Database Query Results : , , PI3K/Akt

PI3K/Akt, PI3K/Akt signaling: Click to Expand ⟱
Source: HalifaxProj(inhibit) TCGA
Type:
The PI3K/Akt signaling pathway plays a crucial role in various cellular processes, including growth, proliferation, survival, and metabolism.
Pathway Components:
Phosphoinositide 3-kinases (PI3Ks): A family of enzymes that phosphorylate the inositol ring of phosphatidylinositol, leading to the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3).
Akt (Protein Kinase B): A serine/threonine kinase that is activated by PIP3. Once activated, Akt phosphorylates various substrates involved in cell survival and growth.
Overactivation can lead to uncontrolled cell growth.
Angiogenesis: Akt can promote the expression of pro-angiogenic factors, facilitating the formation of new blood vessels to supply tumors with nutrients and oxygen.


Scientific Papers found: Click to Expand⟱
147- AG,  EGCG,  CUR,    Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, MCF-7
Bax:Bcl2↑, NF-kB↓, PI3K/Akt↓, STAT3↓,
247- AL,    Allicin inhibits the invasion of lung adenocarcinoma cells by altering tissue inhibitor of metalloproteinase/matrix metalloproteinase balance via reducing the activity of phosphoinositide 3-kinase/AKT signaling
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
MMP2↓, MMP9↓, TIMP1↑, TIMP2↑, p‑Akt↓, PI3K/Akt↓,
583- Api,  Cisplatin,    Apigenin suppresses GLUT-1 and p-AKT expression to enhance the chemosensitivity to cisplatin of laryngeal carcinoma Hep-2 cells: an in vitro study
- in-vitro, Laryn, HEp2
PI3K/Akt↓, GLUT1↓, Akt↓,
171- Api,    Apigenin in cancer therapy: anti-cancer effects and mechanisms of action
- Review, Var, NA
PI3K/Akt↓, NF-kB↓, CK2↓, FOXO↓, MAPK↝, ERK↓, p‑JAK↓, Wnt/(β-catenin)↓, ROS↑, CDC25↓, p‑STAT↓, DNAdam↑,
206- Api,    Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress
- in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, Melanoma, A375 - in-vitro, Lung, H2030 - in-vitro, CRC, SW480
Glycolysis↓, NA?, PGK1↓, ALDOA↓, GLUT1↓, ENO1↓, ATP↓, Casp9↑, Casp3↑, cl‑PARP↑, PI3K/Akt↓, HK1↓, HK2↓,
874- B-Gluc,    Potential promising anticancer applications of β-glucans: a review
- Review, NA, NA
AntiCan↑, TumCG↓, BAX↑, Bcl-2↓, IFN-γ↑, PI3K/Akt↑, MAPK↑, NFAT↑, NF-kB↑, ROS↑, NK cell↑, TumCCA↑, ERK↓, Telomerase↓,
726- Bor,    Redox Mechanisms Underlying the Cytostatic Effects of Boric Acid on Cancer Cells—An Issue Still Open
- Review, NA, NA
NAD↝, SAM-e↝, PSA↓, IGF-1↓, Cyc↓, P21↓, p‑MEK↓, p‑ERK↓, ROS↑, SOD↓, Catalase↓, MDA↑, GSH↓, IL1↓, IL6↓, TNF-α↓, BRAF↝, MAPK↝, PTEN↝, PI3K/Akt↝, eIF2α↑, ATF4↑, ATF6↑, NRF2↑, BAX↑, BID↑, Casp3↑, Casp9↑, Bcl-2↓, Bcl-xL↓,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
19- Deg,    Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1
HH↓, Gli1↓, PTCH1↓, Sufu↓, MMP2↓, MMP9↓, PI3K/Akt↓, HIF-1↓, VEGF↓, IKKα↓, NF-kB↓, EMT↓, AMPK↑, mTOR↓, survivin↓,
1442- Deg,    Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention
- Review, Var, NA
PI3K/Akt↓, IKKα↓, AMP↓, mTOR↓, survivin↓, NF-kB↓, Apoptosis↑, TumCCA↑, toxicity↓, HSP90↓, Casp↑, TumCG↓, p27↑, cycE/CCNE↓, angioG↓, Hif1a↓, VEGF↓, *toxicity↑,
682- EGCG,    Suppressive Effects of EGCG on Cervical Cancer
- Review, NA, NA
E7↓, E6↓, PI3K/Akt↓, P53↑, p27↑, P21↑, CDK2↓, mTOR↓, HIF-1↓, IGF-1↓, EGFR↓, ERK↓, VEGF↓,
668- EGCG,    The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment
- Review, BC, MCF-7 - Review, BC, MDA-MB-231
HER2/EBBR2↓, EGFR↓, mtDam↑, ROS↑, PI3K/Akt↓, P53↑, P21↑, Casp3↑, Casp9↑, BAX↑, PTEN↑, Bcl-2↓, hTERT/TERT↓, STAT3↓, TumCCA↑, Hif1a↓,
830- GAR,    Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells
- in-vitro, CRC, HT-29
TumCI↓, TumCMig↓, Apoptosis↑, p‑FAK↓, Src↓, MAPK↓, ERK↓, PI3K/Akt↓, Bax:Bcl2↑, Cyt‑c↑, MMP7↓,
802- GAR,    Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway
- in-vitro, GC, HGC27
TumCP↓, TumCI↓, Apoptosis↑, PI3K/Akt↓, Akt↓, p‑mTOR↓, cycD1/CCND1↓, MMP2↓, MMP9↓, BAX↑, Bcl-2↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
834- Gra,    Anticancer Properties of Graviola (Annona muricata): A Comprehensive Mechanistic Review
- Review, NA, NA
EGFR↓, PI3K/Akt↓, NF-kB↓, JAK↓, STAT↓, Hif1a↓, GLUT1↓, GLUT4↓, ROS↑, Catalase↑, SOD↑, HO-1↑,
71- QC,    Role of Bax in quercetin-induced apoptosis in human prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PrEC - in-vitro, Pca, YPEN-1 - in-vitro, Pca, HCT116
Casp8↑, Casp9↑, PARP↑, BAD↓, BAX↑, PI3K/Akt↓,
52- QC,    Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines
- in-vitro, BC, MCF-7
Bcl-2↓, BAX↑, PI3K/Akt↓,
54- QC,    Quercetin‑3‑methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways
- in-vitro, BC, MCF-7
EMT↓, E-cadherin↑, Vim↓, MMP2↓, NOTCH1↓, PI3K/Akt↓, PI3k/Akt/mTOR↓, p‑Akt↓, EZH2↓,
55- QC,    Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling
- in-vitro, GC, GCSCs
Bcl-2↓, BAX↑, Cyt‑c↑, MMP↓, PI3K/Akt↓, Casp3↑, Casp9↑,
99- QC,    Quercetin Inhibits Epithelial-to-Mesenchymal Transition (EMT) Process and Promotes Apoptosis in Prostate Cancer via Downregulating lncRNA MALAT1
- in-vitro, Pca, PC3
EMT↓, E-cadherin↑, N-cadherin↓, Ki-67↓, PI3K/Akt↓, MALAT1↓,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
38- QC,    Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS↑, GSH↓, PI3K/Akt⇅,
89- QC,  doxoR,    Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met
- in-vitro, Pca, PC3
PI3K/Akt↓, cMET↓, Casp3↑, Casp9↑, MMP↓,
96- QC,  docx,    Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, PC3
PI3K/Akt↓, Ki-67↓, BAX↑, Bcl-2↓, EpCAM↓, Twist↓, E-cadherin↑, P-gp↓,
82- QC,  AG,    Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells
- in-vitro, Pca, NA
AR↓, PI3K/Akt↓, miR-21↓, STAT3↓, BAD↓, PRAS40↓, GSK‐3β↓, PSA↓, NKX3.1↑, Bax:Bcl2↑, miR-19b↓, miR-148a↓, AMPKα↓,
102- RES,    Effect of resveratrol on proliferation and apoptosis of human pancreatic cancer MIA PaCa-2 cells may involve inhibition of the Hedgehog signaling pathway
- in-vitro, PC, MIA PaCa-2
HH↓, PTCH1↓, Smo↓, HH↓, EMT↓, PI3K/Akt↓, NF-kB↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 27

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

NA?, 1,  

Redox & Oxidative Stress

Catalase↓, 1,   Catalase↑, 1,   GSH↓, 3,   HK1↓, 1,   HO-1↑, 1,   MDA↑, 1,   NRF2↑, 2,   ROS↑, 8,   SAM-e↝, 1,   SOD↓, 1,   SOD↑, 2,  

Mitochondria & Bioenergetics

ATP↓, 2,   CDC25↓, 1,   p‑MEK↓, 1,   MMP↓, 3,   mtDam↑, 1,  

Core Metabolism/Glycolysis

ALDOA↓, 1,   AMP↓, 1,   AMPK↑, 1,   ENO1↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   NAD↝, 1,   PGK1↓, 1,   PI3K/Akt↓, 24,   PI3K/Akt↑, 1,   PI3K/Akt⇅, 1,   PI3K/Akt↝, 1,   PI3k/Akt/mTOR↓, 1,  

Cell Death

Akt↓, 3,   p‑Akt↓, 2,   Apoptosis↑, 3,   BAD↓, 2,   BAX↑, 11,   Bax:Bcl2↑, 3,   Bcl-2↓, 10,   Bcl-xL↓, 2,   BID↑, 2,   Casp↑, 2,   Casp3↑, 6,   Casp8↑, 1,   Casp9↑, 7,   CK2↓, 1,   Cyt‑c↑, 2,   hTERT/TERT↓, 1,   iNOS↓, 1,   MAPK↓, 1,   MAPK↑, 2,   MAPK↝, 2,   Mcl-1↓, 1,   p27↑, 2,   survivin↓, 2,   Telomerase↓, 1,  

Kinase & Signal Transduction PI3K/Akt/mTOR, MAP" style="cursor:help;color:#555;font-weight:normal;">ⓘ

AMPKα↓, 1,   HER2/EBBR2↓, 2,   RTK-RAS↓, 1,  

Transcription & Epigenetics

EZH2↓, 1,   HATs↓, 1,   miR-21↓, 1,  

Protein Folding & ER Stress

ATF6↑, 1,   eIF2α↑, 1,   HSP90↓, 1,  

DNA Damage & Repair

DNAdam↑, 1,   NKX3.1↑, 1,   P53↑, 3,   PARP↑, 2,   cl‑PARP↑, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK2↓, 1,   Cyc↓, 1,   cycD1/CCND1↓, 1,   cycE/CCNE↓, 1,   P21↓, 1,   P21↑, 2,   TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

BRAF↝, 1,   cMET↓, 1,   EMT↓, 4,   EpCAM↓, 1,   ERK↓, 5,   ERK↑, 1,   p‑ERK↓, 1,   FOXO↓, 1,   Gli1↓, 1,   GSK‐3β↓, 1,   HH↓, 3,   IGF-1↓, 2,   Let-7↑, 1,   mTOR↓, 4,   p‑mTOR↓, 1,   NOTCH1↓, 3,   P70S6K↓, 1,   PTCH1↓, 2,   PTEN↑, 1,   PTEN↝, 1,   Smo↓, 1,   Src↓, 1,   STAT↓, 1,   p‑STAT↓, 1,   STAT3↓, 4,   Sufu↓, 1,   TumCG↓, 2,   Wnt/(β-catenin)↓, 2,  

Migration

E-cadherin↑, 4,   p‑FAK↓, 1,   Ki-67↓, 2,   MALAT1↓, 1,   miR-148a↓, 1,   miR-19b↓, 1,   MMP2↓, 4,   MMP7↓, 1,   MMP9↓, 4,   N-cadherin↓, 1,   NFAT↑, 1,   TGF-β↓, 1,   TIMP1↑, 1,   TIMP2↑, 1,   TumCI↓, 2,   TumCMig↓, 1,   TumCP↓, 2,   Twist↓, 1,   Vim↓, 2,   Zeb1↓, 1,   ZEB2↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   ATF4↑, 1,   EGFR↓, 4,   HIF-1↓, 3,   Hif1a↓, 3,   VEGF↓, 4,  

Barriers & Transport

GLUT1↓, 3,   GLUT4↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 3,   IFN-γ↓, 1,   IFN-γ↑, 1,   IKKα↓, 2,   IL1↓, 1,   IL6↓, 3,   IL8↓, 1,   JAK↓, 1,   p‑JAK↓, 1,   NF-kB↓, 8,   NF-kB↑, 1,   NK cell↑, 1,   PSA↓, 2,   TNF-α↓, 2,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

ChemoSen↑, 1,   eff↑, 1,  

Clinical Biomarkers

AR↓, 1,   BRAF↝, 1,   E6↓, 1,   E7↓, 1,   EGFR↓, 4,   EZH2↓, 1,   HER2/EBBR2↓, 2,   hTERT/TERT↓, 1,   IL6↓, 3,   Ki-67↓, 2,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 1,   PRAS40↓, 1,   toxicity↓, 1,  
Total Targets: 165

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

Catalase↑, 1,   GPx↑, 1,   HO-1↑, 1,   Keap1↓, 1,   NRF2↑, 1,  

Functional Outcomes

toxicity↑, 1,  
Total Targets: 6

Scientific Paper Hit Count for: PI3K/Akt, PI3K/Akt signaling
10 Quercetin
3 EGCG (Epigallocatechin Gallate)
3 Apigenin (mainly Parsley)
3 Garcinol
2 Arctigenin
2 Curcumin
2 Cisplatin
2 Docetaxel
2 Deguelin
1 Allicin (mainly Garlic)
1 beta-glucans
1 Boron
1 Paclitaxel
1 Graviola
1 doxorubicin
1 Resveratrol
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:253  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page