| Source: |
| Type: |
| Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body. |
| 253- | AL, | Allicin inhibits invasion and migration of breast cancer cells through the suppression of VCAM-1: Regulation of association between p65 and ER-α |
| - | in-vitro, | BC, | MDA-MB-231 |
| 2660- | AL, | Allicin: A review of its important pharmacological activities |
| - | Review, | AD, | NA | - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 297- | ALA, | Insights on the Use of α-Lipoic Acid for Therapeutic Purposes |
| - | Review, | BC, | SkBr3 | - | Review, | neuroblastoma, | SK-N-SH | - | Review, | AD, | NA |
| 276- | ALA, | Alpha lipoic acid diminishes migration and invasion in hepatocellular carcinoma cells through an AMPK-p53 axis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B |
| 295- | ALA, | α-Lipoic acid suppresses migration and invasion via downregulation of cell surface β1-integrin expression in bladder cancer cells |
| - | in-vitro, | Bladder, | T24 |
| 1124- | ALA, | Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | HTH-83 | - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vivo, | NA, | NA |
| 3442- | ALA, | α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B | - | in-vitro, | Nor, | 3T3 |
| 553- | Anamu, | The anti-inflammatory and analgesic effects of a crude extract of Petiveria alliacea L. (Phytolaccaceae) |
| - | in-vivo, | NA, | NA |
| 1157- | And, | Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression |
| - | in-vitro, | GBM, | GBM8401 | - | in-vitro, | GBM, | U251 |
| 1093- | And, | Andrographolide attenuates epithelial‐mesenchymal transition induced by TGF‐β1 in alveolar epithelial cells |
| - | in-vitro, | Lung, | A549 |
| 1545- | Api, | The Potential Role of Apigenin in Cancer Prevention and Treatment |
| - | Review, | NA, | NA |
| 1548- | Api, | A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms |
| - | Review, | Colon, | NA |
| 1565- | Api, | Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B | - | in-vitro, | Lung, | H1975 |
| 2593- | Api, | Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo |
| - | in-vivo, | BC, | 4T1 |
| 2632- | Api, | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
| - | in-vitro, | EC, | NA |
| 2641- | Api, | Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 2578- | ART/DHA, | RES, | Synergic effects of artemisinin and resveratrol in cancer cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Cerv, | HeLa |
| 574- | ART/DHA, | Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathway |
| 570- | ART/DHA, | Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling |
| - | vitro+vivo, | NSCLC, | A549 | - | vitro+vivo, | NSCLC, | H1299 |
| 1333- | AS, | Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway |
| - | in-vitro, | BC, | NA |
| 1362- | Ash, | GEM, | Synergistic Inhibition of Pancreatic Cancer Cell Growth and Migration by Gemcitabine and Withaferin A |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Hs766t |
| 1181- | Ash, | Withaferin A inhibits Epithelial to Mesenchymal Transition in Non-Small Cell Lung Cancer Cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 1179- | Ash, | Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 1173- | Ash, | Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling |
| - | in-vitro, | EC, | K1 | - | in-vitro, | Nor, | THESCs |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 4807- | ASTX, | An overview of the anticancer activity of astaxanthin and the associated cellular and molecular mechanisms |
| - | Review, | Var, | NA |
| 4808- | ASTX, | Anti-Tumor Effects of Astaxanthin by Inhibition of the Expression of STAT3 in Prostate Cancer |
| - | in-vitro, | Pca, | DU145 | - | in-vivo, | NA, | NA |
| 4810- | ASTX, | Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 4811- | ASTX, | Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in melanoma |
| - | vitro+vivo, | Melanoma, | A375 | - | vitro+vivo, | Melanoma, | A2058 |
| 4980- | ATV, | A review of effects of atorvastatin in cancer therapy |
| - | Review, | Var, | NA |
| 1098- | BA, | Baicalein inhibits fibronectin-induced epithelial–mesenchymal transition by decreasing activation and upregulation of calpain-2 |
| - | in-vitro, | Nor, | MCF10 | - | in-vivo, | NA, | NA |
| 2047- | BA, | Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Nor, | SV-HUC-1 | - | in-vitro, | Bladder, | 5637 | - | in-vivo, | NA, | NA |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2615- | Ba, | The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways |
| - | Review, | Var, | NA |
| 2289- | Ba, | Rad, | Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1A |
| - | in-vitro, | ESCC, | KYSE150 |
| 2473- | BA, | Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B | - | in-vitro, | Lung, | H460 |
| 1398- | BBR, | Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage |
| - | in-vitro, | Kidney, | NA |
| 1392- | BBR, | Based on network pharmacology and experimental validation, berberine can inhibit the progression of gastric cancer by modulating oxidative stress |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | MKN45 |
| 2700- | BBR, | Cell-specific pattern of berberine pleiotropic effects on different human cell lines |
| - | in-vitro, | GBM, | U343 | - | in-vitro, | GBM, | MIA PaCa-2 | - | in-vitro, | Nor, | HDFa |
| 2702- | BBR, | The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1 |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1975 |
| 2709- | BBR, | Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α |
| - | in-vitro, | HCC, | HepG2 |
| 2711- | BBR, | Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2678- | BBR, | Berberine as a Potential Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 2682- | BBR, | Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | HCT116 |
| 1102- | BBR, | Berberine suppressed epithelial mesenchymal transition through cross-talk regulation of PI3K/AKT and RARα/RARβ in melanoma cells |
| - | in-vitro, | Melanoma, | B16-BL6 |
| 2742- | BetA, | Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | BC, | 4T1 | - | in-vitro, | BC, | MCF-7 |
| 2756- | BetA, | Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | H1299 |
| 2757- | BetA, | Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways |
| - | in-vitro, | GBM, | U251 |
| 2741- | BetA, | Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress |
| - | in-vitro, | GC, | SNU16 | - | in-vitro, | GC, | NCI-N87 | - | in-vivo, | NA, | NA |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 2730- | BetA, | Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells |
| - | in-vitro, | Bladder, | T24 |
| 722- | Bor, | Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms |
| - | in-vitro, | Ovarian, | MDAH-2774 |
| 709- | Bor, | Cellular changes in boric acid-treated DU-145 prostate cancer cells |
| - | in-vitro, | Pca, | DU145 |
| 702- | Bor, | GEN, | SeMet, | Rad, | Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States) |
| - | Analysis, | NA, | NA |
| 696- | Bor, | Nothing Boring About Boron |
| - | Review, | Var, | NA |
| 1416- | Bos, | Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent |
| - | Review, | NA, | NA |
| 2768- | Bos, | Boswellic acids as promising agents for the management of brain diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 1207- | CA, | PacT, | Caffeine inhibits the anticancer activity of paclitaxel via down-regulation of α-tubulin acetylation |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Cerv, | HeLa |
| 1264- | CAP, | Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells |
| - | in-vitro, | HCC, | NA |
| 1263- | CAP, | Capsaicin inhibits the migration and invasion via the AMPK/NF-κB signaling pathway in esophagus sequamous cell carcinoma by decreasing matrix metalloproteinase-9 expression |
| - | in-vitro, | ESCC, | Eca109 |
| 1517- | CAP, | Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1) |
| - | in-vitro, | Bladder, | TSGH8301 | - | in-vitro, | CRC, | T24 |
| 1518- | CAP, | Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 |
| 1103- | CBD, | Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway |
| - | vitro+vivo, | NA, | NA |
| 1105- | CEL, | Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis |
| - | in-vitro, | BC, | NA |
| 1106- | CGA, | Chlorogenic Acid Inhibits Epithelial-Mesenchymal Transition and Invasion of Breast Cancer by Down-Regulating LRP6 |
| - | vitro+vivo, | BC, | MCF-7 |
| 4489- | Chit, | Se, | Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy |
| - | in-vitro, | GBM, | U87MG |
