| Source: |
| Type: |
| Tumor cell proliferation is a key characteristic of cancer. It refers to the rapid and uncontrolled growth of cells that can lead to the formation of tumors. |
| 2423- | 2DG, | SRF, | 2-Deoxyglucose and sorafenib synergistically suppress the proliferation and motility of hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | NA |
| 1069- | AL, | Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling |
| - | vitro+vivo, | ESCC, | TE1 | - | vitro+vivo, | ESCC, | KYSE-510 | - | in-vitro, | Nor, | Het-1A |
| 297- | ALA, | Insights on the Use of α-Lipoic Acid for Therapeutic Purposes |
| - | Review, | BC, | SkBr3 | - | Review, | neuroblastoma, | SK-N-SH | - | Review, | AD, | NA |
| 262- | ALA, | Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1124- | ALA, | Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | HTH-83 | - | in-vitro, | Thyroid, | CAL-62 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vivo, | NA, | NA |
| 1123- | aLinA, | Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10A |
| - | in-vitro, | BC, | NA | - | in-vitro, | NA, | MCF10 |
| 1078- | And, | Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-361 |
| 1158- | And, | GEM, | Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer |
| 1354- | And, | Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancer |
| - | in-vitro, | PC, | NA | - | in-vivo, | PC, | NA |
| 1537- | Api, | Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer |
| - | Review, | PC, | NA |
| 1545- | Api, | The Potential Role of Apigenin in Cancer Prevention and Treatment |
| - | Review, | NA, | NA |
| 1552- | Api, | Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p |
| - | in-vitro, | CRC, | HCT116 |
| 1565- | Api, | Apigenin-7-glucoside induces apoptosis and ROS accumulation in lung cancer cells, and inhibits PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | BEAS-2B | - | in-vitro, | Lung, | H1975 |
| 2593- | Api, | Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo |
| - | in-vivo, | BC, | 4T1 |
| 2632- | Api, | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
| - | in-vitro, | EC, | NA |
| 2633- | Api, | Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells |
| - | in-vitro, | EC, | NA |
| 2299- | Api, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 2316- | Api, | The interaction between apigenin and PKM2 restrains progression of colorectal cancer |
| - | in-vitro, | CRC, | LS174T | - | in-vitro, | CRC, | HCT8 | - | in-vivo, | CRC, | NA |
| 3396- | ART/DHA, | Progress on the study of the anticancer effects of artesunate |
| - | Review, | Var, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 2322- | ART/DHA, | Dihydroartemisinin Regulates Self-Renewal of Human Melanoma-Initiating Cells by Targeting PKM2/LDHARelated Glycolysis |
| - | in-vitro, | Melanoma, | NA |
| 957- | ART/DHA, | Artemisinin inhibits the development of esophageal cancer by targeting HIF-1α to reduce glycolysis levels |
| - | in-vitro, | ESCC, | KYSE150 | - | in-vitro, | ESCC, | KYSE170 |
| 1079- | ART/DHA, | Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2 |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | MGC803 |
| 574- | ART/DHA, | Dihydroartemisinin suppresses glioma proliferation and invasion via inhibition of the ADAM17 pathway |
| 569- | ART/DHA, | Dihydroartemisinin exhibits anti-glioma stem cell activity through inhibiting p-AKT and activating caspase-3 |
| - | in-vitro, | GBM, | NA |
| 1333- | AS, | Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway |
| - | in-vitro, | BC, | NA |
| 1334- | AS, | Astragalus membranaceus: A Review of Its Antitumor Effects on Non-Small Cell Lung Cancer |
| - | Review, | NA, | NA |
| 1028- | ASA, | Aspirin Suppressed PD-L1 Expression through Suppressing KAT5 and Subsequently Inhibited PD-1 and PD-L1 Signaling to Attenuate OC Development |
| - | vitro+vivo, | Ovarian, | NA |
| 1304- | ASA, | Aspirin Inhibits Colorectal Cancer via the TIGIT-BCL2-BAX pathway in T Cells |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 1357- | Ash, | Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | GL26 |
| 2002- | Ash, | Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology |
| - | Review, | Var, | NA |
| 1179- | Ash, | Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 1173- | Ash, | Withaferin A inhibits proliferation of human endometrial cancer cells via transforming growth factor-β (TGF-β) signalling |
| - | in-vitro, | EC, | K1 | - | in-vitro, | Nor, | THESCs |
| 3167- | Ash, | Withaferin A Inhibits the Proteasome Activity in Mesothelioma In Vitro and In Vivo |
| - | in-vitro, | MM, | H226 |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 3172- | Ash, | Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | HL7702 |
| 4821- | ASTX, | Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53 |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | BC, | BT20 | - | in-vitro, | BC, | T47D |
| 4804- | ASTX, | Astaxanthin in cancer therapy and prevention (Review) |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 4805- | ASTX, | Astaxanthin promotes apoptosis by suppressing growth signaling pathways in HT-29 colorectal cancer cells |
| - | in-vitro, | Colon, | HT29 |
| 4806- | ASTX, | Astaxanthin's Impact on Colorectal Cancer: Examining Apoptosis, Antioxidant Enzymes, and Gene Expression |
| - | in-vitro, | CRC, | HCT116 |
| 4807- | ASTX, | An overview of the anticancer activity of astaxanthin and the associated cellular and molecular mechanisms |
| - | Review, | Var, | NA |
| 4808- | ASTX, | Anti-Tumor Effects of Astaxanthin by Inhibition of the Expression of STAT3 in Prostate Cancer |
| - | in-vitro, | Pca, | DU145 | - | in-vivo, | NA, | NA |
| 4809- | ASTX, | Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | MKN45 |
| 4810- | ASTX, | Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 4820- | ASTX, | Astaxanthin suppresses the malignant behaviors of nasopharyngeal carcinoma cells by blocking PI3K/AKT and NF-κB pathways via miR-29a-3p |
| - | in-vitro, | NPC, | NA |
| 4817- | ASTX, | Low Dose Astaxanthin Treatments Trigger the Hormesis of Human Astroglioma Cells by Up-Regulating the Cyclin-Dependent Kinase and Down-Regulated the Tumor Suppressor Protein P53 |
| - | in-vitro, | GBM, | U251 |
| 4980- | ATV, | A review of effects of atorvastatin in cancer therapy |
| - | Review, | Var, | NA |
| 4978- | ATV, | Rad, | Atorvastatin Sensitizes Breast and Lung Cancer Cells to Ionizing Radiation |
| - | in-vitro, | BC, | A549 |
| 1900- | Aur, | Potential Anticancer Activity of Auranofin |
| - | Review, | Var, | NA |
| - | in-vivo, | BC, | 4T1 |
| 999- | Ba, | Baicalin Inhibits EMT through PDK1/AKT Signaling in Human Nonsmall Cell Lung Cancer |
| - | in-vitro, | Lung, | H460 |
| - | in-vitro, | Lung, | H1975 | - | in-vivo, | Lung, | NA |
| 1531- | Ba, | Proteomic analysis of the effects of baicalein on colorectal cancer cells |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | CRC, | SW48 |
| 2599- | Ba, | Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2602- | Ba, | Downregulation of ZFX is associated with inhibition of prostate cancer progression by baicalein |
| - | in-vitro, | Pca, | NA | - | in-vivo, | Pca, | NA |
| 2606- | Ba, | Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma |
| - | Review, | HCC, | NA |
| 2619- | Ba, | Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | BC, | MGC803 | - | in-vitro, | Lung, | A549 |
| 2618- | Ba, | Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer |
| - | in-vitro, | Lung, | H1299 | - | in-vivo, | Lung, | A549 |
| 2615- | Ba, | The Multifaceted Role of Baicalein in Cancer Management through Modulation of Cell Signalling Pathways |
| - | Review, | Var, | NA |
| 2289- | Ba, | Rad, | Baicalein Inhibits the Progression and Promotes Radiosensitivity of Esophageal Squamous Cell Carcinoma by Targeting HIF-1A |
| - | in-vitro, | ESCC, | KYSE150 |
| 2291- | Ba, | BA, | Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vitro, | Melanoma, | A375 |
| 2298- | Ba, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 1398- | BBR, | Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage |
| - | in-vitro, | Kidney, | NA |
| 1401- | BBR, | Berberine induces apoptosis in glioblastoma multiforme U87MG cells via oxidative stress and independent of AMPK activity |
| - | in-vitro, | GBM, | U87MG |
| 1405- | BBR, | Chit, | Chitosan/alginate nanogel potentiate berberine uptake and enhance oxidative stress mediated apoptotic cell death in HepG2 cells |
| - | in-vitro, | Liver, | HepG2 |
| 1385- | BBR, | 5-FU, | Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and Antioxidation |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1379- | BBR, | Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells |
| - | in-vitro, | lymphoma, | NA |
| 1375- | BBR, | 13-[CH2CO-Cys-(Bzl)-OBzl]-Berberine: Exploring The Correlation Of Anti-Tumor Efficacy With ROS And Apoptosis Protein |
| - | in-vitro, | CRC, | HCT8 | - | in-vivo, | NA, | NA |
| 2706- | BBR, | Berberine Inhibits Growth of Liver Cancer Cells by Suppressing Glutamine Uptake |
| - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | Bel-7402 | - | in-vivo, | NA, | NA |
| 2707- | BBR, | Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 |
| 2709- | BBR, | Berberine inhibits the glycolysis and proliferation of hepatocellular carcinoma cells by down-regulating HIF-1α |
| - | in-vitro, | HCC, | HepG2 |
| 2711- | BBR, | Berberine inhibits the progression of breast cancer by regulating METTL3-mediated m6A modification of FGF7 mRNA |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vivo, | NA, | NA |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 2682- | BBR, | Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | HCT116 |
| 2685- | BBR, | Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells |
| - | in-vitro, | neuroblastoma, | NA |
| 2337- | BBR, | Berberine Inhibited the Proliferation of Cancer Cells by Suppressing the Activity of Tumor Pyruvate Kinase M2 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | Cerv, | HeLa |
| 4658- | BBR, | Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A Methylation |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 2756- | BetA, | Betulinic acid inhibits growth of hepatoma cells through activating the NCOA4-mediated ferritinophagy pathway |
| - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | H1299 |
| 2740- | BetA, | Effects and mechanisms of fatty acid metabolism-mediated glycolysis regulated by betulinic acid-loaded nanoliposomes in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 |
| 2737- | BetA, | Multiple molecular targets in breast cancer therapy by betulinic acid |
| - | Review, | Var, | NA |
| 2733- | BetA, | Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling |
| - | in-vitro, | Oral, | KB | - | in-vivo, | NA, | NA |
| 2730- | BetA, | Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells |
| - | in-vitro, | Bladder, | T24 |
| 3786- | Bor, | New and potential boron-containing compounds for treatment of Alzheimer's disease and cancers |
| - | Analysis, | AD, | NA | - | Analysis, | Var, | NA |
| 3513- | Bor, | Boric Acid Activation of eIF2α and Nrf2 Is PERK Dependent: a Mechanism that Explains How Boron Prevents DNA Damage and Enhances Antioxidant Status |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Nor, | MEF |
| 3512- | Bor, | Activation of the EIF2α/ATF4 and ATF6 Pathways in DU-145 Cells by Boric Acid at the Concentration Reported in Men at the US Mean Boron Intake |
| - | in-vitro, | Pca, | DU145 |
| 4620- | Bor, | BTZ, | Boron Compounds in the Breast Cancer Cells Chemoprevention and Chemotherapy |
| - | Review, | Var, | NA | - | Review, | Arthritis, | NA | - | Review, | Pca, | NA |
| 722- | Bor, | Boric acid as a promising agent in the treatment of ovarian cancer: Molecular mechanisms |
| - | in-vitro, | Ovarian, | MDAH-2774 |
| 705- | Bor, | Boric acid inhibits human prostate cancer cell proliferation |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | LNCaP |
| 710- | Bor, | Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells |
| - | in-vitro, | Pca, | DU145 |
| 763- | Bor, | Investigation of The Apoptotic and Antiproliferative Effects of Boron on CCL-233 Human Colon Cancer Cells |
| - | in-vitro, | Colon, | CCl233 |
| 768- | Bor, | In vitro and in vivo antitumour effects of phenylboronic acid against mouse mammary adenocarcinoma 4T1 and squamous carcinoma SCCVII cells |
| - | in-vitro, | BC, | 4T1 |
| 738- | Bor, | Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Nor, | SVGp12 |
| 739- | Bor, | Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | Nor, | HMC3 |
| 1248- | Bos, | The anti-proliferative effects of a frankincense extract in a window of opportunity phase ia clinical trial for patients with breast cancer |
| - | Trial, | BC, | NA |
| 1416- | Bos, | Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent |
| - | Review, | NA, | NA |
| 1420- | Bos, | Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway |
| - | vitro+vivo, | GC, | BGC-823 |
