ATP∅, 1,   mitResp↑, 1,   MMP↓, 3,   MMP↑, 15,   MMP∅, 1,   mtDam↓, 3,   PGC-1α↑, 2,   PINK1↑, 1,   UCP1↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 9,   ALDOA↑, 1,   AMPK↑, 8,   p‑AMPK↑, 1,   BUN↓, 1,   cAMP↑, 1,   cMyc↓, 1,   CREB↑, 2,   FASN↓, 1,   glucose↓, 1,   GlucoseCon↑, 2,   Glycolysis↑, 1,   GPI↑, 1,   HK2↑, 1,   LDH↓, 7,   LDH↑, 1,   LDH∅, 1,   LDHA↑, 1,   LDL↓, 1,   lipidLev↓, 1,   NAD↑, 1,   NAD↝, 1,   NADPH↓, 1,   NADPH↑, 1,   NH3↓, 1,   PFKL↑, 1,   PKM1↑, 1,   PKM2↑, 1,   PONs↓, 1,   PPARγ↓, 1,   PPARγ↑, 3,   p‑PPARγ↓, 1,   SIRT1↑, 7,  

Cell Death

Akt↓, 3,   Akt↑, 4,   p‑Akt↓, 2,   p‑Akt↑, 2,   APAF1↓, 1,   Apoptosis↓, 79,   Apoptosis↑, 1,   Apoptosis∅, 2,   BAD↓, 1,   BAX↓, 9,   BAX↑, 4,   Bax:Bcl2↓, 2,   Bcl-2↓, 2,   Bcl-2↑, 8,   Bcl-xL↓, 1,   Bcl-xL↑, 1,   Casp1↓, 1,   Casp12↓, 3,   Casp3↓, 17,   Casp3↑, 1,   Casp3∅, 1,   cl‑Casp3↓, 2,   cl‑Casp8↑, 2,   Casp9↓, 2,   cl‑Casp9↓, 1,   Cyt‑c↓, 4,   Cyt‑c↑, 2,   Cyt‑c∅, 1,   DR4↓, 1,   Fas↓, 1,   Ferroptosis↓, 2,   iNOS↓, 11,   iNOS↑, 3,   JNK↓, 4,   JNK↑, 3,   p‑JNK↓, 3,   MAPK↓, 7,   MAPK↑, 1,   necrosis↓, 3,   p38↓, 1,   p38↑, 1,   p‑p38↓, 1,   Pyro?, 1,  

Kinase & Signal Transduction

p‑p70S6↓, 1,   Sp1/3/4↓, 1,  

Transcription & Epigenetics

Ach↑, 2,   other↓, 3,   other↑, 3,   other↝, 8,  

Protein Folding & ER Stress

ATF6↓, 1,   CHOP↓, 2,   CHOP↑, 1,   cl‑eIF2α↑, 1,   ER Stress↓, 12,   GRP78/BiP↓, 4,   GRP78/BiP↑, 1,   HSP27↑, 1,   HSP70/HSPA5↑, 3,   HSP90↑, 1,   HSPs↓, 1,   IRE1↓, 1,   PERK↓, 1,   p‑PERK↑, 1,   UPR↓, 2,   UPR↑, 1,  

Autophagy & Lysosomes

Beclin-1↑, 2,   LC3‑Ⅱ/LC3‑Ⅰ↑, 2,   LC3A↑, 1,   MitoP↑, 1,   p62↓, 5,   p62↑, 1,  

DNA Damage & Repair

ATM↑, 1,   DNAdam↓, 4,   P53↓, 2,   P53↝, 1,   PARP↑, 1,   p‑PARP↓, 1,   cl‑PARP1↓, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,   E2Fs↑, 1,   P21↑, 1,  

Proliferation, Differentiation & Cell State

CD34↑, 1,   Diff↑, 1,   EP2↓, 1,   ERK↓, 1,   ERK↑, 1,   p‑ERK↓, 1,   p‑ERK↑, 4,   FGF↑, 1,   FOXO1↑, 1,   FOXO3↑, 1,   GSK‐3β↓, 4,   HDAC↓, 3,   HDAC3↓, 1,   IGF-1↑, 1,   mTOR↓, 3,   p‑mTOR↓, 1,   neuroG↑, 2,   P70S6K↓, 1,   PI3K↓, 3,   PI3K↑, 2,   p‑PI3K↓, 1,   PTEN↑, 2,   Src↓, 1,   STAT↓, 2,   STAT3↑, 1,   TumCG↑, 1,   Wnt↑, 1,  