| 3258- | CHr, | PBG, | Chrysin Induced Cell Apoptosis and Inhibited Invasion Through Regulation of TET1 Expression in Gastric Cancer Cells |
| - | in-vitro, | GC, | MKN45 |
| 2590- | CHr, | Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway |
| - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG |
| 2784- | CHr, | Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review) |
| - | Review, | Var, | NA |
| 1584- | Citrate, | Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 4709- | CUR, | Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling Pathways |
| - | Review, | Var, | NA |
| 4710- | CUR, | Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway |
| - | in-vitro, | Lung, | A549 |
| 405- | CUR, | 5-FU, | Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis |
| - | vitro+vivo, | CRC, | HCT116 |
| 461- | CUR, | Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 476- | CUR, | The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer |
| - | in-vitro, | PC, | PATU-8988 | - | in-vitro, | PC, | PANC1 |
| - | in-vitro, | CRC, | SW480 |
| 447- | CUR, | OXA, | Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway |
| - | vitro+vivo, | CRC, | HCT116 |
| 450- | CUR, | Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 |
| 451- | CUR, | The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer |
| - | vitro+vivo, | HNSCC, | SCC15 | - | vitro+vivo, | HNSCC, | SNU1076 | - | vitro+vivo, | HNSCC, | SNU1041 |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 456- | CUR, | Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells |
| - | vitro+vivo, | GC, | SGC-7901 |
| 479- | CUR, | Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments |
| - | in-vitro, | Tong, | CAL27 |
| 480- | CUR, | Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells |
| - | in-vitro, | GBM, | SNB19 |
| 1445- | Deg, | Deguelin--an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model |
| - | in-vivo, | lymphoma, | NA | - | in-vitro, | lymphoma, | NA |
| 1446- | Deg, | Efficacy and mechanism of action of Deguelin in suppressing metastasis of 4T1 cells |
| - | in-vitro, | BC, | 4T1 |
| 1109- | DHA, | DHA inhibits Gremlin-1-induced epithelial-to-mesenchymal transition via ERK suppression in human breast cancer cells |
| - | in-vitro, | BC, | NA |
| 5008- | DSF, | Cu, | Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis |
| - | in-vitro, | HCC, | NA |
| 4916- | DSF, | Cu, | The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics |
| - | Review, | Var, | NA |
| 4832- | EA, | Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid |
| 1618- | EA, | A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action |
| - | Review, | BC, | NA |
| 1111- | EDM, | Evodiamine exerts inhibitory roles in non‑small cell lung cancer cell A549 and its sub‑population of stem‑like cells |
| - | in-vitro, | Lung, | A549 |
| 1072- | EGCG, | Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways |
| - | in-vitro, | Thyroid, | 8505C |
| 651- | EGCG, | Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications |
| 665- | EGCG, | Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway |
| - | in-vitro, | NA, | H1299 |
| - | in-vitro, | PC, | NA |
| 4685- | EGCG, | Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines |
| - | in-vitro, | NPC, | TW01 | - | in-vitro, | NPC, | TW06 |
| 1319- | EMD, | Emodin treatment of papillary thyroid cancer cell lines in vitro inhibits proliferation and enhances apoptosis via downregulation of NF‑κB and its upstream TLR4 signaling |
| - | in-vitro, | Thyroid, | TPC-1 | - | in-vitro, | Thyroid, | IHH4 |
| 1247- | EMD, | Emodin exerts antitumor effects in ovarian cancer cell lines by preventing the development of cancer stem cells via epithelial mesenchymal transition |
| - | vitro+vivo, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 2455- | erastin, | Discovery of the Inhibitor Targeting the SLC7A11/xCT Axis through In Silico and In Vitro Experiments |
| - | in-vitro, | Cerv, | HeLa |
| 1114- | F, | The Potential Effect of Fucoidan on Inhibiting Epithelial-to-Mesenchymal Transition, Proliferation, and Increase in Apoptosis for Endometriosis Treatment: In Vivo and In Vitro Study |
| - | vitro+vivo, | NA, | NA |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 1655- | FA, | Ferulic acid inhibiting colon cancer cells at different Duke’s stages |
| - | in-vitro, | Colon, | SW480 | - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | Colon, | HCT116 |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 1113- | FIS, | Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2847- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | in-vitro, | CCA, | NA |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2839- | FIS, | Dietary flavonoid fisetin for cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2840- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | NA, | CCA, | NA |
| - | in-vitro, | Oral, | NA |
| 830- | GAR, | Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 817- | GAR, | Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways |
| - | vitro+vivo, | SCC, | KYSE150 | - | vitro+vivo, | SCC, | KYSE450 |
| 806- | GAR, | Garcinol exerts anti-cancer effect in human cervical cancer cells through upregulation of T-cadherin |
| - | vitro+vivo, | Pca, | HeLa | - | vitro+vivo, | Cerv, | SiHa |
| 1186- | Gb, | Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis |
| - | in-vitro, | PC, | NA | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | PC, | NA |
| 1189- | Gb, | New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer |
| - | Review, | NA, | NA |
| 1118- | Ge, | Grape Seed Proanthocyanidins Inhibit Migration and Invasion of Bladder Cancer Cells by Reversing EMT through Suppression of TGF- β Signaling Pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 5637 |
| 1240- | Ge, | PACs, | Grape Seed Proanthocyanidins Inhibit Melanoma Cell Invasiveness by Reduction of PGE2 Synthesis and Reversal of Epithelial-to-Mesenchymal Transition |
| - | in-vitro, | Melanoma, | A375 | - | in-vitro, | Melanoma, | Hs294T |
| 1116- | GI, | 6-Shogaol Inhibits the Cell Migration of Colon Cancer by Suppressing the EMT Process Through the IKKβ/NF-κB/Snail Pathway |
| - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | CRC, | HCT116 |
| 4505- | GLA, | Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α |
| - | in-vitro, | NSCLC, | Calu-1 |
| 858- | Gra, | Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 |
| 2511- | H2, | Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation |
| - | in-vivo, | GBM, | U87MG |
| 1412- | HCA, | Identification of ATP Citrate Lyase as a Positive Regulator of Glycolytic Function in Glioblastomas |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 |
| 1153- | HNK, | Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vivo, | NA, | NA |
| 1087- | HNK, | Honokiol Inhibits Non-Small Cell Lung Cancer Cell Migration by Targeting PGE2-Mediated Activation of β-Catenin Signaling |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H226 |
| 2894- | HNK, | Pharmacological features, health benefits and clinical implications of honokiol |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 2882- | HNK, | Honokiol Suppresses Perineural Invasion of Pancreatic Cancer by Inhibiting SMAD2/3 Signaling |
| - | in-vitro, | PC, | PANC1 |
| 2884- | HNK, | Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 2898- | HNK, | Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | NCI-N87 | - | in-vitro, | BC, | MGC803 | - | in-vitro, | GC, | SGC-7901 |
| 2864- | HNK, | Honokiol: A Review of Its Anticancer Potential and Mechanisms |
| - | Review, | Var, | NA |
| 2868- | HNK, | Honokiol: A review of its pharmacological potential and therapeutic insights |
| - | Review, | Var, | NA | - | Review, | Sepsis, | NA |
| 2874- | HNK, | Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6‐mediated matrix metalloproteinase 9 |
| - | in-vitro, | Lung, | H1299 |
| 2878- | HNK, | Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6-mediated matrix metalloproteinase 9 |
| - | in-vitro, | Lung, | H1299 |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | SUM159 |
| - | in-vitro, | BC, | SUM159 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | HS587T | - | in-vitro, | BC, | BT549 |
| 4637- | HT, | Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells |
| - | in-vitro, | Nor, | RWPE-1 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 |
| 1278- | I3C, | Indole-3-carbinol inhibits prostate cancer cell migration via degradation of beta-catenin |
| - | in-vivo, | Pca, | DU145 |
| 1920- | JG, | TQ, | Plum, | Natural quinones induce ROS-mediated apoptosis and inhibit cell migration in PANC-1 human pancreatic cancer cell line |
| - | in-vitro, | PC, | PANC1 |
| 1924- | JG, | Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway |
| - | in-vitro, | Lung, | A549 |
| 1266- | LE, | Glycyrrhizin suppresses epithelial-mesenchymal transition by inhibiting high-mobility group box1 via the TGF-β1/Smad2/3 pathway in lung epithelial cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B |
| 1171- | LT, | The inhibition of β-catenin activity by luteolin isolated from Paulownia flowers leads to growth arrest and apoptosis in cholangiocarcinoma |
| - | in-vitro, | CCA, | NA |
| 1125- | LT, | Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity |
| - | in-vitro, | BC, | NA |
| 4687- | LT, | QC, | Dietary Flavonoids Luteolin and Quercetin Suppressed Cancer Stem Cell Properties and Metastatic Potential of Isolated Prostate Cancer Cells |
| - | in-vitro, | Pca, | DU145 |
| 2927- | LT, | Luteolin Causes 5′CpG Demethylation of the Promoters of TSGs and Modulates the Aberrant Histone Modifications, Restoring the Expression of TSGs in Human Cancer Cells |
| - | in-vitro, | Cerv, | HeLa |
| 3275- | Lyco, | Multifaceted Effects of Lycopene: A Boulevard to the Multitarget-Based Treatment for Cancer |
| - | Review, | Var, | NA |
| 4782- | Lyco, | New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene |
| - | Review, | Var, | NA |
| 1126- | Lyco, | Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway |
| - | vitro+vivo, | Oral, | NA |
| 1196- | MAG, | 2-O-Methylmagnolol, a Magnolol Derivative, Suppresses Hepatocellular Carcinoma Progression via Inhibiting Class I Histone Deacetylase Expression |
| - | in-vitro, | HCC, | NA |
| 4535- | MAG, | 5-FU, | Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways |
| - | in-vitro, | Cerv, | NA |
| 4531- | MAG, | Magnolol-induced apoptosis in HCT-116 colon cancer cells is associated with the AMP-activated protein kinase signaling pathway |
| - | in-vitro, | CRC, | HCT116 |
| 4528- | MAG, | Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update |
| - | Review, | Nor, | NA |
| 4527- | MAG, | Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway |
| - | in-vitro, | ESCC, | TE1 | - | in-vitro, | ESCC, | Eca109 | - | vitro+vivo, | SCC, | KYSE150 |
| 4520- | MAG, | Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling |
| - | vitro+vivo, | PC, | PANC1 |
| 4515- | MAG, | Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight |
| - | Review, | Var, | NA |
| 1063- | MEL, | HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 |
| 2384- | MET, | Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vivo, | NA, | NA | - | in-vitro, | Thyroid, | TPC-1 |
| 2387- | MET, | GEM, | Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis |
| - | in-vitro, | CCA, | HCC9810 |
| 2378- | MET, | Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway |
| - | in-vitro, | SCC, | CAL27 | - | in-vivo, | NA, | NA |
| 2375- | MET, | Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling |
| - | in-vitro, | GC, | SGC-7901 |
| 1066- | MET, | Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma |
| - | in-vitro, | SCC, | NA |
| 2249- | MF, | Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study |
| - | in-vitro, | Nor, | L929 |
| 4354- | MF, | doxoR, | Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vivo, | BC, | MCF-7 |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 3500- | MF, | Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress |
| - | in-vitro, | Ovarian, | SKOV3 |
| 3470- | MF, | Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression |
| - | in-vitro, | Cerv, | HeLa |
| 524- | MF, | Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs) |
| - | vitro+vivo, | PC, | MS-1 | - | vitro+vivo, | PC, | HUVECs |
| 205- | MFrot, | MF, | Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis |
| - | vitro+vivo, | BC, | MDA-MB-231 |
| 516- | MFrot, | immuno, | MF, | Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth |
| - | vitro+vivo, | GBM, | U87MG |
| 1128- | Myr, | Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer |
| - | vitro+vivo, | Ovarian, | NA |
| 1805- | NarG, | Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota |
| - | in-vitro, | Ovarian, | A2780S | - | in-vivo, | NA, | NA |
| 1267- | NCL, | Niclosamide suppresses migration of hepatocellular carcinoma cells and downregulates matrix metalloproteinase-9 expression |
| - | in-vitro, | HCC, | NA |
| 4976- | Nimb, | Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition |
| - | vitro+vivo, | PC, | NA |
| 4974- | Nimb, | Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma |
| - | in-vitro, | OS, | NA |
| 1130- | OA, | Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1225- | OLST, | Orlistat Induces Ferroptosis in Pancreatic Neuroendocrine Tumors by Inactivating the MAPK Pathway |
| - | vitro+vivo, | PC, | NA |
| 1994- | Part, | Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells |
| - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Nor, | L929 |
| 2381- | PBG, | Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1664- | PBG, | Anticancer Activity of Propolis and Its Compounds |
| - | Review, | Var, | NA |
| 1663- | PBG, | Propolis and Their Active Constituents for Chronic Diseases |
| - | Review, | Var, | NA |
| 1231- | PBG, | Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism |
| - | in-vitro, | BC, | MDA-MB-231 |
| 4933- | PEITC, | Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m6A modification |
| - | vitro+vivo, | Lung, | H1299 | - | vitro+vivo, | SCC, | H226 |
| 4939- | PEITC, | Phenethyl Isothiocyanate Inhibits Angiogenesis In vitro and Ex vivo |
| - | in-vitro, | Pca, | PC3 | - | ex-vivo, | Nor, | HUVECs |
| 4926- | PEITC, | PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT |
| - | in-vitro, | CRC, | SW48 |
| 4922- | PEITC, | Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms |
| - | Review, | Var, | NA |
| 4941- | PEITC, | PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1256- | PI, | Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models |
| - | in-vitro, | adrenal, | PHEO | - | in-vivo, | NA, | NA |
| 1016- | PI, | Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | DLD1 |
| 1131- | PI, | Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 |
| 1939- | PL, | Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | HUH7 | - | in-vivo, | NA, | NA |
| 2961- | PL, | Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosis |
| - | in-vitro, | ESCC, | KYSE-30 |
| 2957- | PL, | Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 2952- | PL, | Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization |
| - | in-vitro, | Bladder, | T24 | - | in-vivo, | Bladder, | NA |
| 2950- | PL, | Overview of piperlongumine analogues and their therapeutic potential |
| - | Review, | Var, | NA |
| 2945- | PL, | Piperlongumine induces ROS mediated cell death and synergizes paclitaxel in human intestinal cancer cells |
| - | in-vitro, | CRC, | HCT116 |
| 4968- | PSO, | Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer |
| - | in-vitro, | Cerv, | NA |
| 4965- | PSO, | Cisplatin, | The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis |
| - | vitro+vivo, | GC, | HGC27 | - | vitro+vivo, | GC, | MKN45 |
| 4699- | PTS, | Pterostilbene inhibits triple-negative breast cancer metastasis via inducing microRNA-205 expression and negatively modulates epithelial-to-mesenchymal transition |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | HS587T | - | in-vivo, | BC, | MDA-MB-231 |
| 2408- | PTS, | Pterostilbene suppresses the growth of esophageal squamous cell carcinoma by inhibiting glycolysis and PKM2/STAT3/c-MYC signaling pathway |
| - | in-vitro, | ESCC, | NA |
| 1237- | PTS, | Pterostilbene induces cell apoptosis and inhibits lipogenesis in SKOV3 ovarian cancer cells by activation of AMPK-induced inhibition of Akt/mTOR signaling cascade |
| - | in-vitro, | Ovarian, | SKOV3 |
| 1238- | PTS, | Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention |
| - | in-vitro, | GC, | NA | - | in-vivo, | NA, | NA |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3374- | QC, | Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis |
| - | Review, | Oral, | NA | - | Review, | AD, | NA |
| 3373- | QC, | The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway |
| - | in-vitro, | Pca, | DU145 |
| 3371- | QC, | Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways |
| - | in-vitro, | GBM, | T98G |
| 3339- | QC, | Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas |
| - | in-vitro, | GBM, | C6 | - | in-vitro, | GBM, | IMR32 |
| 2441- | RES, | Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions |
| - | Review, | Var, | NA |
| 3070- | RES, | Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma |
| - | in-vitro, | RCC, | ACHN | - | in-vitro, | RCC, | 786-O | - | in-vivo, | NA, | NA |
| 3072- | RES, | Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | U87MG |
| 2988- | RES, | The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 Modulation |
| - | in-vitro, | HCC, | HUH7 |
| 3095- | RES, | Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk |
| - | in-vitro, | BC, | NA |
| 3089- | RES, | The Role of Resveratrol in Cancer Therapy |
| - | Review, | Var, | NA |
| 3086- | RES, | Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 1048- | RosA, | Ger, | Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axis |
| - | in-vivo, | Colon, | MC38 |
| 1747- | RosA, | Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MDA-MB-468 |
| 3027- | RosA, | Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 3016- | RosA, | Rosmarinic Acid Inhibits Cell Growth and Migration in Head and Neck Squamous Cell Carcinoma Cell Lines by Attenuating Epidermal Growth Factor Receptor Signaling |
| - | in-vitro, | HNSCC, | UM-SCC-6 | - | in-vitro, | HNSCC, | UM-SCC-10B |
| 3008- | RosA, | Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells |
| - | in-vitro, | Melanoma, | SK-MEL-28 |
| 3035- | RosA, | Rosmarinic Acid Decreases the Malignancy of Pancreatic Cancer Through Inhibiting Gli1 Signaling |
| - | in-vitro, | PC, | NA | - | in-vivo, | NA, | NA |
| 1132- | RT, | Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| - | in-vivo, | CRC, | Caco-2 | - | vitro+vivo, | CRC, | CX-1 |
| 1209- | SANG, | Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migration |
| - | in-vitro, | Lung, | A549 |
| 1136- | SFN, | Sulforaphane inhibits epithelial-mesenchymal transition by activating extracellular signal-regulated kinase 5 in lung cancer cells |
| - | in-vitro, | Lung, | NA | - | in-vivo, | NA, | NA |
| 3198- | SFN, | Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells |
| - | in-vitro, | Pca, | NA |
| 1499- | SFN, | Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway |
| - | in-vitro, | BC, | NA |
| 1462- | SFN, | Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells |
| - | in-vitro, | Bladder, | T24 |
| 1466- | SFN, | Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway |
| - | vitro+vivo, | Thyroid, | FTC-133 |
| 2166- | SFN, | Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction |
| - | in-vitro, | Oral, | NA | - | in-vivo, | NA, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3306- | SIL, | Rad, | Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation |
| - | Review, | Var, | NA |
| 3296- | SIL, | Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway |
| - | in-vitro, | Oral, | Ca9-22 | - | in-vivo, | Oral, | YD10B |
| 3290- | SIL, | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
| - | Analysis, | Var, | NA |
| 3330- | SIL, | Mechanistic Insights into the Pharmacological Significance of Silymarin |
| - | Review, | Var, | NA |
| 3326- | SIL, | Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 |
| 1276- | SIL, | Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells |
| - | in-vitro, | BC, | NA | - | in-vitro, | Thyroid, | NA |
| 1127- | SIL, | Silibinin suppresses epithelial–mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1 |
| - | in-vitro, | Lung, | A549 |
| 2360- | SK, | Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway |
| - | in-vitro, | NPC, | HONE1 | - | in-vitro, | NPC, | SUNE-1 |
| 2355- | SK, | Pharmacological properties and derivatives of shikonin-A review in recent years |
| - | Review, | Var, | NA |
| 2232- | SK, | Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis |
| - | in-vitro, | ESCC, | EC9706 |
| 2234- | SK, | Shikonin Suppresses Cell Tumorigenesis in Gastric Cancer Associated with the Inhibition of c-Myc and Yap-1 |
| - | in-vitro, | GC, | NA |
| 2417- | SK, | Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H446 |
| 3045- | SK, | Cutting off the fuel supply to calcium pumps in pancreatic cancer cells: role of pyruvate kinase-M2 (PKM2) |
| - | in-vitro, | PC, | MIA PaCa-2 |
| 3046- | SK, | Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway |
| - | in-vitro, | Lung, | A549 |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | 4T1 | - | in-vitro, | Nor, | MCF12A | - | in-vivo, | NA, | NA |
| 2190- | SK, | Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway |
| - | in-vitro, | HCC, | HCCLM3 |
| 2183- | SK, | Shikonin Inhibites Migration and Invasion of Thyroid Cancer Cells by Downregulating DNMT1 |
| - | in-vitro, | Thyroid, | TPC-1 |
| 2182- | SK, | Cisplatin, | Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 | - | in-vivo, | NA, | NA |
| 2210- | SK, | Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway |
| - | in-vitro, | BC, | MGC803 |
| 2203- | SK, | Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation |
| - | in-vitro, | Lung, | NA |
| 338- | SNP, | Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer |
| - | vitro+vivo, | Bladder, | 5637 |
| 359- | SNP, | Anti-cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 4555- | SNP, | Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 |
| 4416- | SNP, | Efficacy of curcumin-synthesized silver nanoparticles on MCF-7 breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 962- | TQ, | Thymoquinone affects hypoxia-inducible factor-1α expression in pancreatic cancer cells via HSP90 and PI3K/AKT/mTOR pathways |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Nor, | hTERT-HPNE | - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | Bxpc-3 |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3418- | TQ, | Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome |
| - | in-vitro, | Melanoma, | A375 | - | in-vivo, | NA, | NA |
| 3421- | TQ, | Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer |
| - | Analysis, | Nor, | NA | - | in-vivo, | Nor, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HaCaT |
| 3411- | TQ, | Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone |
| - | Review, | Var, | NA |
| 2127- | TQ, | Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways |
| - | Review, | GBM, | NA |
| 5017- | UA, | Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells |
| - | in-vitro, | Cerv, | INT-407 | - | in-vitro, | CRC, | HCT116 |
| 5021- | UA, | Anticancer effect of ursolic acid via mitochondria-dependent pathways |
| - | Review, | Var, | NA |
| 4856- | Uro, | Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro |
| - | in-vitro, | NPC, | CNE1 | - | in-vitro, | NPC, | CNE2 |
| 4853- | Uro, | Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer |
| - | vitro+vivo, | PC, | MIA PaCa-2 | - | in-vitro, | NA, | PANC1 |
| 4851- | Uro, | Urolithin A suppressed osteosarcoma cell migration and invasion via targeting MMPs and AKT1 |
| - | in-vitro, | OS, | MG63 |
| 4849- | Uro, | Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway |
| - | vitro+vivo, | GC, | NA |
| 4847- | Uro, | Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells |
| - | in-vitro, | CRC, | SW-620 |
| 4844- | Uro, | Urolithin A Inhibits Epithelial–Mesenchymal Transition in Lung Cancer Cells via P53-Mdm2-Snail Pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 4842- | Uro, | Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages |
| - | vitro+vivo, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | 4T1 |
| 1217- | VitC, | High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition |
| - | in-vitro, | BC, | Bcap37 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 3143- | VitC, | ATO, | Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis |
| - | in-vitro, | OS, | NA |
| 1820- | VitK3, | Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells |
| - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| - | in-vitro, | Oral, | NA | - | in-vitro, | Nor, | HEK293 | - | in-vitro, | Nor, | HaCaT |
| 1222- | Z, | Zinc regulates primary ovarian tumor growth and metastasis through the epithelial to mesenchymal transition |
| - | in-vitro, | Ovarian, | NA |
| 2414- | β‐Ele, | Beta‐elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | NA, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:326 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid