| Source: HalifaxProj(activate) |
| Type: |
| Autophagy genes, including Atg3, Atg5, Atg6, Atg7, Atg10, Atg12, and Atg17. Tumor autophagy refers to the process by which cancer cells degrade and recycle cellular components through autophagy, a cellular mechanism that helps maintain homeostasis and respond to stress. Autophagy can have dual roles in cancer, acting as both a tumor suppressor and a promoter, depending on the context. Authophagy is the process used by cancer cells to “self-eat” to survive. Authophagy can be both good and bad. If authophagy is prolonged this will become a lethal process to cancer. On the other hand, for a short while (e.g. during chemotheraphy, radiotheraphy, etc.) authophagy is used by cancer cells to survive. For example, Chloroquine is a blocker of autophagy and has been used in a lab setting to dramatically enhance tumor response to radiotherapy, chemotherapy. |
| 2432- | 2DG, | Inhibition of glycolytic enzyme hexokinase II (HK2) suppresses lung tumor growth |
| - | in-vitro, | Lung, | H23 | - | in-vitro, | Lung, | KP2 | - | in-vivo, | NA, | NA |
| 250- | AL, | Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells |
| - | in-vitro, | Liver, | HepG2 |
| 1069- | AL, | Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling |
| - | vitro+vivo, | ESCC, | TE1 | - | vitro+vivo, | ESCC, | KYSE-510 | - | in-vitro, | Nor, | Het-1A |
| 2648- | AL, | Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/β-Catenin Signaling Pathway |
| - | in-vitro, | OS, | SaOS2 | - | in-vivo, | OS, | NA |
| 2666- | AL, | Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals |
| - | Review, | Var, | NA |
| 280- | ALA, | Alpha‐lipoic acid inhibits lung cancer growth via mTOR‐mediated autophagy inhibition |
| - | in-vivo, | Lung, | A549 |
| 1354- | And, | Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancer |
| - | in-vitro, | PC, | NA | - | in-vivo, | PC, | NA |
| 1008- | Api, | Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 |
| 313- | Api, | Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells |
| - | in-vitro, | Thyroid, | BCPAP |
| 1553- | Api, | Role of Apigenin in Cancer Prevention via the Induction of Apoptosis and Autophagy |
| - | Review, | NA, | NA |
| 1563- | Api, | MET, | Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells |
| - | in-vitro, | Nor, | HDFa | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | NA, | NA |
| 2638- | Api, | Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death |
| - | in-vitro, | lymphoma, | PEL |
| 2635- | Api, | CUR, | Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2631- | Api, | Apigenin Induces Autophagy and Cell Death by Targeting EZH2 under Hypoxia Conditions in Gastric Cancer Cells |
| - | in-vivo, | GC, | NA | - | in-vitro, | GC, | AGS |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 3382- | ART/DHA, | Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? |
| - | Review, | Var, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 1076- | ART/DHA, | The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer |
| - | Review, | NA, | NA |
| 556- | ART/DHA, | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
| - | Review, | NA, | NA |
| 558- | ART/DHA, | Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer |
| - | Review, | NA, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 4981- | ATV, | Crosstalk between Statins and Cancer Prevention and Therapy: An Update |
| 1528- | Ba, | Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma |
| - | in-vitro, | OS, | CAL27 |
| 2047- | BA, | Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Nor, | SV-HUC-1 | - | in-vitro, | Bladder, | 5637 | - | in-vivo, | NA, | NA |
| 2599- | Ba, | Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2608- | Ba, | Baicalein sensitizes hepatocellular carcinoma cells to 5-FU and Epirubicin by activating apoptosis and ameliorating P-glycoprotein activity |
| - | in-vitro, | HCC, | Bel-7402 |
| 1374- | BBR, | PDT, | Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells |
| - | in-vitro, | RCC, | 786-O | - | in-vitro, | RCC, | HK-2 |
| 2698- | BBR, | A gene expression signature-based approach reveals the mechanisms of action of the Chinese herbal medicine berberine |
| - | Analysis, | BC, | MDA-MB-231 |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 1092- | BBR, | Berberine as a Potential Anticancer Agent: A Comprehensive Review |
| - | Review, | NA, | NA |
| 2720- | BetA, | Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo |
| - | in-vitro, | Cerv, | HeLa |
| 2730- | BetA, | Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells |
| - | in-vitro, | Bladder, | T24 |
| 725- | Bor, | Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway |
| - | in-vitro, | HCC, | NA |
| 765- | Bor, | High concentrations of boric acid induce autophagy in cancer cell lines |
| 2653- | Cela, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 4479- | Chit, | Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | HCC, | SMMC-7721 cell |
| 1580- | Citrate, | Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway |
| - | in-vitro, | Pca, | PC3 | - | in-vivo, | PC, | NA | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | WPMY-1 |
| 4772- | CoQ10, | The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MDA-MB-231 |
| 1571- | Cu, | Copper in cancer: From pathogenesis to therapy |
| - | Review, | NA, | NA |
| 2808- | CUR, | Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation |
| - | in-vitro, | Liver, | HUH7 |
| 872- | CUR, | RES, | New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects |
| - | in-vitro, | BC, | TUBO | - | in-vitro, | BC, | SALTO |
| 132- | CUR, | Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 404- | CUR, | Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | H1299 |
| 435- | CUR, | Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 |
| 439- | CUR, | Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway |
| - | in-vitro, | CRC, | LGR5 |
| 477- | CUR, | Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 463- | CUR, | Curcumin induces autophagic cell death in human thyroid cancer cells |
| - | in-vitro, | Thyroid, | K1 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | 8505C |
| 471- | CUR, | Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 1869- | DCA, | Dichloroacetate induces autophagy in colorectal cancer cells and tumours |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | CRC, | HT-29 |
| 4901- | DCA, | Sal, | Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer |
| - | Review, | NSCLC, | NA |
| 2273- | dietMet, | Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagy |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vivo, | NA, | NA |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 655- | EGCG, | A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells |
| - | in-vitro, | HCC, | HepG2 |
| 643- | EGCG, | New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate |
| - | Analysis, | NA, | NA |
| 691- | EGCG, | Preclinical Pharmacological Activities of Epigallocatechin-3-gallate in Signaling Pathways: An Update on Cancer |
| - | Review, | NA, | NA |
| 681- | EGCG, | Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models |
| - | vitro+vivo, | BC, | NA |
| 676- | EGCG, | Chemo, | The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review |
| - | Review, | NA, | NA |
| 1322- | EMD, | The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers |
| - | Review, | Var, | NA |
| 1323- | EMD, | Anticancer action of naturally occurring emodin for the controlling of cervical cancer |
| - | Review, | Cerv, | NA |
| 975- | Est, | Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism |
| - | vitro+vivo, | UEC, | NA |
| 1970- | GamB, | Gambogic acid-induced autophagy in nonsmall cell lung cancer NCI-H441 cells through a reactive oxygen species pathway |
| - | NA, | Lung, | NCI-H441 |
| 2060- | GamB, | Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 1958- | GamB, | Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells |
| - | in-vitro, | Pca, | NA | - | in-vivo, | NA, | NA |
| 1962- | GamB, | HCQ, | Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species |
| - | in-vitro, | PC, | NA |
| 854- | Gra, | SNP, | Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy |
| - | vitro+vivo, | AML, | THP1 | - | in-vitro, | AML, | AMJ13 | - | vitro+vivo, | lymphoma, | HBL |
| 3787- | H2, | Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis |
| - | Review, | AD, | NA |
| 1625- | HCA, | In S. cerevisiae hydroxycitric acid antagonizes chronological aging and apoptosis regardless of citrate lyase |
| - | Review, | Nor, | NA |
| 1643- | HCAs, | Mechanisms involved in the anticancer effects of sinapic acid |
| - | Review, | Var, | NA |
| 1439- | HCQ, | Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine |
| - | in-vitro, | Melanoma, | NA | - | in-vitro, | CRC, | HCT116 |
| 1441- | HCQ, | Chemo, | Case report: stage 4 pancreatic cancer to remission using paricalcitol and hydroxychloroquine in addition to traditional chemotherapy |
| - | Case Report, | GBM, | NA |
| 2082- | HNK, | Revealing the role of honokiol in human glioma cells by RNA-seq analysis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 2073- | HNK, | Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo |
| - | in-vitro, | OS, | U2OS | - | in-vivo, | NA, | NA |
| 2180- | itraC, | Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent |
| - | Review, | Var, | NA |
| 2177- | itraC, | Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression |
| - | Study, | Colon, | NA | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | HCT116 |
| 1918- | JG, | ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | NA, | NA |
| 1917- | JG, | Inhibition of human leukemia cells growth by juglone is mediated via autophagy induction, endogenous ROS production, and inhibition of cell migration and invasion |
| - | in-vitro, | AML, | HL-60 |
| 973- | LT, | Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | BC, | MDA-MB-231 |
| 2346- | LT, | Luteolin suppressed PKM2 and promoted autophagy for inducing the apoptosis of hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | HepG2 |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 3457- | MF, | Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis |
| - | Review, | Var, | NA |
| 3464- | MF, | Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology |
| - | Review, | Var, | NA |
| 537- | MF, | immuno, | Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm |
| - | Review, | Var, | NA |
| - | Review, | NA, | NA |
| 227- | MFrot, | MF, | Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway |
| - | in-vivo, | Lung, | A549 | - | in-vitro, | Lung, | A549 |
| 1170- | MushCha, | Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism |
| - | in-vitro, | Oral, | HSC4 |
| 1141- | Myr, | Myricetin: targeting signaling networks in cancer and its implication in chemotherapy |
| - | Review, | NA, | NA |
| 1801- | NarG, | A Narrative Review on Naringin and Naringenin as a Possible Bioenhancer in Various Drug-Delivery Formulations |
| - | Review, | Var, | NA |
| 4976- | Nimb, | Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition |
| - | vitro+vivo, | PC, | NA |
| 1993- | Part, | Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer |
| - | in-vitro, | Cerv, | HeLa |
| 2076- | PB, | Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 1668- | PBG, | Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1672- | PBG, | The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers |
| - | Review, | BC, | NA |
| 4925- | PEITC, | PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells |
| - | in-vitro, | OS, | NA |
| 4922- | PEITC, | Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms |
| - | Review, | Var, | NA |
| 4921- | PEITC, | The Potential Use of Phenethyl Isothiocyanate for Cancer Prevention |
| - | Review, | Var, | NA |
| 4946- | PEITC, | Phenethyl Isothiocyanate Inhibits Oxidative Phosphorylation to Trigger Reactive Oxygen Species-mediated Death of Human Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 4968- | PSO, | Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer |
| - | in-vitro, | Cerv, | NA |
| 4967- | PSO, | Psoralidin's Anti-Cancer Mechanisms: A Technical Guide |
| - | Review, | Var, | NA |
| 4704- | PTS, | Cisplatin, | Pterostilbene Sensitizes Cisplatin-Resistant Human Bladder Cancer Cells with Oncogenic HRAS |
| - | in-vitro, | Bladder, | NA |
| 2341- | QC, | Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 63- | QC, | Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells |
| - | in-vitro, | Pca, | NA |
| 910- | QC, | The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism |
| 882- | RES, | Resveratrol: A Double-Edged Sword in Health Benefits |
| - | Review, | NA, | NA |
| 4912- | Sal, | Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | Calu-1 | - | in-vitro, | Lung, | H157 |
| 4898- | Sal, | Salinomycin as a potent anticancer stem cell agent: State of the art and future directions |
| - | Review, | Var, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 4904- | Sal, | CUR, | Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal Transition |
| 4906- | Sal, | A Concise Review of Prodigious Salinomycin and Its Derivatives Effective in Treatment of Breast Cancer: (2012–2022) |
| - | Review, | BC, | NA |
| 5003- | Sal, | Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review |
| - | Review, | Var, | NA |
| 323- | Sal, | SNP, | Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: an effective anticancer therapy |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Ovarian, | A2780S |
| 1018- | Sel, | Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivo |
| - | vitro+vivo, | CRC, | HCT116 | - | vitro+vivo, | CRC, | SW480 |
| 2445- | SFN, | Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | SkBr3 |
| 1455- | SFN, | Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Nor, | 1321N1 |
| 3298- | SIL, | Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 2410- | SIL, | Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vivo, | NA, | NA |
| 2355- | SK, | Pharmacological properties and derivatives of shikonin-A review in recent years |
| - | Review, | Var, | NA |
| 2232- | SK, | Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis |
| - | in-vitro, | ESCC, | EC9706 |
| 2229- | SK, | Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways |
| - | in-vitro, | Melanoma, | A375 |
| 2415- | SK, | Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways |
| - | in-vivo, | Arthritis, | NA |
| 343- | SNP, | Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma |
| - | in-vitro, | PC, | PANC1 |
| 317- | SNP, | Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure |
| - | in-vitro, | Kidney, | HEK293 |
| 318- | SNP, | Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells |
| - | in-vitro, | Pca, | PC3 |
| 327- | SNP, | MS-275, | Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells |
| - | in-vitro, | Lung, | A549 |
| 328- | SNP, | Rad, | Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma |
| - | vitro+vivo, | GBM, | U251 |
| 329- | SNP, | Rad, | Enhancement of radiotherapy efficacy by silver nanoparticles in hypoxic glioma cells |
| - | in-vitro, | GBM, | U251 |
| 330- | SNP, | Rad, | Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs |
| - | in-vitro, | GBM, | U251 |
| 400- | SNP, | MF, | Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field |
| - | in-vitro, | Laryn, | HEp2 |
| 4559- | SNP, | Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Colon, | Caco-2 |
| 4897- | Sper, | Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms |
| - | Review, | Var, | NA |
| 4894- | Sper, | Application of Spermidine in Cancer Research Models: Notes and Protocols |
| - | Review, | Var, | NA |
| 4891- | Sper, | Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 4895- | Sper, | Spermidine as a target for cancer therapy |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 2350- | UA, | Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 5021- | UA, | Anticancer effect of ursolic acid via mitochondria-dependent pathways |
| - | Review, | Var, | NA |
| 4849- | Uro, | Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway |
| - | vitro+vivo, | GC, | NA |
| 4847- | Uro, | Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells |
| - | in-vitro, | CRC, | SW-620 |
| 4837- | Uro, | Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review |
| - | Review, | Var, | NA |
| 4833- | Uro, | Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | IBD, | NA |
| 1214- | VitK2, | Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | J82 |
| 1816- | VitK2, | Role of Vitamin K in Selected Malignant Neoplasms in Women |
| - | Review, | Var, | NA |
| 1824- | VitK2, | Vitamin K and its analogs: Potential avenues for prostate cancer management |
| - | Review, | Pca, | NA |
| 1817- | VitK2, | Research progress on the anticancer effects of vitamin K2 |
| - | Review, | Var, | NA |
| 1837- | VitK3, | VitC, | Alpha-Tocopheryl Succinate Inhibits Autophagic Survival of Prostate Cancer Cells Induced by Vitamin K3 and Ascorbate to Trigger Cell Death |
| - | in-vivo, | Pca, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:321 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid