| Source: |
| Type: |
| Tumor Microenvironment: Cancer cells often thrive in a more acidic environment compared to normal cells. This is partly due to the metabolic processes of cancer cells, which can produce lactic acid and other acidic byproducts. The acidic microenvironment can promote tumor growth and invasion. Many tumors exhibit an acidic microenvironment. This is largely due to the high rate of glycolysis (often referred to as the Warburg effect), even in the presence of oxygen, leading to lactate production. Acidification is thought to promote invasion, metastasis, and resistance to certain chemotherapies. The body maintains a relatively stable pH in the blood (around 7.4). However, the pH of tissues can vary, and tumors can exhibit a lower pH. -Normal tissues have a higher extracellular pH than intracellular pH, in cancer is exactly the opposite. (inversion of the pH gradient). Cancer cells often overexpress proton pumps (such as V-ATPase) and transporters that actively extrude protons (H⁺) to maintain an intracellular pH conducive to their growth. Inhibiting these pumps can lead to intracellular acidification and potentially induce apoptosis or render cancer cells more vulnerable to other treatments. |
| 1584- | Citrate, | Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 |
| 2308- | CUR, | Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells |
| - | in-vitro, | Liver, | HepG2 |
| 466- | CUR, | Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HuT78 |
| 1880- | DCA, | A Novel Form of Dichloroacetate Therapy for Patients With Advanced Cancer: A Report of 3 Cases |
| - | Case Report, | Var, | NA |
| 1884- | DCA, | Sal, | Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | HCT116 |
| 1868- | DCA, | MET, | Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy |
| - | Case Report, | NA, | NA |
| 1612- | EA, | Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cell |
| - | in-vitro, | EC, | NA |
| 645- | EGCG, | The Effect of Ultrasound, Oxygen and Sunlight on the Stability of (−)-Epigallocatechin Gallate |
| - | Analysis, | NA, | NA |
| 995- | MEL, | Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma |
| - | vitro+vivo, | GBM, | NA |
| 2249- | MF, | Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study |
| - | in-vitro, | Nor, | L929 |
| 507- | MF, | Effects of extremely low frequency electromagnetic fields on the tumor cell inhibition and the possible mechanism |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | GP-293 |
| 786- | Mg, | VitC, | A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer |
| 1659- | PBG, | Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts |
| - | in-vivo, | Nor, | NA |
| 1658- | PBG, | Body Fluid pH Balance in Metabolic Health and Possible Benefits of Dietary Alkaline Foods |
| - | Review, | Var, | NA |
| 1671- | PBG, | Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport |
| - | Review, | Nor, | NA |
| 4726- | Se, | Oxy, | Oxygen therapy accelerates apoptosis induced by selenium compounds via regulating Nrf2/MAPK signaling pathway in hepatocellular carcinoma |
| - | in-vivo, | HCC, | NA |
| 2202- | SK, | Enhancing Tumor Therapy of Fe(III)-Shikonin Supramolecular Nanomedicine via Triple Ferroptosis Amplification |
| - | in-vitro, | Var, | NA |
| - | in-vitro, | BC, | MCF-7 |
| 3950- | Taur, | Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes |
| - | Review, | Diabetic, | NA | - | Review, | Stroke, | NA | - | Review, | AD, | NA |
| 636- | VitC, | Acute Effects of Vitamin C Exposure On Colonic Crypts: Direct Modulation of pH Regulation |
| - | in-vivo, | NA, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:250 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid