Database Query Results : , , TGF-β

TGF-β, transforming growth factor-beta: Click to Expand ⟱
Source: HalifaxProj(inhibit) CGL-CS TCGA
Type:
Human malignancies frequently exhibit mutations in the TGF-β pathway, and overactivation of this system is linked to tumor growth by promoting angiogenesis and inhibiting the innate and adaptive antitumor immune responses.
Anti-inflammatory cytokine.
In normal tissues, TGF-β plays an essential role in cell cycle regulation, immune function, and tissue remodeling.
- In early carcinogenesis, TGF-β typically acts as a tumor suppressor by inhibiting cell proliferation and inducing apoptosis.

In advanced cancers, cells frequently become resistant to the growth-inhibitory effects of TGF-β.
- TGF-β then switches roles and promotes tumor progression by stimulating epithelial-to-mesenchymal transition (EMT), cell invasion, metastasis, and immune evasion.

Non-canonical (Smad-independent) pathways, such as MAPK, PI3K/Akt, and Rho signaling, also contribute to TGF-β-mediated responses.

Elevated levels of TGF-β have been detected in many advanced-stage cancers, including breast, lung, colorectal, pancreatic, and prostate cancers.
 - The switch from a tumor-suppressive to a tumor-promoting role is often associated with increased TGF-β production and activation in the tumor microenvironment.

High TGF-β expression or signaling activity is frequently correlated with aggressive disease features, resistance to therapy, increased metastasis, and poorer overall survival in many cancer types.


Scientific Papers found: Click to Expand⟱
2655- AL,    Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities
- Review, GC, NA
TGF-β↓, cycD1/CCND1↓, cycE/CCNE↓, CDK1↓, DNAdam↑, ROS↑, BAX↑, JNK↑, MMP↓, p38↑, MAPK↑, Fas↑, Cyt‑c↑, Casp8↑, PARP↑, Casp3↑, Casp9↑, Ca+2↑, ER Stress↑, P21↑, CDK2↓, CDK6↑, TumCCA↑, CDK4↓,
1124- ALA,    Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, HTH-83 - in-vitro, Thyroid, CAL-62 - in-vitro, Thyroid, FTC-133 - in-vivo, NA, NA
TumCP↓, AMPK↑, mTOR↓, TumCMig↓, TumCI↓, EMT↓, E-cadherin↑, β-catenin/ZEB1↓, Vim↓, Snail↓, Twist↓, TGF-β↓, p‑SMAD2↓, TumCG↓,
1093- And,    Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cells
- in-vitro, Lung, A549
TGF-β↓, TumCMig↓, MMP2↓, MMP9↓, ECM/TCF↓, p‑SMAD2↓, p‑SMAD3↓, SMAD4↓, p‑ERK↓, ROS↓, NOX4↓, SOD2↑, SIRT1↑, FOXO3↑,
238- Api,    Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
VEGF↓, TGF-β↓, Src↓, FAK↓, Akt↓, SMAD2↓, SMAD3↓,
307- Api,    Flavonoids inhibit angiogenic cytokine production by human glioma cells
- in-vitro, GBM, GL-15
TGF-β↓,
2318- Api,    Apigenin as a multifaceted antifibrotic agent: Therapeutic potential across organ systems
- Review, Nor, NA
*ROS↓, *PKM2↓, *Hif1a↓, *TGF-β↓, *AMPK↑, *Inflam↓, *PI3K↓, *Akt↑, *NRF2↑, *NF-kB↓,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
3667- ART/DHA,    Artemisinin improves neurocognitive deficits associated with sepsis by activating the AMPK axis in microglia
- Review, Sepsis, NA
*cognitive↑, *neuroP↑, *TNF-α↓, *IL6↓, *NF-kB↓, *AMPK↑, *ROS↓, *Akt↑, *MCP1↓, *MIP2↓, *TGF-β↑, *Inflam↓,
1075- ART/DHA,    Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer
- in-vitro, Nor, L929
*TGF-β↓,
563- ART/DHA,    Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10
- in-vitro, Colon, colon26 - in-vitro, CRC, RKO
TGF-β↓, IL10↓,
556- ART/DHA,    Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing
- Review, NA, NA
IL6↓, IL1↓, TNF-α↓, TGF-β↓, NF-kB↓, MIP2↓, PGE2↓, NO↓, Hif1a↓, KDR/FLK-1↓, VEGF↓, MMP2↓, TIMP2↑, ITGB1↑, NCAM↑, p‑ATM↑, p‑ATR↑, p‑CHK1↑, p‑Chk2↑, Wnt/(β-catenin)↓, PI3K↓, Akt↓, ERK↓, cMyc↓, mTOR↓, survivin↓, cMET↓, EGFR↓, cycD1/CCND1↓, cycE1↓, CDK4/6↓, p16↑, p27↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, oncosis↑, TumCCA↑, ROS↑, DNAdam↑, RAD51↓, HR↓,
1173- Ash,    Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling
- in-vitro, EC, K1 - in-vitro, Nor, THESCs
TumCP↓, *toxicity↓, Apoptosis↑, TumCCA↑, TumCMig↓, TumCI↓, p‑SMAD2↓, TGF-β↓, *toxicity↓,
3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, Inflam↓, antiOx↓, angioG↓, ROS↑, BAX↑, Bak↑, E6↓, E7↓, P53↑, Casp3↑, cl‑PARP↑, STAT3↓, eff↑, HSP90↓, TGF-β↓, TNF-α↓, EMT↑, mTOR↓, NOTCH1↓, p‑Akt↓, NF-kB↓, Dose↝,
2606- Ba,    Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma
- Review, HCC, NA
ChemoSen↑, TumCP↓, TumCCA↑, TumCMig↓, TumCI↓, MMPs↓, MAPK↓, TGF-β↓, ZFX↓, p‑MEK↓, ERK↓, MMP2↓, MMP9↓, uPA↓, TIMP1↓, TIMP2↓, NF-kB↓, p65↓, p‑IKKα↓, Fas↑, Casp2↑, Casp3↑, Casp8↑, Casp9↑, Bcl-xL↓, BAX↑, ER Stress↑, Ca+2↑, JNK↑, P53↑, ROS↑, H2O2↑, cMyc↓, CD24↓, 12LOX↓,
1399- BBR,  Rad,    Radiotherapy Enhancing and Radioprotective Properties of Berberine: A Systematic Review
- Review, NA, NA
*ROS↓, *MDA↓, *TNF-α↓, *TGF-β↓, *IL10↑, ROS↑, DNAdam↑, mtDam↑, MMP↓, Apoptosis↑, TumCCA↑, Hif1a↓, VEGF↓, RadioS↑,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2763- BetA,    Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization
- in-vitro, GC, NA
GRP78/BiP↓, TGF-β↓, ChemoSen↑, CSCs↓, SMAD2↓, SMAD3↓, OCT4↓,
3516- Bor,    Boron in wound healing: a comprehensive investigation of its diverse mechanisms
- Review, Wounds, NA
*Inflam↓, *antiOx↑, *ROS↓, *angioG↑, *COL1↑, *α-SMA↑, *TGF-β↑, *BMD↑, *hepatoP↑, *TNF-α↑, *HSP70/HSPA5↑, *SOD↑, *Catalase↑, *GSH↑, *MDA↓, *TOS↓, *IL6↓, *JAK2↓, *STAT3↓, *AMPK↑, *lipid-P↓, *VEGF↑, *Half-Life↝,
1206- Caff,    Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices
- in-vitro, NA, NA - ex-vivo, NA, NA
Fibrosis↓, TGF-β↓, α-SMA↓,
1105- CEL,    Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis
- in-vitro, BC, NA
COX2↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓, miR-145↑, TGF-β↓, SMAD3↓,
1601- Cu,    The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stress
- in-vitro, CRC, NA
i-CRT↓, ICD↑, i-ATP↓, i-HMGB1↓, ER Stress↑, ROS↑, DCells↑, CD8+↑, IL12↑, IFN-γ↑, TGF-β↓,
3582- CUR,  PI,    Therapeutic and Preventive Effects of Piperine and its Combination with Curcumin as a Bioenhancer Against Aluminum-Induced Damage in the Astrocyte Cells
*eff↑, *IL6↓, *TGF-β↓, *BioAv↑,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1/CCND1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
153- CUR,    Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo
- in-vivo, Pca, C4-2B
PSA↓, TGF-β↓, BMPs↑,
13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, DR5↑, JNK↑, NRF2↑, PPARγ↑, HER2/EBBR2↓, IR↓, ER(estro)↓, Fas↑, PDGF↓, TGF-β↓, FGF↓, EGFR↓, JAK↓, PAK↓, MAPK↓, ATPase↓, COX2↓, MMPs↓, IL1↓, IL2↓, IL5↓, IL6↓, IL8↓, IL12↓, IL18↓, NF-kB↓, NOTCH1↓, STAT1↓, STAT4↓, STAT5↓, STAT3↓,
124- CUR,    Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TGF-β↓, Wnt↓, PI3k/Akt/mTOR↓, NF-kB↓, PTEN↑, Apoptosis↑,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
1110- EA,  GEM,    Ellagic Acid Resensitizes Gemcitabine-Resistant Bladder Cancer Cells by Inhibiting Epithelial-Mesenchymal Transition and Gemcitabine Transporters
- vitro+vivo, Bladder, NA
TGF-β↓, SMAD2↓, SMAD3↓, SMAD4↓,
1621- EA,    The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumMeta↓, TumCI↓, TumAuto↑, VEGFR2↓, MAPK↓, PI3K↓, Akt↓, PD-1↓, NOTCH↓, PCNA↓, Ki-67↓, cycD1/CCND1↓, CDK2↑, CDK6↓, Bcl-2↓, cl‑PARP↑, BAX↑, Casp3↑, DR4↑, DR5↑, Snail↓, MMP2↓, MMP9↓, TGF-β↑, PKCδ↓, β-catenin/ZEB1↓, SIRT1↓, HO-1↓, ROS↑, CHOP↑, Cyt‑c↑, MMP↓, OCR↓, AMPK↑, Hif1a↓, NF-kB↓, E-cadherin↑, Vim↓, EMT↓, LC3II↑, CIP2A↓, GLUT1↓, PDH↝, MAD↓, LDH↓, GSTs↑, NOTCH↓, survivin↓, XIAP↓, ER Stress↑, ChemoSideEff↓, ChemoSen↑,
1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, TumCMig↓, TumCI↓, TumMeta↓, Apoptosis↑, TGF-β↓, SMAD3↓, CDK6↓, PI3K↓, Akt↓, angioG↓, VEGFR2↓, MAPK↓, NEDD9↓, NF-kB↓, eff↑, eff↑, RadioS↑, ChemoSen↑, DNAdam↑, eff↑, *toxicity∅, *toxicity∅,
1607- EA,    Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions
- Review, GC, NA
STAT3↓, TumCP↓, Apoptosis↑, NF-kB↓, EMT↓, RadioS↑, antiOx↑, COX1↓, COX2↓, cMyc↓, Snail↓, Twist↓, MMP2↓, P90RSK↓, CDK8↓, PI3K↓, Akt↓, TumCCA↑, Casp8↑, PCNA↓, TGF-β↓, Shh↓, NOTCH↓, IL6↓, ALAT↓, ALP↓, AST↓, VEGF↓, P21↑, *toxicity∅, *Inflam↓, *cardioP↑, *neuroP↑, *hepatoP↑, ROS↑, *NRF2↓, *GSH↑,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
1072- EGCG,    Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways
- in-vitro, Thyroid, 8505C
EMT↓, TumCI↓, TumCMig↓, TGF-β↓, p‑SMAD2↓, p‑SMAD3↓, SMAD4↓,
26- EGCG,  QC,  docx,    Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy
- vitro+vivo, Pca, PC3
BAD↓, PARP↑, Casp7↑, IκB↓, Ki-67↓, VEGF↓, EGFR↓, FGF↓, TGF-β↓, TNF-α↓, SCF↓, Bax:Bcl2↑, NF-kB↓,
1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑, TumCP↓, ROS↑, TumAuto↑, EMT↓, TGF-β↓, DNAdam↑, ER Stress↑, TumCCA↑, ATP↓, NF-kB↓, CYP1A1↑, STAC2↓, JAK↓, PI3K↓, Akt↓, MAPK↓, FASN↓, HER2/EBBR2↓, ChemoSen↑, eff↑, ChemoSen↑, angioG↓, VEGF↓, MMP2↓, eNOS↓, FOXD3↑, MMP9↓, TIMP1↑,
1246- EMD,    Emodin reduces Breast Cancer Lung Metastasis by suppressing Macrophage-induced Breast Cancer Cell Epithelial-mesenchymal transition and Cancer Stem Cell formation
- in-vivo, BC, NA
TGF-β↓, EMT↓, CSCs↓,
1323- EMD,    Anticancer action of naturally occurring emodin for the controlling of cervical cancer
- Review, Cerv, NA
TumCCA↑, DNAdam↑, mTOR↓, Casp3↑, Casp8↑, Casp9↑, TGF-β↑, SMAD3↓, p‑SMAD4↓, ROS↑, MMP↓, CXCR4↓, HER2/EBBR2↓, ER Stress↓, TumAuto↑, NOTCH1↓,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
4027- FulvicA,    Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, selectivity↑, TGF-β↓, Twist↓, NOTCH1↓, CTNNB1↓, Src↓, E-cadherin↑, EMT↓, TumMeta↓, BioAv↑,
817- GAR,    Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways
- vitro+vivo, SCC, KYSE150 - vitro+vivo, SCC, KYSE450
HATs↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, CBP↓, p300↓, TGF-β↓, Ki-67↓, SMAD2↓, SMAD3↓,
822- GAR,    Garcinol, a Polyisoprenylated Benzophenone Modulates Multiple Proinflammatory Signaling Cascades Leading to the Suppression of Growth and Survival of Head and Neck Carcinoma
- vitro+vivo, HNSCC, NA
ROS↑, STAT3↓, cSrc↓, JAK1↓, JAK2↓, NF-kB↓, TGF-β↓, TumCG↓,
805- GAR,  Cisplatin,  PacT,    Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells
- Review, NA, NA
ERK↓, PI3K/Akt↓, Wnt/(β-catenin)↓, STAT3↓, NF-kB↓, ChemoSen↑, COX2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, VEGF↓, TGF-β↓, HATs↓, E-cadherin↑, Vim↓, Zeb1↓, ZEB2↓, Let-7↑, MMP9↓, TumCCA↑, ROS↑, MMP↓, IL6↓, NOTCH1↓,
1117- Gb,    Ginkgobiloba leaf extract mitigates cisplatin-induced chronic renal interstitial fibrosis by inhibiting the epithelial-mesenchymal transition of renal tubular epithelial cells mediated by the Smad3/TGF-β1 and Smad3/p38 MAPK pathways
- vitro+vivo, Kidney, HK-2
α-SMA↓, COL1↓, TGF-β↓, SMAD2↓, SMAD3↓, p‑SMAD2↓, p‑SMAD3↓, p38↓, p‑p38↓, Vim↓, TIMP1↓, CTGF↓, E-cadherin↑, MMP1:TIMP1↑,
941- Gos,  Rad,    The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis
- in-vivo, NA, NA
lactateProd↓, other↓, TGF-β↓,
1649- HCAs,    Anticancer Properties of Hydroxycinnamic Acids -A Review
- Review, Var, NA
*antiOx↑, MMP2↓, MMP9↓, VEGF↓, TGF-β↓, Bax:Bcl2↑, TumCCA↑, COX2↓, NF-kB↓,
4632- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/β-catenin and TGFβ signaling pathways
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, SUM159
CSCs↓, TumCMig↓, TumCI↓, β-catenin/ZEB1↓, Wnt↓, p‑LRP6↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, SMAD2↓, SMAD3↓, TGF-β↓,
4636- HT,    Hydroxytyrosol inhibits cancer stem cells and the metastatic capacity of triple-negative breast cancer cell lines by the simultaneous targeting of epithelial-to-mesenchymal transition, Wnt/ß-catenin and TGFß signaling
- in-vitro, BC, SUM159 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, HS587T - in-vitro, BC, BT549
Wnt↓, β-catenin/ZEB1↓, LRP6↓, cycD1/CCND1↓, EMT↓, Slug↓, Zeb1↓, Snail↓, Vim↓, TGF-β↓, CSCs↓, TumCMig↓, chemoP↑,
1122- LF,  MTX,    Lactoferrin Reverses Methotrexate Driven Epithelial Barrier Defect by Inhibiting TGF-β Mediated Epithelial to Mesenchymal Transition
- in-vivo, Colon, Caco-2
TGF-β↓, EMT↓,
1060- LT,  BTZ,    Luteolin inhibits the TGF-β signaling pathway to overcome bortezomib resistance in multiple myeloma
- vitro+vivo, Melanoma, NA
ALDH1A1↓, TGF-β↓, ChemoSen↑,
4520- MAG,    Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling
- vitro+vivo, PC, PANC1
Vim↓, E-cadherin↑, EMT↓, N-cadherin↓, p‑SMAD2↓, p‑SMAD3↓, TumCP↓, TumCMig↓, TumCI↓, TGF-β↓,
2643- MCT,    Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism
- Review, Nor, NA
*Akt↑, *AMPK↓, *TGF-β↓, eff↑, *BioEnh↑, *ATP↑, *PGC-1α↑, *p‑mTOR↑, *SMAD3↓,
2386- MET,    Mechanisms of metformin inhibiting cancer invasion and migration
- Review, Var, NA
OS↑, AMPK↑, EMT↓, TGF-β↓, mTOR↓, P70S6K↓, PKM2↓, Hif1a↓, ChemoSen↑,
3478- MF,    One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study
- Trial, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, C2C12
TumCP↓, TumCMig↓, TumCI↓, *toxicity∅, TGF-β↓, Twist↓, Slug↓, β-catenin/ZEB1↓, Vim↓, p‑SMAD2↓, p‑SMAD3↓, angioG↓, VEGF↓, selectivity↑, LIF↑,
3536- MF,    Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis
- Review, Arthritis, NA - Review, Stroke, NA
*Inflam↓, *Diff↑, *toxicity∅, *other↑, *SOX9↑, *COL2A1↑, *NO↓, *PGE2↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *IL6↓, *IL10↑, *angioG↑, *MSCs↑, *VEGF↑, *TGF-β↑, *angioG↝, *VEGF↓, Ca+2↝,
3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, *necrosis↓, *IL6↑, *TGF-β↑, *iNOS↑, *MMP2↑, *MCP1↑, *HO-1↑, *Inflam↓, *IL1β↓, *IL6↓, *TNF-α↓, *BioAv↑, eff⇅, DNAdam↑, Apoptosis↑, ROS↑, TumCP↓, *ROS↓, *FGF↑,
4111- MF,    Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell
- Review, Arthritis, NA
*Inflam↓, *Cartilage↑, *Pain↓, *QoL↑, *Dose↝, *VEGF↑, *NO↑, *TGF-β↑, *MMP9↓, *PGE2↑, *GPx3↑, *SOD2↑, *Catalase↑, *GSR↑, *Ca+2↑,
201- MFrot,  MF,    Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-468
CCDC150↓, TGF-β↓, SMAD3↓,
3497- MFrot,  MF,    The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets
- Human, Nor, NA
*PDGFR-BB↑, *TGF-β↑, *IGF-1↑, *FGF↑, *angioG↑, *Inflam↓, *ROS↓,
1798- NarG,    Naringenin: A potential flavonoid phytochemical for cancer therapy
- Review, NA, NA
*Inflam↓, *antiOx↓, neuroP↑, hepatoP↑, AntiCan↑, Apoptosis↑, TumCCA↑, angioG↓, ROS↝, SOD↑, TGF-β↓, Treg lymp↓, IL1β↓, *BioAv↝, ChemoSen↑, cardioP↑,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
1681- PBG,    Propolis: Its Role and Efficacy in Human Health and Diseases
- Review, Nor, NA
*Inflam↓, *AntiCan↑, *antiOx↑, *hyperG↓, *BG↓, *HbA1c↓, *NF-kB↓, *ROS↓, *TGF-β↑, *selectivity↑,
3250- PBG,    Allergic Inflammation: Effect of Propolis and Its Flavonoids
- Review, NA, NA
*SOD↑, *GPx↑, *Catalase↑, *Prx↑, *HO-1↑, *Inflam↓, *TNF-α↓, *IL1β↓, *IL4↑, *IL10↑, *TLR4↓, *LOX1↓, *COX1↓, *COX2↓, *NF-kB↓, *AP-1↓, *ROS↓, *GSH↑, *TGF-β↓, *IL8↓, *MMP9↓, *α-SMA↓, *MDA↓,
3257- PBG,    The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review
- Review, Var, NA
CDK4↓, CDK6↓, pRB↓, ROS↓, TumCCA↑, P21↑, PI3K↓, Akt↓, EMT↓, E-cadherin↑, Vim↓, *COX2↓, *MPO↓, *MDA↓, *TNF-α↓, *IL6↓, *Catalase↑, *SOD↑, *AST↓, *ALAT↓, *IL1β↓, *IL10↓, *GPx↓, *TLR4↓, *Sepsis↓, *IFN-γ↑, *GSH↑, *NRF2↑, *α-SMA↓, *TGF-β↓, *IL5↓, *IL6↓, *IL8↓, *PGE2↓, *NF-kB↓, *MMP9↓,
1257- PI,    Piperlongumine attenuates bile duct ligation-induced liver fibrosis in mice via inhibition of TGF-β1/Smad and EMT pathways
- ex-vivo, LiverDam, NA
*Fibronectin↓, *α-SMA↓, *COL1↓, *COL3A1↓, *TGF-β↓, *EMT↓, *MMP2↓, *α-SMA↓, *Smad7↑, *E-cadherin↑, *Vim↓, *hepatoP↑, *antiOx↑, *GSH↑, *ROS↓,
3369- QC,    Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects
- Review, Pca, NA
FAK↓, TumCCA↑, p‑pRB↓, CDK2↑, CycB/CCNB1↓, CDK1↓, EMT↓, PI3K↓, MAPK↓, Wnt↓, ROS↑, miR-21↑, Akt↓, NF-kB↓, FasL↑, Bak↑, BAX↑, Bcl-2↓, Casp3↓, Casp9↑, P53↑, p38↑, MAPK↑, Cyt‑c↑, PARP↓, CHOP↑, ROS↓, LDH↑, GRP78/BiP↑, ERK↑, MDA↓, SOD↑, GSH↑, NRF2↑, VEGF↓, PDGF↓, EGF↓, FGF↓, TNF-α↓, TGF-β↓, VEGFR2↓, EGFR↓, FGFR1↓, mTOR↓, cMyc↓, MMPs↓, LC3B-II↑, Beclin-1↑, IL1β↓, CRP↓, IL10↓, COX2↓, IL6↓, TLR4↓, Shh↓, HER2/EBBR2↓, NOTCH↓, DR5↑, HSP70/HSPA5↓, CSCs↓, angioG↓, MMP2↓, MMP9↓, IGFBP3↑, uPA↓, uPAR↓, RAS↓, Raf↓, TSP-1↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
923- QC,    Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health
- Review, Var, NA
ROS↑, GSH↓, Ca+2↝, MMP↓, Casp3↑, Casp8↑, Casp9↑, other↓, *ROS↓, *NRF2↑, HO-1↑, TumCCA↑, Inflam↓, STAT3↓, DR5↑, P450↓, MMPs↓, IFN-γ↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, cl‑PARP↑, Apoptosis↑, P53↑, Sp1/3/4↓, survivin↓, TRAILR↑, Casp10↑, DFF45↑, TNFR 1↑, Fas↑, NF-kB↓, IKKα↓, cycD1/CCND1↓, Bcl-2↓, BAX↑, PI3K↓, Akt↓, E-cadherin↓, Vim↓, β-catenin/ZEB1↓, cMyc↓, EMT↓, MMP2↓, NOTCH1↓, MMP7↓, angioG↓, TSP-1↑, CSCs↓, XIAP↓, Snail↓, Slug↓, LEF1↓, P-gp↓, EGFR↓, GSK‐3β↓, mTOR↓, RAGE↓, HSP27↓, VEGF↓, TGF-β↓, COL1↓, COL3A1↓,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
878- RES,    Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression
- vitro+vivo, CRC, LoVo
TumMeta↓, E-cadherin↑, Vim↓, TGF-β↓, SMAD2↓, EMT↓, SMAD3↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
3619- RosA,    Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion
- Review, AD, NA
*BioAv↓, *BBB↝, *monoA↑, *TGF-β↓, *Aβ↓,
4485- Se,    Selenium stimulates the antitumour immunity: Insights to future research
- Review, NA, NA
*antiOx↑, chemoPv↑, ROS↑, Imm↑, selenoP↑, *IL2↑, *IL4↑, *TNF-α↓, *TGF-β↓, *EMT↓, Risk↓, *GPx↑, *TrxR↑,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB/CCNB1↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1/CCND1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3294- SIL,    Silymarin: a review on paving the way towards promising pharmacological agent
- Review, Nor, NA - Review, Arthritis, NA
*hepatoP↑, *Inflam↓, *chemoP↑, *glucose↓, *antiOx↑, *ROS↓, *ACC↓, *FASN↓, *radioP↑, *NF-kB↓, *TGF-β↓, *AST↓, *α-SMA↝, *eff↑, *neuroP↑, eff↑, ROS↓,
2363- SK,    Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis
- in-vivo, CKD, NA
PKM2↓, lactateProd↓, TGF-β↓,
2359- SK,    Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery
- in-vivo, Liver, NA
TumCG↓, PKM2↓, EMT↓, TGF-β↓, Glycolysis↓, lactateProd↓, ATP↓,
2213- SK,    Shikonin attenuates cerebral ischemia/reperfusion injury via inhibiting NOD2/RIP2/NF-κB-mediated microglia polarization and neuroinflammation
- in-vivo, Stroke, NA
*neuroP↑, *Inflam↓, *iNOS↓, *TNF-α↓, *IL1β↓, *IL6↓, *ARG↑, *TGF-β↑, *IL10↑, *NF-kB↓, *eff↓,
1194- SM,    Salvia miltiorrhiza protects against diabetic nephropathy through metabolome regulation and wnt/β-catenin and TGF-β signaling inhibition
- in-vivo, Diabetic, NA
β-catenin/ZEB1↓, TGF-β↓,
4360- SNP,    Silver Nanoparticles as Real Topical Bullets for Wound Healing
- Study, Nor, NA
*other↝, *toxicity↓, *eff↑, *eff↑, *Inflam↓, *IL6↓, *TGF-β↑, *MMP9↓, *eff↑,
1138- TQ,    Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TumMeta↓, EMT↓, E-cadherin↑, Vim↓, Slug↓, TGF-β↓, SMAD2↓, SMAD3↓,
3559- TQ,    Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease
- Review, AD, NA - Review, Var, NA
*antiOx↑, *Inflam↓, *AChE↓, AntiCan↑, *cardioP↑, *RenoP↑, *neuroP↑, *hepatoP↑, TumCG↓, Apoptosis↑, PI3K↓, Akt↑, TumCCA↑, angioG↓, *NF-kB↓, *TLR2↓, *TLR4↓, *MyD88↓, *TRIF↓, *IRF3↓, *IL1β↓, *IL6↓, *IL12↓, *NRF2↑, *COX2↓, *VEGF↓, *MMP9↓, *cMyc↓, *cycD1/CCND1↓, *TumCP↓, *TumCI↓, *MDA↓, *TGF-β↓, *CRP↓, *Casp3↓, *GSH↑, *IL10↑, *iNOS↑, *lipid-P↓, *SOD↑, *H2O2↓, *ROS↓, *LDH↓, *Catalase↑, *GPx↑, *AChE↓, *cognitive↑, *MAPK↑, *JNK↑, *BAX↓, *memory↑, *Aβ↓, *MMP↑,
3425- TQ,    Advances in research on the relationship between thymoquinone and pancreatic cancer
Apoptosis↑, TumCP↓, TumCI↓, TumMeta↓, ChemoSen↑, angioG↓, Inflam↓, NF-kB↓, PI3K↓, Akt↓, TGF-β↓, Jun↓, p38↑, MAPK↑, MMP9↓, PKM2↓, ROS↑, JNK↑, MUC4↓, TGF-β↑, Dose↝, FAK↓, NOTCH↓, PTEN↑, mTOR↓, Warburg↓, XIAP↓, COX2↓, Casp9↑, Ki-67↓, CD34↓, VEGF↓, MCP1↓, survivin↓, Cyt‑c↑, Casp3↑, H4↑, HDAC↓,
3405- TQ,  doxoR,    Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity and the underlying mechanism
- vitro+vivo, NA, NA
*cardioP↑, *NRF2↑, *HO-1↑, *ROS↓, *NQO1↑, *COX2↓, *NOX4↓, *GPx4↑, *FTH1↑, *p‑mTOR↓, *TGF-β↓,
3409- TQ,    Thymoquinone therapy remediates elevated brain tissue inflammatory mediators induced by chronic administration of food preservatives
- in-vivo, Nor, NA
*MDA↓, *TGF-β↓, *CRP↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *Casp3↓, *GSH↑, *NRF2↑, *IL10↑, *neuroP↑, *ROS↓, *Apoptosis↓, *Inflam↓,
2132- TQ,    Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis
- in-vivo, Nor, NA
*Weight∅, *antiOx↑, *lipid-P↓, *MMP7↓, *Casp3↓, *BAX↓, *TGF-β↓, *Diff↑, *NRF2↓, *HO-1↓, *NF-kB↓, *IκB↑,
1058- UA,    Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1
- in-vivo, NA, NA
TGF-β↓,
4328- VitB5,    Pantethine
- Review, AD, NA
*BBB↝, *LDL↓, *lipid-P↓, *AST↓, *ALAT↓, *TGF-β↓, *adiP↑, *Inflam↓, TumCG↓, FASN↓,
1223- VitD3,    Vitamin D3 Treatment Influences PGE2 and TGFβ in Normal and Increased Breast Cancer Risk Women
- Trial, NA, NA
*TGF-β↑, *PGE2↓,
2276- VitK2,    Vitamin K2 (MK-7) Intercepts Keap-1/Nrf-2/HO-1 Pathway and Hinders Inflammatory/Apoptotic Signaling and Liver Aging in Naturally Aging Rat
- in-vivo, Nor, NA
*Albumin↑, *AST↓, *ALAT↓, *Keap1↓, *NRF2↑, *HO-1↑, *COX2↓, *iNOS↓, *TNF-α↓, *TIMP1↓, *TGF-β↓, *ROS↓, *DNAdam↓, *Inflam↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 90

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 1,   CYP1A1↑, 1,   Ferroptosis↑, 1,   GSH↓, 1,   GSH↑, 1,   GSTs↑, 1,   H2O2↑, 1,   HO-1↓, 2,   HO-1↑, 3,   HO-2↓, 1,   ICD↑, 1,   lipid-P↓, 1,   MAD↓, 1,   MDA↓, 1,   NOX4↓, 1,   NQO1↑, 1,   NRF2↑, 2,   ROS↓, 7,   ROS↑, 26,   ROS↝, 1,   selenoP↑, 1,   SOD↑, 2,   SOD2↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 4,   i-ATP↓, 1,   CDC25↓, 2,   EGF↓, 2,   FGFR1↓, 1,   p‑MEK↓, 1,   MMP↓, 12,   mtDam↑, 1,   OCR↓, 1,   Raf↓, 1,   XIAP↓, 6,  

Core Metabolism/Glycolysis

12LOX↓, 1,   ALAT↓, 1,   AMPK↑, 4,   cMyc↓, 8,   ECAR↝, 1,   FASN↓, 2,   GlucoseCon↓, 2,   GlutMet↓, 1,   Glycolysis↓, 3,   IR↓, 1,   lactateProd↓, 5,   LDH↓, 1,   LDH↑, 1,   PDH↝, 1,   PDK1?, 2,   PFK↓, 1,   PI3K/Akt↓, 1,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 5,   POLD1↓, 1,   PPARγ↑, 2,   SIRT1↓, 3,   SIRT1↑, 2,   SREBP1↓, 1,   Warburg↓, 1,  

Cell Death

Akt↓, 14,   Akt↑, 3,   p‑Akt↓, 3,   Apoptosis?, 1,   Apoptosis↓, 1,   Apoptosis↑, 19,   BAD↓, 1,   Bak↑, 2,   BAX↑, 11,   Bax:Bcl2↑, 3,   Bcl-2↓, 13,   Bcl-xL↓, 4,   Casp↑, 1,   Casp10↑, 1,   Casp2↑, 1,   Casp3↓, 3,   Casp3↑, 13,   cl‑Casp3↑, 2,   Casp7↑, 1,   Casp8↑, 6,   Casp9↑, 12,   cl‑Casp9↑, 1,   CBP↓, 1,   cFLIP↓, 1,   p‑Chk2↑, 1,   CK2↓, 1,   Cyt‑c↑, 10,   Diablo↑, 2,   DR4↑, 1,   DR5↑, 5,   FADD↑, 1,   Fas↑, 6,   FasL↑, 2,   Ferroptosis↑, 1,   IAP1↓, 1,   iNOS↓, 3,   JNK↑, 5,   p‑JNK↓, 1,   MAPK↓, 7,   MAPK↑, 3,   Mcl-1↓, 3,   MDM2↓, 2,   Myc↓, 1,   NOXA↑, 1,   oncosis↑, 1,   p27↑, 2,   p38↓, 1,   p38↑, 4,   p‑p38↓, 2,   PUMA↑, 1,   survivin↓, 7,   Telomerase↓, 2,   TNFR 1↑, 1,   TRAILR↑, 1,  

Kinase & Signal Transduction

cSrc↓, 1,   FOXD3↑, 1,   HER2/EBBR2↓, 5,   PAK↓, 1,   SOX9?, 1,   Sp1/3/4↓, 2,   TSC2↑, 1,  

Transcription & Epigenetics

cJun↓, 1,   EZH2↓, 1,   ac‑H3↑, 1,   H4↑, 1,   ac‑H4↑, 1,   HATs↓, 2,   HATs↑, 1,   miR-145↑, 1,   miR-21↓, 1,   miR-21↑, 1,   miR-27a-3p↓, 1,   other↓, 3,   pRB↓, 1,   p‑pRB↓, 1,   tumCV↓, 3,  

Protein Folding & ER Stress

CHOP↑, 2,   i-CRT↓, 1,   ER Stress↓, 1,   ER Stress↑, 8,   GRP78/BiP↓, 1,   GRP78/BiP↑, 3,   HSP27↓, 1,   HSP70/HSPA5↓, 2,   HSP90↓, 1,   IRE1↑, 1,  

Autophagy & Lysosomes

Beclin-1↓, 1,   Beclin-1↑, 2,   LC3B-II↑, 1,   LC3II↓, 1,   LC3II↑, 2,   p62↓, 1,   TumAuto↑, 6,  

DNA Damage & Repair

ATM↑, 1,   p‑ATM↑, 1,   p‑ATR↑, 1,   p‑CHK1↑, 1,   DFF45↑, 1,   DNAdam↓, 1,   DNAdam↑, 9,   DNMT1↓, 1,   DNMTs↓, 1,   HR↓, 1,   p16↑, 2,   P53↑, 9,   PARP↓, 1,   PARP↑, 2,   cl‑PARP↑, 5,   PARP1↑, 1,   PCNA↓, 4,   RAD51↓, 1,   SIRT6↑, 1,   TP53↑, 1,  

Cell Cycle & Senescence

CDK1↓, 3,   CDK2↓, 4,   CDK2↑, 2,   CDK4↓, 5,   CycB/CCNB1↓, 3,   cycD1/CCND1↓, 11,   cycE/CCNE↓, 4,   cycE1↓, 1,   P21↑, 6,   RB1↑, 1,   p‑RB1↓, 1,   TumCCA↑, 24,  

Proliferation, Differentiation & Cell State

ALDH1A1↓, 1,   CD24↓, 1,   CD34↓, 1,   CD44↓, 1,   CDK8↓, 2,   cFos↓, 1,   CIP2A↓, 1,   cMET↓, 1,   CSCs↓, 9,   CTNNB1↓, 1,   EMT↓, 27,   EMT↑, 2,   ERK↓, 6,   ERK↑, 1,   p‑ERK↓, 4,   FGF↓, 3,   FOXO3↑, 1,   FOXO4↓, 1,   GSK‐3β↓, 1,   HDAC↓, 3,   HH↓, 1,   IGF-1↓, 1,   IGFBP3↑, 2,   Jun↓, 1,   Let-7↑, 1,   LRP6↓, 2,   p‑LRP6↓, 1,   mTOR↓, 11,   p‑mTOR↓, 1,   mTORC1↓, 1,   mTORC2↓, 1,   Nanog↓, 1,   NOTCH↓, 7,   NOTCH1↓, 7,   OCT4↓, 2,   p300↓, 1,   P70S6K↓, 1,   P90RSK↓, 1,   PI3K↓, 14,   PTEN↑, 5,   RAS↓, 2,   SCF↓, 1,   Shh↓, 2,   SOX2↓, 1,   Src↓, 2,   STAT1↓, 1,   STAT3↓, 11,   p‑STAT3↓, 2,   STAT4↓, 1,   STAT5↓, 1,   TCF-4↓, 1,   TumCG↓, 8,   Wnt↓, 7,   Wnt/(β-catenin)↓, 3,   ZFX↓, 1,  

Migration

AntiAg↓, 1,   AP-1↓, 1,   ATPase↓, 1,   AXL↓, 1,   CA↓, 1,   Ca+2↑, 4,   Ca+2↝, 3,   CAFs/TAFs↓, 1,   CCDC150↓, 1,   CDK4/6↓, 1,   CLDN2↓, 1,   COL1↓, 2,   COL3A1↓, 1,   CTGF↓, 1,   CXCL12↓, 2,   E-cadherin↓, 1,   E-cadherin↑, 15,   FAK↓, 5,   p‑FAK↓, 1,   Fibronectin↓, 1,   Fibrosis↓, 1,   ITGB1↑, 1,   Ki-67↓, 7,   LAMs↓, 1,   LEF1↓, 1,   miR-203↑, 1,   MMP1↓, 1,   MMP1:TIMP1↑, 1,   MMP13↓, 1,   MMP2↓, 16,   MMP3↓, 1,   MMP7↓, 2,   MMP9↓, 17,   MMPs↓, 5,   MUC4↓, 1,   N-cadherin↓, 5,   NCAM↑, 1,   NEDD9↓, 1,   PDGF↓, 3,   PKCδ↓, 3,   RAGE↓, 1,   Rho↓, 1,   ROCK1↓, 1,   Slug↓, 7,   SMAD2↓, 9,   p‑SMAD2↓, 8,   SMAD3↓, 14,   p‑SMAD3↓, 6,   SMAD4↓, 3,   p‑SMAD4↓, 1,   Snail?, 1,   Snail↓, 9,   STAC2↓, 1,   TGF-β↓, 60,   TGF-β↑, 4,   TIMP1↓, 2,   TIMP1↑, 1,   TIMP2↓, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   TSP-1↑, 3,   TumCA↓, 1,   TumCI↓, 15,   TumCMig↓, 15,   TumCP↓, 15,   TumMeta↓, 11,   Twist↓, 6,   uPA↓, 7,   uPAR↓, 1,   Vim?, 1,   Vim↓, 15,   Zeb1↓, 6,   ZEB2↓, 2,   α-SMA↓, 3,   β-catenin/ZEB1↓, 9,  

Angiogenesis & Vasculature

angioG↓, 14,   ATF4↑, 1,   ECM/TCF↓, 1,   EGFR↓, 9,   Endoglin↑, 1,   eNOS↓, 1,   Hif1a↓, 11,   KDR/FLK-1↓, 1,   NO↓, 2,   VEGF↓, 21,   VEGFR2↓, 5,   ZBTB10↑, 1,  

Barriers & Transport

GLUT1↓, 2,   NHE1↓, 2,   P-gp↓, 2,  

Immune & Inflammatory Signaling

CD4+↓, 1,   COX1↓, 2,   COX2↓, 16,   CRP↓, 2,   CXCR4↓, 3,   DCells↑, 1,   i-HMGB1↓, 1,   IFN-γ↓, 1,   IFN-γ↑, 1,   IKKα↓, 1,   p‑IKKα↓, 1,   IL1↓, 4,   IL10↓, 3,   IL12↓, 1,   IL12↑, 1,   IL18↓, 1,   IL1β↓, 4,   IL2↓, 1,   IL4↓, 1,   IL5↓, 1,   IL6↓, 10,   IL8↓, 2,   Imm↑, 1,   Inflam↓, 6,   IκB↓, 1,   JAK↓, 3,   JAK1↓, 1,   JAK2↓, 2,   LIF↑, 1,   M2 MC↓, 1,   MCP1↓, 2,   MIP2↓, 1,   NF-kB↓, 22,   p65↓, 1,   p‑p65↓, 1,   PD-1↓, 2,   PD-L1↓, 2,   PGE2↓, 4,   PSA↓, 2,   T-Cell↑, 1,   Th1 response↑, 1,   TLR4↓, 1,   TNF-α↓, 6,  

Hormonal & Nuclear Receptors

AR↓, 2,   CDK6↓, 7,   CDK6↑, 1,   ER(estro)↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 6,   BioAv↑, 2,   ChemoSen↑, 16,   Dose↝, 4,   Dose∅, 1,   eff↑, 29,   eff⇅, 1,   eff↝, 1,   Half-Life↓, 1,   Half-Life↝, 2,   P450↓, 1,   RadioS↑, 7,   selectivity↑, 4,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AR↓, 2,   AST↓, 1,   BMPs↑, 1,   CRP↓, 2,   E6↓, 1,   E7↓, 1,   EGFR↓, 9,   EZH2↓, 1,   HER2/EBBR2↓, 5,   IL6↓, 10,   Ki-67↓, 7,   LDH↓, 1,   LDH↑, 1,   Myc↓, 1,   PD-L1↓, 2,   PSA↓, 2,   RAGE↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 5,   AntiTum↑, 1,   cardioP↑, 2,   chemoP↑, 3,   ChemoSideEff↓, 1,   hepatoP↑, 2,   neuroP↑, 1,   OS↑, 1,   radioP↑, 1,   RenoP↑, 1,   Risk↓, 1,   toxicity↝, 1,   toxicity∅, 1,   TumVol↓, 2,  

Infection & Microbiome

CD8+↑, 2,  
Total Targets: 427

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 13,   Catalase↑, 6,   GPx↓, 1,   GPx↑, 4,   GPx3↑, 1,   GPx4↑, 1,   GSH↑, 7,   GSR↑, 1,   H2O2↓, 1,   HO-1↓, 1,   HO-1↑, 4,   hyperG↓, 1,   Keap1↓, 2,   lipid-P↓, 4,   MDA↓, 7,   MPO↓, 1,   NOX4↓, 1,   NQO1↑, 1,   NRF2↓, 2,   NRF2↑, 8,   Prx↑, 1,   ROS↓, 20,   SOD↑, 5,   SOD2↑, 1,   TOS↓, 1,   TrxR↑, 1,  

Metal & Cofactor Biology

FTH1↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   MMP↑, 1,   PGC-1α↑, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   adiP↑, 1,   ALAT↓, 3,   AMPK↓, 1,   AMPK↑, 3,   cMyc↓, 1,   FASN↓, 1,   glucose↓, 1,   LDH↓, 1,   LDL↓, 1,   NH3↓, 1,   PKM2↓, 1,   SIRT1↑, 1,  

Cell Death

Akt↑, 3,   Apoptosis↓, 1,   BAX↓, 2,   Casp3↓, 3,   iNOS↓, 2,   iNOS↑, 2,   JNK↑, 1,   MAPK↑, 1,   necrosis↓, 1,  

Kinase & Signal Transduction

SOX9↑, 1,  

Transcription & Epigenetics

other↑, 2,   other↝, 1,  

Protein Folding & ER Stress

ER Stress↓, 1,   HSP70/HSPA5↑, 1,  

DNA Damage & Repair

DNAdam↓, 1,  

Cell Cycle & Senescence

cycD1/CCND1↓, 1,  

Proliferation, Differentiation & Cell State

Diff↑, 2,   EMT↓, 2,   FGF↑, 2,   HDAC↓, 1,   IGF-1↑, 1,   MSCs↑, 1,   p‑mTOR↓, 1,   p‑mTOR↑, 1,   PI3K↓, 1,   STAT3↓, 1,  

Migration

AP-1↓, 1,   ARG↑, 1,   Ca+2↑, 1,   Cartilage↑, 1,   COL1↓, 1,   COL1↑, 1,   COL2A1↑, 1,   COL3A1↓, 1,   E-cadherin↑, 1,   Fibronectin↓, 1,   MMP2↓, 1,   MMP2↑, 1,   MMP7↓, 1,   MMP9↓, 5,   SMAD3↓, 1,   Smad7↑, 1,   TGF-β↓, 17,   TGF-β↑, 10,   TIMP1↓, 2,   TumCI↓, 1,   TumCP↓, 1,   Vim↓, 1,   α-SMA↓, 4,   α-SMA↑, 1,   α-SMA↝, 1,  

Angiogenesis & Vasculature

angioG↑, 3,   angioG↝, 1,   Hif1a↓, 1,   LOX1↓, 1,   NO↓, 1,   NO↑, 2,   PDGFR-BB↑, 1,   VEGF↓, 2,   VEGF↑, 3,  

Barriers & Transport

BBB↝, 2,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 5,   CRP↓, 2,   IFN-γ↑, 1,   IL10↓, 1,   IL10↑, 6,   IL12↓, 1,   IL1β↓, 7,   IL2↑, 1,   IL4↑, 2,   IL5↓, 1,   IL6↓, 10,   IL6↑, 1,   IL8↓, 3,   Inflam↓, 22,   IκB↑, 1,   JAK2↓, 1,   MCP1↓, 1,   MCP1↑, 1,   MIP2↓, 1,   MyD88↓, 1,   NF-kB↓, 11,   PGE2↓, 3,   PGE2↑, 1,   TLR2↓, 1,   TLR4↓, 3,   TNF-α↓, 10,   TNF-α↑, 1,   TRIF↓, 1,  

Synaptic & Neurotransmission

AChE↓, 2,   monoA↑, 1,  

Protein Aggregation

Aβ↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 2,   BioAv↝, 1,   BioEnh↑, 1,   Dose↝, 1,   eff↓, 1,   eff↑, 5,   Half-Life↝, 1,   selectivity↑, 1,  

Clinical Biomarkers

ALAT↓, 3,   Albumin↑, 1,   AST↓, 4,   BG↓, 1,   BMD↑, 1,   CRP↓, 2,   HbA1c↓, 1,   IL6↓, 10,   IL6↑, 1,   LDH↓, 1,  

Functional Outcomes

AntiCan↑, 2,   cardioP↑, 4,   chemoP↑, 1,   cognitive↑, 3,   hepatoP↑, 5,   memory↑, 2,   neuroP↑, 7,   Pain↓, 1,   QoL↑, 1,   radioP↑, 1,   RenoP↑, 1,   toxicity↓, 3,   toxicity∅, 5,   Weight∅, 1,  

Infection & Microbiome

IRF3↓, 1,   Sepsis↓, 1,  
Total Targets: 172

Scientific Paper Hit Count for: TGF-β, transforming growth factor-beta
7 Curcumin
6 Magnetic Fields
6 Thymoquinone
5 Artemisinin
5 Ellagic acid
5 Quercetin
3 Apigenin (mainly Parsley)
3 Emodin
3 Garcinol
3 Propolis -bee glue
3 Resveratrol
3 Silymarin (Milk Thistle) silibinin
3 Shikonin
2 Ashwagandha(Withaferin A)
2 Berberine
2 Radiotherapy/Radiation
2 Piperine
2 EGCG (Epigallocatechin Gallate)
2 HydroxyTyrosol
2 Magnetic Field Rotating
1 Allicin (mainly Garlic)
1 Alpha-Lipoic-Acid
1 Andrographis
1 Baicalein
1 Betulinic acid
1 Boron
1 Caffeine
1 Celecoxib
1 Copper and Cu NanoParticlex
1 Oxaliplatin
1 Gemcitabine (Gemzar)
1 Docetaxel
1 Fisetin
1 Shilajit/Fulvic Acid
1 Cisplatin
1 Paclitaxel
1 Ginkgo biloba
1 Gossypol
1 Hydroxycinnamic-acid
1 Lactoferrin
1 methotrexate
1 Luteolin
1 Bortezomib
1 Magnolol
1 MCToil
1 Metformin
1 Naringin
1 Phenylbutyrate
1 Rosmarinic acid
1 Selenium
1 Salvia miltiorrhiza
1 Silver-NanoParticles
1 doxorubicin
1 Ursolic acid
1 Vitamin B5,Pantothenic Acid
1 Vitamin D3
1 Vitamin K2
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:304  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page