Migration

5LO↓, 1,   AP-1↓, 2,   APP↓, 4,   Ca+2?, 1,   Ca+2↓, 5,   Ca+2↑, 1,   Ca+2↝, 4,   i-Ca+2↓, 2,   cal2↓, 2,   Cartilage↑, 2,   CD31↑, 2,   CDK5↓, 1,   CEA↓, 1,   E-sel↓, 1,   FAK↑, 1,   Ki-67↓, 1,   LAMs↑, 1,   MMP13↓, 1,   MMP2↑, 2,   MMP9↓, 2,   MMP9↑, 3,   N-cadherin↑, 2,   PKCδ↓, 1,   p‑Rac1↓, 1,   ROCK1↓, 1,   serineP↓, 1,   Smad1↑, 1,   TGF-β↓, 3,   TGF-β↑, 1,   TIMP1↑, 1,   TumCI↓, 1,   TumCI∅, 1,   TumCMig∅, 1,   TumCP↓, 1,   VCAM-1↓, 1,   ZO-1↑, 1,   α-SMA↓, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 3,   angioG↑, 4,   CLDN5↑, 1,   eNOS↑, 1,   HIF-1↓, 1,   Hif1a↓, 1,   Hif1a↑, 2,   Hif1a↝, 1,   HIF2a↑, 1,   NO↓, 12,   NO↑, 1,   VEGF↓, 2,   VEGF↑, 8,  

Barriers & Transport

BBB?, 2,   BBB↑, 7,   GLUT1↑, 1,   GLUT3↑, 1,   GLUT4↑, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

ASC?, 1,   COX2↓, 19,   CRP↓, 6,   ICAM-1↓, 2,   IFN-γ↓, 4,   IFN-γ↑, 2,   IKKα↓, 1,   IKKα↑, 1,   IL1↓, 4,   IL10↓, 5,   IL10↑, 6,   IL12↓, 1,   IL17↓, 4,   IL18↓, 2,   IL1β↓, 21,   IL1β↑, 1,   IL2↓, 4,   IL2↑, 2,   IL22↓, 1,   IL4↓, 3,   IL6↓, 25,   IL6↑, 1,   IL8↓, 4,   Imm↑, 3,   INF-γ↓, 1,   Inflam↓, 81,   Inflam↑, 2,   MCP1↓, 1,   MCP1↑, 1,   MyD88↓, 2,   NF-kB↓, 26,   NF-kB↑, 2,   p‑NF-kB↓, 1,   PGE2↓, 6,   TLR2↓, 3,   TLR4↓, 4,   TLR4↑, 1,   TNF-α↓, 38,   TNF-α↑, 1,   TRIF↓, 1,   VitD↑, 1,  

Cellular Microenvironment

pH↝, 1,  

Synaptic & Neurotransmission

5HT↑, 1,   AChE↓, 9,   BChE↓, 1,   BDNF↑, 10,   BDNF∅, 1,   ChAT↑, 1,   PSD95↑, 1,   tau↓, 2,   p‑tau↓, 6,   TrkB↑, 2,  

Protein Aggregation

Aβ↓, 22,   BACE↓, 3,   BACE↑, 1,   MAOB↓, 2,   NLRP3↓, 8,  

Hormonal & Nuclear Receptors

GR↑, 3,   testos↑, 2,  

Drug Metabolism & Resistance

BioAv↓, 17,   BioAv↑, 28,   BioAv↝, 12,   Dose↑, 3,   Dose⇅, 1,   Dose↝, 9,   Dose∅, 1,   eff↓, 2,   eff↑, 15,   Half-Life↓, 3,   Half-Life↑, 1,   Half-Life↝, 7,   P450↓, 1,   P450↑, 1,   RadioS↑, 1,   selectivity↑, 5,  

Clinical Biomarkers

ALAT↓, 9,   ALP↓, 3,   AST↓, 8,   BG↓, 2,   BMD↑, 2,   BMPs↑, 1,   BP↓, 3,   Calcium↑, 1,   CEA↓, 1,   creat↓, 2,   CRP↓, 6,   GutMicro↑, 5,   hs-CRP↓, 1,   IL6↓, 25,   IL6↑, 1,   Ki-67↓, 1,   LDH↓, 7,   LDH↑, 1,   LDH∅, 1,   Mag↑, 1,   VitD↑, 1,  

Functional Outcomes

AntiAge↑, 4,   AntiCan↓, 1,   AntiCan↑, 4,   AntiDiabetic↑, 3,   AntiTum↑, 2,   cardioP↑, 26,   CardioT↓, 2,   chemoP↑, 6,   ChemoSideEff↓, 1,   cognitive↓, 1,   cognitive↑, 27,   hepatoP↑, 22,   memory↑, 20,   Mood↑, 1,   motorD↓, 1,   motorD↑, 5,   neuroP↓, 1,   neuroP↑, 57,   OS↑, 1,   Pain↓, 3,   QoL↑, 1,   radioP↑, 4,   RenoP↑, 13,   Risk↓, 4,   Strength↑, 2,   toxicity?, 2,   toxicity↓, 29,   toxicity↑, 3,   toxicity↝, 5,   toxicity∅, 14,  

Infection & Microbiome

AntiViral↑, 1,   Bacteria↓, 7,   IRF3↓, 2,   Sepsis↓, 1,  
Total Targets: 396

Scientific Paper Hit Count for: Apoptosis, Apoptosis
63 Silver-NanoParticles
48 Curcumin
41 Magnetic Fields
35 Thymoquinone
31 Sulforaphane (mainly Broccoli)
30 Berberine
27 EGCG (Epigallocatechin Gallate)
27 Quercetin
24 Shikonin
22 Ashwagandha(Withaferin A)
22 Baicalein
21 Phenethyl isothiocyanate
20 Resveratrol
19 Betulinic acid
19 Boron
19 Selenium
18 Radiotherapy/Radiation
18 Apigenin (mainly Parsley)
18 Honokiol
18 Lycopene
18 Urolithin
17 Garcinol
15 Artemisinin
14 Luteolin
13 Astaxanthin
13 Chemotherapy
12 Chrysin
12 salinomycin
12 Graviola
12 Magnolol
11 Allicin (mainly Garlic)
11 Propolis -bee glue
10 Alpha-Lipoic-Acid
10 chitosan
10 Silymarin (Milk Thistle) silibinin
10 Phenylbutyrate
10 Vitamin C (Ascorbic Acid)
10 Piperlongumine
9 Fisetin
9 Nimbolide
9 Rosmarinic acid
8 Coenzyme Q10
8 Metformin
8 Copper and Cu NanoParticlex
8 Ursolic acid
7 5-fluorouracil
7 Cisplatin
7 Photodynamic Therapy
7 Boswellia (frankincense)
7 Gambogic Acid
7 Magnetic Field Rotating
7 Vitamin K2
6 Andrographis
6 Gemcitabine (Gemzar)
6 Citric Acid
6 Dichloroacetate
6 Ellagic acid
6 Emodin
6 Hydrogen Gas
6 HydroxyTyrosol
6 Parthenolide
5 Paclitaxel
5 Capsaicin
5 doxorubicin
5 Juglone
5 Pterostilbene
4 Astragalus
4 immunotherapy
4 Melatonin
4 Atorvastatin
4 Caffeic acid
4 Disulfiram
4 Genistein (soy isoflavone)
4 Ferulic acid
4 Ginkgo biloba
4 γ-linolenic acid (Borage Oil)
4 Selenite
4 Spermidine
3 2-DeoxyGlucose
3 Date Fruit Extract
3 diet FMD Fasting Mimicking Diet
3 Gold NanoParticles
3 Orlistat
3 Magnesium
3 Naringin
3 Sanguinarine
3 Psoralidin
3 Taurine
3 VitK3,menadione
3 Zerumbone
2 alpha Linolenic acid
2 Dipyridamole
2 Auranofin
2 tamoxifen
2 Bortezomib
2 Electrical Pulses
2 Folic Acid
2 Fucoidan
2 Fenbendazole
2 Shilajit/Fulvic Acid
2 Ginger/6-Shogaol/Gingerol
2 HydroxyCitric Acid
2 Methylglyoxal
2 Niclosamide (Niclocide)
2 Oleuropein
2 Oleocanthal
2 Oxygen, Hyperbaric
2 Piperine
2 polyethylene glycol
2 Vitamin D3
1 5-Aminolevulinic acid
1 Amodiaquine
1 Ascorbyl Palmitate
1 temozolomide
1 Aspirin -acetylsalicylic acid
1 Sorafenib (brand name Nexavar)
1 Docetaxel
1 almonertinib
1 epirubicin
1 Lapatinib
1 Biochanin A
1 Bifidobacterium
1 Carvacrol
1 Cannabidiol
1 Selenate
1 Prebiotic
1 Cinnamon
1 Vitamin E
1 Crocetin
1 chemodynamic therapy
1 Dichloroacetophenone(2,2-)
1 Deguelin
1 Evodiamine
1 Aflavin-3,3′-digallate
1 Butyrate
1 Exercise
1 Gallic acid
1 carboplatin
1 Galloflavin
1 gefitinib, erlotinib
1 Grapeseed extract
1 hydrogen sulfide
1 Rapamycin
1 Baicalin
1 Hyperthermia
1 Hydroxytyrosol
1 Huperzine A/Huperzia serrata
1 Indole-3-carbinol
1 Ivermectin
1 Licorice
1 Lutein
1 Iron
1 magnetic nanoparticles
1 Methylsulfonylmethane
1 Mushroom Chaga
1 Mushroom Lion’s Mane
1 nicotinamide adenine dinucleotide
1 Proanthocyanidins
1 borneol
1 Plumbagin
1 Rutin
1 Vorinostat
1 Oxaliplatin
1 Scoulerine
1 irinotecan
1 Osimertinib
1 Adagrasib
1 acetazolamide
1 Trichostatin A
1 entinostat
1 Radio Frequency
1 Glucose
1 Docosahexaenoic Acid
1 Vitamin B3,Niacin
1 Whole Body Vibration
1 xanthohumol
1 Zinc Oxide
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:14  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page