| 1449- | Bos, | Chemo, | Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 |
| 1448- | Bos, | A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2768- | Bos, | Boswellic acids as promising agents for the management of brain diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1264- | CAP, | Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells |
| - | in-vitro, | HCC, | NA |
| 1262- | CAP, | Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway |
| - | vitro+vivo, | BC, | NA |
| 2013- | CAP, | Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 | - | in-vivo, | NA, | NA |
| 1518- | CAP, | Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo |
| - | in-vitro, | CRC, | HCT116 |
| 1287- | CAR, | Carvacrol induces apoptosis in human breast cancer cells via Bcl-2/CytC signaling pathway |
| - | in-vitro, | BC, | HCC1937 |
| 1103- | CBD, | Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway |
| - | vitro+vivo, | NA, | NA |
| 955- | CEL, | Celecoxib Down-Regulates the Hypoxia-Induced Expression of HIF-1α and VEGF Through the PI3K/AKT Pathway in Retinal Pigment Epithelial Cells |
| - | in-vitro, | RPE, | D407 |
| 1105- | CEL, | Celecoxib inhibits the epithelial-to-mesenchymal transition in bladder cancer via the miRNA-145/TGFBR2/Smad3 axis |
| - | in-vitro, | BC, | NA |
| 4478- | Chit, | Chitosan promotes ROS-mediated apoptosis and S phase cell cycle arrest in triple-negative breast cancer cells: evidence for intercalative interaction with genomic DNA |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| - | in-vitro, | BC, | NA |
| 2590- | CHr, | Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway |
| - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG |
| 2782- | CHr, | Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
| 2783- | CHr, | Apoptotic Effects of Chrysin in Human Cancer Cell Lines |
| - | Review, | Var, | NA |
| 2787- | CHr, | Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics |
| - | Analysis, | Var, | MCF-7 |
| 2791- | CHr, | Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction |
| - | in-vitro, | Ovarian, | OV90 |
| 1055- | Cin, | Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1 |
| - | vitro+vivo, | Melanoma, | NA | - | vitro+vivo, | CRC, | NA | - | vitro+vivo, | lymphoma, | NA |
| 1577- | Citrate, | Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet |
| - | in-vivo, | PC, | NA | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | PATU-8988 | - | in-vitro, | PC, | MIA PaCa-2 |
| 1578- | Citrate, | Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update |
| - | Review, | Var, | NA |
| 1579- | Citrate, | Effect of Food Additive Citric Acid on The Growth of Human Esophageal Carcinoma Cell Line EC109 |
| - | in-vitro, | ESCC, | Eca109 |
| 1580- | Citrate, | Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway |
| - | in-vitro, | Pca, | PC3 | - | in-vivo, | PC, | NA | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | WPMY-1 |
| 1583- | Citrate, | Extracellular citrate and metabolic adaptations of cancer cells |
| - | Review, | NA, | NA |
| 4772- | CoQ10, | The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MDA-MB-231 |
| 4762- | CoQ10, | The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers |
| - | Review, | Var, | NA |
| 1505- | CUR, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 4709- | CUR, | Curcumin Regulates Cancer Progression: Focus on ncRNAs and Molecular Signaling Pathways |
| - | Review, | Var, | NA |
| 4826- | CUR, | The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management |
| - | Review, | Var, | NA |
| 4652- | CUR, | Anticancer effect of curcumin on breast cancer and stem cells |
| - | Review, | BC, | NA |
| 4676- | CUR, | Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway |
| - | vitro+vivo, | Lung, | H460 |
| 872- | CUR, | RES, | New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects |
| - | in-vitro, | BC, | TUBO | - | in-vitro, | BC, | SALTO |
| 404- | CUR, | Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | H1299 |
| 438- | CUR, | Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats |
| - | vitro+vivo, | CRC, | CC531 |
| 477- | CUR, | Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 461- | CUR, | Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 467- | CUR, | Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling |
| - | in-vitro, | Liver, | HepG2 |
| 458- | CUR, | Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion |
| - | vitro+vivo, | GC, | SGC-7901 |
| 472- | CUR, | Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis |
| - | vitro+vivo, | Ovarian, | SKOV3 | - | vitro+vivo, | Ovarian, | A2780S |
| 449- | CUR, | Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a |
| - | vitro+vivo, | CRC, | SW480 |
| 442- | CUR, | 5-FU, | Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress |
| - | in-vitro, | CRC, | HCT116 |
| - | in-vitro, | CRC, | SW480 |
| 440- | CUR, | Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells |
| - | vitro+vivo, | CRC, | SW480 | - | vitro+vivo, | CRC, | HT-29 |
| 450- | CUR, | Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 456- | CUR, | Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells |
| - | vitro+vivo, | GC, | SGC-7901 |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 1006- | CUR, | The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2) |
| - | in-vitro, | Liver, | HepG2 |
| 479- | CUR, | Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments |
| - | in-vitro, | Tong, | CAL27 |
| 480- | CUR, | Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells |
| - | in-vitro, | GBM, | SNB19 |
| 482- | CUR, | PDT, | The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro |
| - | in-vitro, | Bladder, | RT112 | - | in-vitro, | Bladder, | UMUC3 |
| 483- | CUR, | PDT, | Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin |
| - | in-vivo, | NA, | A431 |
| 1871- | DAP, | Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth |
| - | in-vitro, | AML, | U937 | - | in-vivo, | AML, | NA |
| 1889- | DCA, | A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth |
| - | Review, | Var, | NA |
| 1865- | DCA, | Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo |
| - | in-vivo, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| 1445- | Deg, | Deguelin--an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model |
| - | in-vivo, | lymphoma, | NA | - | in-vitro, | lymphoma, | NA |
| 4455- | DFE, | Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | 3T3 |
| 1850- | dietFMD, | Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression |
| - | in-vivo, | CRC, | NA |
| 2264- | dietMet, | Methionine restriction for cancer therapy: From preclinical studies to clinical trials |
| - | Review, | Var, | NA |
| 2273- | dietMet, | Methionine and cystine double deprivation stress suppresses glioma proliferation via inducing ROS/autophagy |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 | - | in-vivo, | NA, | NA |
| 2263- | dietMet, | Methionine Restriction and Cancer Biology |
| - | Review, | Var, | NA |
| 5006- | DSF, | Cu, | Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition |
| - | vitro+vivo, | lymphoma, | NA |
| 5012- | DSF, | Cu, | Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems |
| 5007- | DSF, | Cu, | Nrf2/HO-1 Alleviates Disulfiram/Copper-Induced Ferroptosis in Oral Squamous Cell Carcinoma |
| - | vitro+vivo, | Oral, | NA |
| 4916- | DSF, | Cu, | The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics |
| - | Review, | Var, | NA |
| 1608- | EA, | Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 1607- | EA, | Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions |
| - | Review, | GC, | NA |
| 1606- | EA, | Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells |
| - | in-vitro, | Colon, | HCT15 |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 1111- | EDM, | Evodiamine exerts inhibitory roles in non‑small cell lung cancer cell A549 and its sub‑population of stem‑like cells |
| - | in-vitro, | Lung, | A549 |
| - | in-vitro, | HCC, | NA | - | in-vivo, | NA, | NA |
| 665- | EGCG, | Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway |
| - | in-vitro, | NA, | H1299 |
| 683- | EGCG, | Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy |
| - | Review, | NA, | NA |
| 3201- | EGCG, | Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential |
| - | Review, | NA, | NA |
| 3243- | EGCG, | (−)-Epigallocatechin-3-Gallate Inhibits Colorectal Cancer Stem Cells by Suppressing Wnt/β-Catenin Pathway |
| 3244- | EGCG, | Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells |
| 3213- | EGCG, | Rad, | Epigallocatechin-3-gallate Enhances Radiation Sensitivity in Colorectal Cancer Cells Through Nrf2 Activation and Autophagy |
| - | in-vitro, | CRC, | HCT116 |
| 3215- | EGCG, | Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H1299 |
| 3216- | EGCG, | Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation |
| - | NA, | Colon, | Caco-2 |
| 2302- | EGCG, | Flavonoids Targeting HIF-1: Implications on Cancer Metabolism |
| - | Review, | Var, | NA |
| 4681- | EGCG, | Epigallocatechin-3-Gallate Prevents the Acquisition of a Cancer Stem Cell Phenotype in Ovarian Cancer Tumorspheres through the Inhibition of Src/JAK/STAT3 Signaling |
| - | in-vitro, | Ovarian, | ES-2 |
| 4682- | EGCG, | Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate |
| - | Review, | Var, | NA |
| 1303- | EGCG, | (-)-Epigallocatechin-3-gallate induces apoptosis in human endometrial adenocarcinoma cells via ROS generation and p38 MAP kinase activation |
| - | in-vitro, | EC, | NA |
| 1322- | EMD, | The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers |
| - | Review, | Var, | NA |
| 1247- | EMD, | Emodin exerts antitumor effects in ovarian cancer cell lines by preventing the development of cancer stem cells via epithelial mesenchymal transition |
| - | vitro+vivo, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 1245- | EMD, | Emodin Exhibits Strong Cytotoxic Effect in Cervical Cancer Cells by Activating Intrinsic Pathway of Apoptosis |
| - | in-vitro, | Cerv, | HeLa |
| 1325- | EMD, | PacT, | Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo |
| - | vitro+vivo, | Lung, | A549 |
| 2150- | Ex, | Roles and molecular mechanisms of physical exercise in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 1039- | F, | Anti-Proliferative and Pro-Apoptotic vLMW Fucoidan Formulas Decrease PD-L1 Surface Expression in EBV Latency III and DLBCL Tumoral B-Cells by Decreasing Actin Network |
| - | in-vitro, | NA, | NA |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 1655- | FA, | Ferulic acid inhibiting colon cancer cells at different Duke’s stages |
| - | in-vitro, | Colon, | SW480 | - | in-vitro, | Colon, | Caco-2 | - | in-vitro, | Colon, | HCT116 |
| 2499- | Fenb, | VitE, | Effects of fenbendazole and vitamin E succinate on the growth and survival of prostate cancer cells |
| - | in-vitro, | Pca, | PC3 |
| 2860- | FIS, | Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | Nor, | hTERT-HPNE | - | in-vivo, | NA, | NA |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| 2829- | FIS, | Fisetin: An anticancer perspective |
| - | Review, | Var, | NA |
| 2830- | FIS, | Biological effects and mechanisms of fisetin in cancer: a promising anti-cancer agent |
| - | Review, | Var, | NA |
| 2840- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | NA, | CCA, | NA |
| 4028- | FulvicA, | Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| 1115- | GA, | Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway |
| - | in-vivo, | GC, | GES-1 |
| 1091- | GA, | Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | HTB-35 |
| 2060- | GamB, | Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 1957- | GamB, | Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy |
| - | in-vitro, | ESCC, | EC9706 |
| 1958- | GamB, | Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells |
| - | in-vitro, | Pca, | NA | - | in-vivo, | NA, | NA |
| 826- | GAR, | Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo |
| - | vitro+vivo, | HCC, | HepG2 | - | vitro+vivo, | Liver, | HUH7 |
| 811- | GAR, | Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 810- | GAR, | GEM, | Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures |
| - | in-vitro, | PC, | NA |
| 797- | GAR, | CUR, | Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | OS, | U2OS | - | in-vitro, | OS, | SaOS2 |
| 798- | GAR, | Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol |
| - | in-vitro, | BC, | MCF-7 |
| 802- | GAR, | Garcinol acts as an antineoplastic agent in human gastric cancer by inhibiting the PI3K/AKT signaling pathway |
| - | in-vitro, | GC, | HGC27 |
| 803- | GAR, | Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 |
| 804- | GAR, | Garcinol inhibits the proliferation of endometrial cancer cells by inducing cell cycle arrest |
| - | in-vitro, | EC, | HEC1B | - | in-vitro, | EC, | ISH |
| 1189- | Gb, | New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer |
| - | Review, | NA, | NA |
| 1005- | GI, | Ginger Constituent 6-Shogaol Inhibits Inflammation- and Angiogenesis-Related Cell Functions in Primary Human Endothelial Cells |
| - | vitro+vivo, | Nor, | HUVECs |
| 4513- | GLA, | Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines |
| - | in-vitro, | Liver, | HUH7 |
| 4505- | GLA, | Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α |
| - | in-vitro, | NSCLC, | Calu-1 |
| 854- | Gra, | SNP, | Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy |
| - | vitro+vivo, | AML, | THP1 | - | in-vitro, | AML, | AMJ13 | - | vitro+vivo, | lymphoma, | HBL |
| 855- | Gra, | Antiproliferative activity of ionic liquid-graviola fruit extract against human breast cancer (MCF-7) cell lines using flow cytometry techniques |
| - | in-vitro, | BC, | MCF-7 |
| 2523- | H2, | Prospects of molecular hydrogen in cancer prevention and treatment |
| - | Review, | Var, | NA |
| 2519- | H2, | Hydrogen: an advanced and safest gas option for cancer treatment |
| - | Review, | Var, | NA |
| 2517- | H2, | Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response |
| - | in-vitro, | Var, | A549 | - | in-vitro, | NA, | HCT116 | - | in-vitro, | NA, | HeLa | - | in-vitro, | NA, | HepG2 | - | in-vitro, | NA, | HT1080 | - | in-vitro, | NA, | PC3 | - | in-vitro, | NA, | SH-SY5Y |
| 1643- | HCAs, | Mechanisms involved in the anticancer effects of sinapic acid |
| - | Review, | Var, | NA |
| 2885- | HNK, | Honokiol: a novel natural agent for cancer prevention and therapy |
| 2895- | HNK, | Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity |
| - | in-vitro, | Lung, | PC9 |
| 2897- | HNK, | Honokiol Inhibits Proliferation, Invasion and Induces Apoptosis Through Targeting Lyn Kinase in Human Lung Adenocarcinoma Cells |
| - | in-vitro, | Lung, | PC9 | - | in-vitro, | Lung, | A549 |
| 2898- | HNK, | Honokiol Suppression of Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Gastric Cancer Cell Biological Activity and Its Mechanism |
| - | in-vitro, | GC, | AGS | - | in-vitro, | GC, | NCI-N87 | - | in-vitro, | BC, | MGC803 | - | in-vitro, | GC, | SGC-7901 |
| 2879- | HNK, | Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function |
| - | in-vitro, | Lung, | H226 | - | in-vivo, | NA, | NA |
| 2865- | HNK, | Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma |
| - | in-vitro, | MB, | DAOY | - | vitro+vivo, | NA, | NA |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | LoVo | - | in-vivo, | CRC, | HCT116 |
| 2082- | HNK, | Revealing the role of honokiol in human glioma cells by RNA-seq analysis |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | U251 |
| 4635- | HT, | Hydroxytyrosol, a Component of Olive Oil for Breast Cancer Prevention in Women at High Risk of Cancer |
| - | Trial, | BC, | NA |
| 4637- | HT, | Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells |
| - | in-vitro, | Nor, | RWPE-1 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 |
| 4639- | HT, | Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 4642- | HT, | Hydroxytyrosol, a natural molecule from olive oil, suppresses the growth of human hepatocellular carcinoma cells via inactivating AKT and nuclear factor-kappa B pathways |
| - | in-vitro, | HCC, | HepG2 | - | NA, | NA, | Hep3B | - | NA, | NA, | SK-HEP-1 |
| 2180- | itraC, | Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent |
| - | Review, | Var, | NA |
| 1167- | IVM, | The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer |
| - | vitro+vivo, | NA, | NA |
| 974- | JG, | Juglone down-regulates the Akt-HIF-1α and VEGF signaling pathways and inhibits angiogenesis in MIA Paca-2 pancreatic cancer in vitro |
| - | in-vitro, | PC, | MIA PaCa-2 |
| 1918- | JG, | ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro |
| - | in-vitro, | Liver, | HepG2 | - | in-vivo, | NA, | NA |
| 1922- | JG, | Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma |
| - | in-vitro, | GBM, | U87MG |
| 1923- | JG, | Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells |
| - | in-vitro, | Endo, | NA |
| 863- | Lae, | Amygdalin inhibits the growth of renal cell carcinoma cells in vitro |
| - | in-vitro, | RCC, | NA |
| 2453- | LE, | The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors |
| - | Review, | Var, | NA |
| 1100- | LT, | Luteolin, a flavonoid, as an anticancer agent: A review |
| - | Review, | NA, | NA |
| 979- | LT, | Luteolin Regulation of Estrogen Signaling and Cell Cycle Pathway Genes in MCF-7 Human Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | PC, | Bxpc-3 |
| 2346- | LT, | Luteolin suppressed PKM2 and promoted autophagy for inducing the apoptosis of hepatocellular carcinoma cells |
| - | in-vitro, | HCC, | HepG2 |
| 2913- | LT, | Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | GC, | MKN45 |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 2909- | LT, | Revisiting luteolin: An updated review on its anticancer potential |
| - | Review, | Var, | NA |
| 2912- | LT, | Luteolin: a flavonoid with a multifaceted anticancer potential |
| - | Review, | Var, | NA |
| 3277- | Lyco, | Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent |
| - | Review, | Var, | NA |
| 4778- | Lyco, | Lycopene exerts cytotoxic effects by mitochondrial reactive oxygen species–induced apoptosis in glioblastoma multiforme |
| - | in-vitro, | GBM, | GBM8401 |
| 4782- | Lyco, | New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene |
| - | Review, | Var, | NA |
| 4799- | Lyco, | Anticancer Properties of Lycopene |
| - | Review, | Var, | NA |
| 4797- | Lyco, | A mechanistic updated overview on lycopene as potential anticancer agent |
| - | Review, | Var, | NA |
| 4793- | Lyco, | Lycopene treatment inhibits activation of Jak1/Stat3 and Wnt/β-catenin signaling and attenuates hyperproliferation in gastric epithelial cells |
| - | in-vitro, | GC, | AGS |
| 4791- | Lyco, | Investigating into anti-cancer potential of lycopene: Molecular targets |
| - | Review, | Var, | NA |
| 4790- | Lyco, | Role of Lycopene in the Control of ROS-Mediated Cell Growth: Implications in Cancer Prevention |
| - | Review, | Var, | NA |
| 4786- | Lyco, | Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 |
| 4780- | Lyco, | Potential inhibitory effect of lycopene on prostate cancer |
| - | Review, | Pca, | NA |
| 1126- | Lyco, | Lycopene Inhibits Epithelial–Mesenchymal Transition and Promotes Apoptosis in Oral Cancer via PI3K/AKT/m-TOR Signal Pathway |
| - | vitro+vivo, | Oral, | NA |
| 2542- | M-Blu, | In Vitro Methylene Blue and Carboplatin Combination Triggers Ovarian Cancer Cells Death |
| - | in-vitro, | Ovarian, | OV1369 | - | in-vitro, | Ovarian, | OV1946 | - | in-vitro, | Nor, | ARPE-19 |
| 2545- | M-Blu, | Reversing the Warburg Effect as a Treatment for Glioblastoma |
| - | in-vitro, | GBM, | U87MG | - | NA, | AD, | NA | - | in-vitro, | GBM, | A172 | - | in-vitro, | GBM, | T98G |
| 2540- | M-Blu, | Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1198- | MAG, | Mitochondria-targeted magnolol inhibits OXPHOS, proliferation, and tumor growth via modulation of energetics and autophagy in melanoma cells |
| - | in-vivo, | Melanoma, | NA |
| 4514- | MAG, | Magnolol and its semi-synthetic derivatives: a comprehensive review of anti-cancer mechanisms, pharmacokinetics, and future therapeutic potential |
| - | Review, | Var, | NA |
| 4535- | MAG, | 5-FU, | Magnolol and 5-fluorouracil synergy inhibition of metastasis of cervical cancer cells by targeting PI3K/AKT/mTOR and EMT pathways |
| - | in-vitro, | Cerv, | NA |
| 4527- | MAG, | Magnolol inhibits growth and induces apoptosis in esophagus cancer KYSE-150 cell lines via the MAP kinase pathway |
| - | in-vitro, | ESCC, | TE1 | - | in-vitro, | ESCC, | Eca109 | - | vitro+vivo, | SCC, | KYSE150 |
| 4520- | MAG, | Magnolol Suppresses Pancreatic Cancer Development In Vivo and In Vitro via Negatively Regulating TGF-β/Smad Signaling |
| - | vitro+vivo, | PC, | PANC1 |
| 4515- | MAG, | Magnolol as a Potential Anticancer Agent: A Proposed Mechanistic Insight |
| - | Review, | Var, | NA |
| 4537- | MAG, | Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action |
| - | in-vivo, | Melanoma, | NA | - | in-vitro, | Melanoma, | A431 |
| 1314- | MAG, | Magnolol induces apoptosis via activation of both mitochondrial and death receptor pathways in A375-S2 cells |
| - | in-vitro, | Melanoma, | A375 |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 1780- | MEL, | Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing |
| - | Review, | Var, | NA |
| 1776- | MEL, | Therapeutic strategies of melatonin in cancer patients: a systematic review and meta-analysis |
| - | Review, | NA, | NA |
| 2383- | MET, | Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2 |
| - | in-vitro, | RCC, | A498 |
| 2378- | MET, | Metformin inhibits epithelial-mesenchymal transition of oral squamous cell carcinoma via the mTOR/HIF-1α/PKM2/STAT3 pathway |
| - | in-vitro, | SCC, | CAL27 | - | in-vivo, | NA, | NA |
| 2260- | MF, | Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | LN229 | - | in-vivo, | NA, | NA |
| 3477- | MF, | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
| - | Review, | NA, | NA |
| 3478- | MF, | One Month of Brief Weekly Magnetic Field Therapy Enhances the Anticancer Potential of Female Human Sera: Randomized Double-Blind Pilot Study |
| - | Trial, | BC, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | C2C12 |
| 3468- | MF, | An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing |
| - | Review, | NA, | NA |
| 3470- | MF, | Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8+ T cell dysfunction and suppress cervical cancer progression |
| - | in-vitro, | Cerv, | HeLa |
| 527- | MF, | Effects of Fifty-Hertz Electromagnetic Fields on Granulocytic Differentiation of ATRA-Treated Acute Promyelocytic Leukemia NB4 Cells |
| - | in-vitro, | AML, | APL NB4 |
| 528- | MF, | Caff, | Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells |
| - | in-vitro, | GBM, | U373MG |
| 524- | MF, | Inhibition of Angiogenesis Mediated by Extremely Low-Frequency Magnetic Fields (ELF-MFs) |
| - | vitro+vivo, | PC, | MS-1 | - | vitro+vivo, | PC, | HUVECs |
| 532- | MF, | A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 |
| 506- | MF, | doxoR, | Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells |
| - | in-vitro, | OS, | LM8 |
| 512- | MF, | Pulsed Electromagnetic Fields (PEMFs) Trigger Cell Death and Senescence in Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | FF95 |
| 515- | MF, | Pulsed Low-Frequency Magnetic Fields Induce Tumor Membrane Disruption and Altered Cell Viability |
| - | in-vitro, | Lung, | A549 |
| 226- | MFrot, | MF, | Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells |
| - | in-vitro, | NA, | A549 | - | in-vitro, | NA, | LoVo |
| 227- | MFrot, | MF, | Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway |
| - | in-vivo, | Lung, | A549 | - | in-vitro, | Lung, | A549 |
| 516- | MFrot, | immuno, | MF, | Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth |
| - | vitro+vivo, | GBM, | U87MG |
| 1170- | MushCha, | Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism |
| - | in-vitro, | Oral, | HSC4 |
| 2937- | NAD, | High-Dosage NMN Promotes Ferroptosis to Suppress Lung Adenocarcinoma Growth through the NAM-Mediated SIRT1-AMPK-ACC Pathway |
| - | in-vitro, | Lung, | A549 |
| 1807- | NarG, | A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies |
| - | Review, | NA, | NA |
| 1805- | NarG, | Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota |
| - | in-vitro, | Ovarian, | A2780S | - | in-vivo, | NA, | NA |
| 1267- | NCL, | Niclosamide suppresses migration of hepatocellular carcinoma cells and downregulates matrix metalloproteinase-9 expression |
| - | in-vitro, | HCC, | NA |
| 4976- | Nimb, | Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition |
| - | vitro+vivo, | PC, | NA |
| 4972- | Nimb, | Chemopreventive and therapeutic effects of nimbolide in cancer: The underlying mechanisms |
| - | Review, | Var, | NA |
| 4971- | Nimb, | Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal |
| - | Review, | Var, | NA |
| 4970- | Nimb, | Insights into Nimbolide molecular crosstalk and its anticancer properties |
| - | Review, | Var, | NA |
| 1130- | OA, | Oroxylin A Suppresses the Cell Proliferation, Migration, and EMT via NF-κB Signaling Pathway in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| 4626- | OLE, | A Comprehensive Review on the Anti-Cancer Effects of Oleuropein |
| - | Review, | Var, | NA |
| 4628- | OLE, | Effects of oleuropein on tumor cell growth and bone remodelling: Potential clinical implications for the prevention and treatment of malignant bone diseases |
| - | in-vitro, | Var, | NA |
| 4631- | OLE, | Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions |
| - | Review, | Var, | NA |
| 4647- | OLEC, | Oleocanthal, an Antioxidant Phenolic Compound in Extra Virgin Olive Oil (EVOO): A Comprehensive Systematic Review of Its Potential in Inflammation and Cancer |
| - | Review, | Var, | NA |
| 2396- | PACs, | PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | HUH7 | - | in-vitro, | HCC, | HepG2 | - | in-vitro, | Nor, | L02 |
| 2055- | PB, | The Effects of Butyric Acid on the Differentiation, Proliferation, Apoptosis, and Autophagy of IPEC-J2 Cells |
| - | in-vitro, | Nor, | IPEC-J2 |
| 2039- | PB, | TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4‐phenylbutyrate treatment |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 2076- | PB, | Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 2078- | PB, | Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response |
| - | in-vitro, | CRC, | HCT116 |
| 2077- | PB, | Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| 2421- | PB, | Sodium butyrate inhibits aerobic glycolysis of hepatocellular carcinoma cells via the c‐myc/hexokinase 2 pathway |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vivo, | NA, | NA | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | Nor, | L02 |
| - | in-vitro, | HCC, | HepG2 |
| 2381- | PBG, | Chinese Poplar Propolis Inhibits MDA-MB-231 Cell Proliferation in an Inflammatory Microenvironment by Targeting Enzymes of the Glycolytic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 2430- | PBG, | The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1664- | PBG, | Anticancer Activity of Propolis and Its Compounds |
| - | Review, | Var, | NA |
| 1666- | PBG, | Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer |
| - | Review, | Var, | NA |
| 1668- | PBG, | Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1663- | PBG, | Propolis and Their Active Constituents for Chronic Diseases |
| - | Review, | Var, | NA |
| 1686- | PBG, | Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | SkBr3 | - | in-vitro, | BC, | MDA-MB-231 |
| 1678- | PBG, | 5-FU, | sericin, | In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway |
| - | in-vitro, | CRC, | Caco-2 | - | in-vivo, | NA, | NA |
| 1673- | PBG, | An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1231- | PBG, | Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism |
| - | in-vitro, | BC, | MDA-MB-231 |
| 3259- | PBG, | Propolis and its therapeutic effects on renal diseases: A review |
| - | Review, | Nor, | NA |
| 5014- | PEITC, | Xan, | Combination of xanthohumol and phenethyl isothiocyanate inhibits NF-κB and activates Nrf2 in pancreatic cancer cells |
| - | in-vitro, | PC, | NA |
| 4930- | PEITC, | Targeted anti-cancer therapy: Co-delivery of VEGF siRNA and Phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy |
| - | vitro+vivo, | Lung, | A549 |
| 4933- | PEITC, | Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m6A modification |
| - | vitro+vivo, | Lung, | H1299 | - | vitro+vivo, | SCC, | H226 |
| 4925- | PEITC, | PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells |
| - | in-vitro, | OS, | NA |
| 4922- | PEITC, | Phenethyl Isothiocyanate: A comprehensive review of anti-cancer mechanisms |
| - | Review, | Var, | NA |
| 4921- | PEITC, | The Potential Use of Phenethyl Isothiocyanate for Cancer Prevention |
| - | Review, | Var, | NA |
| 4918- | PEITC, | Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights |
| - | Review, | Var, | NA |
| 4960- | PEITC, | Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells |
| - | in-vivo, | Cerv, | HeLa |
| 4951- | PEITC, | ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis |
| - | in-vitro, | Ovarian, | PA1 | - | in-vitro, | Ovarian, | SKOV3 |
| 4949- | PEITC, | Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells |
| - | in-vitro, | Cerv, | HeLa |
| 4943- | PEITC, | Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation |
| - | in-vitro, | Ovarian, | OVCAR-3 |
| 1769- | PG, | The Anti-Apoptotic Effects of Caspase Inhibitors in Propyl Gallate-Treated Lung Cancer Cells Are Related to Changes in Reactive Oxygen Species and Glutathione Levels |
| - | in-vitro, | Lung, | Calu-6 | - | in-vitro, | Lung, | A549 |
| 1772- | PG, | Propyl gallate decreases the proliferation of Calu-6 and A549 lung cancer cells via affecting reactive oxygen species and glutathione levels |
| - | in-vitro, | Lung, | Calu-6 | - | in-vitro, | Lung, | A549 |
| 1016- | PI, | Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | DLD1 |
| 2961- | PL, | Piperlongumine inhibits esophageal squamous cell carcinoma in vitro and in vivo by triggering NRF2/ROS/TXNIP/NLRP3-dependent pyroptosis |
| - | in-vitro, | ESCC, | KYSE-30 |
| 2958- | PL, | Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity |
| - | in-vitro, | Oral, | HSC3 |
| 2957- | PL, | Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 2952- | PL, | Piperlongumine suppresses bladder cancer invasion via inhibiting epithelial mesenchymal transition and F-actin reorganization |
| - | in-vitro, | Bladder, | T24 | - | in-vivo, | Bladder, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2947- | PL, | Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer |
| - | Review, | Var, | NA |
| 2940- | PL, | Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Kidney, | 786-O | - | in-vitro, | BC, | SkBr3 |
| 2004- | Plum, | Plumbagin Inhibits Proliferative and Inflammatory Responses of T Cells Independent of ROS Generation But by Modulating Intracellular Thiols |
| - | in-vivo, | Var, | NA |
| 4968- | PSO, | Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer |
| - | in-vitro, | Cerv, | NA |
| 4965- | PSO, | Cisplatin, | The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis |
| - | vitro+vivo, | GC, | HGC27 | - | vitro+vivo, | GC, | MKN45 |
| 5033- | PTS, | Involvement of the Nrf2 Pathway in the Regulation of Pterostilbene-Induced Apoptosis in HeLa Cells via ER Stress |
| - | in-vitro, | Cerv, | HeLa |
| 2408- | PTS, | Pterostilbene suppresses the growth of esophageal squamous cell carcinoma by inhibiting glycolysis and PKM2/STAT3/c-MYC signaling pathway |
| - | in-vitro, | ESCC, | NA |
| 1238- | PTS, | Pterostilbene suppresses gastric cancer proliferation and metastasis by inhibiting oncogenic JAK2/STAT3 signaling: In vitro and in vivo therapeutic intervention |
| - | in-vitro, | GC, | NA | - | in-vivo, | NA, | NA |
| 3347- | QC, | Recent Advances in Potential Health Benefits of Quercetin |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3346- | QC, | Regulation of the Intracellular ROS Level Is Critical for the Antiproliferative Effect of Quercetin in the Hepatocellular Carcinoma Cell Line HepG2 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HUH7 |
| 3341- | QC, | Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3381- | QC, | Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase |
| - | in-vitro, | Cerv, | HeLa |
| 3380- | QC, | Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases |
| - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | AD, | NA |
| 3374- | QC, | Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis |
| - | Review, | Oral, | NA | - | Review, | AD, | NA |
| 3373- | QC, | The Effect of Quercetin in the Yishen Tongluo Jiedu Recipe on the Development of Prostate Cancer through the Akt1-related CXCL12/ CXCR4 Pathway |
| - | in-vitro, | Pca, | DU145 |
| 2342- | QC, | Quercetin Inhibits the Proliferation of Glycolysis-Addicted HCC Cells by Reducing Hexokinase 2 and Akt-mTOR Pathway |
| - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vivo, | NA, | NA |
| 39- | QC, | A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells |
| - | Analysis, | NA, | NA |
| 913- | QC, | Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression |
| - | in-vitro, | BC, | SkBr3 | - | in-vitro, | BC, | MDA-MB-435 |
| 993- | RES, | Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells |
| - | in-vitro, | CRC, | Caco-2 | - | in-vivo, | Nor, | HCEC 1CT |
| 879- | RES, | Evidence that TNF-β induces proliferation in colorectal cancer cells and resveratrol can down-modulate it |
| - | in-vitro, | CRC, | HCT116 |
| 2330- | RES, | Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission |
| - | in-vitro, | CRC, | DLD1 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | BC, | MCF-7 |
| 2332- | RES, | Resveratrol’s Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism |
| - | Review, | Var, | NA |
| 2441- | RES, | Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions |
| - | Review, | Var, | NA |
| 2439- | RES, | By reducing hexokinase 2, resveratrol induces apoptosis in HCC cells addicted to aerobic glycolysis and inhibits tumor growth in mice |
| - | in-vitro, | HCC, | HCCLM3 | - | in-vitro, | Nor, | L02 | - | in-vitro, | HCC, | SMMC-7721 cell | - | in-vitro, | HCC, | Bel-7402 | - | in-vitro, | HCC, | HUH7 |
| 3070- | RES, | Resveratrol inhibits tumor progression by down-regulation of NLRP3 in renal cell carcinoma |
| - | in-vitro, | RCC, | ACHN | - | in-vitro, | RCC, | 786-O | - | in-vivo, | NA, | NA |
| 3072- | RES, | Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | U87MG |
| 2981- | RES, | Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways |
| - | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | SW48 |
| 3096- | RES, | Identification of potential target genes of non-small cell lung cancer in response to resveratrol treatment by bioinformatics analysis |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 3095- | RES, | Resveratrol suppresses migration, invasion and stemness of human breast cancer cells by interfering with tumor-stromal cross-talk |
| - | in-vitro, | BC, | NA |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 3084- | RES, | Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| 4662- | RES, | A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling Pathway |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H460 |
| 1747- | RosA, | Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MDA-MB-468 |
| 3029- | RosA, | Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 3027- | RosA, | Rosmarinic acid inhibits proliferation and invasion of hepatocellular carcinoma cells SMMC 7721 via PI3K/AKT/mTOR signal pathway |
| - | in-vitro, | HCC, | SMMC-7721 cell |
| 3001- | RosA, | Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review |
| - | Review, | Var, | NA |
| 3002- | RosA, | Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols |
| - | Review, | Var, | NA |
| 1132- | RT, | Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer Cells |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 4909- | Sal, | Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model |
| - | vitro+vivo, | CRC, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 4908- | Sal, | Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 4902- | Sal, | OXA, | Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivo |
| - | vitro+vivo, | CRC, | NA |
| 4997- | Sal, | Salinomycin Treatment Specifically Inhibits Cell Proliferation of Cancer Stem Cells Revealed by Longitudinal Single Cell Tracking in Combination with Fluorescence Microscopy |
| - | in-vitro, | BC, | NA |
| 4723- | Se, | Selenium Induces Ferroptosis in Colorectal Cancer Cells via Direct Interaction with Nrf2 and Gpx4 |
| - | in-vitro, | CRC, | HCT116 |
| 4718- | Se, | High-Dose Selenium Induces Ferroptotic Cell Death in Ovarian Cancer |
| - | in-vitro, | Ovarian, | NA |
| 4714- | Se, | Selenium in cancer management: exploring the therapeutic potential |
| - | Review, | Var, | NA |
| 4739- | Se, | Chemo, | Rad, | Therapeutic Benefits of Selenium in Hematological Malignancies |
| - | Review, | Var, | NA |
| 4483- | Se, | Chit, | Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular docking |
| - | in-vitro, | OS, | NA |
| 1062- | Sel, | Sodium Selenite Decreased HDAC Activity, Cell Proliferation and Induced Apoptosis in Three Human Glioblastoma Cells |
| - | in-vitro, | GBM, | LN229 | - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U87MG |
| 3197- | SFN, | Sulforaphane Inhibits Self-renewal of Lung Cancer Stem Cells Through the Modulation of Polyhomeotic Homolog 3 and Sonic Hedgehog Signaling Pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H460 |
| 3192- | SFN, | Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention |
| - | in-vitro, | Pca, | PC3 |
| 2405- | SFN, | Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 2446- | SFN, | CAP, | The Molecular Effects of Sulforaphane and Capsaicin on Metabolism upon Androgen and Tip60 Activation of Androgen Receptor |
| - | in-vitro, | Pca, | LNCaP |
| 1734- | SFN, | Sulforaphane Inhibits Nonmuscle Invasive Bladder Cancer Cells Proliferation through Suppression of HIF-1α-Mediated Glycolysis in Hypoxia |
| - | in-vitro, | Bladder, | RT112 |
| 1453- | SFN, | Sulforaphane Reduces Prostate Cancer Cell Growth and Proliferation In Vitro by Modulating the Cdk-Cyclin Axis and Expression of the CD44 Variants 4, 5, and 7 |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 1434- | SFN, | GEM, | Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity |
| - | in-vitro, | CCA, | HuCCT1 | - | in-vitro, | CCA, | HuH28 | - | in-vivo, | NA, | NA |
| 1456- | SFN, | Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cells |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 |
| 1457- | SFN, | Sulforaphane Inhibits IL-1β-Induced IL-6 by Suppressing ROS Production, AP-1, and STAT3 in Colorectal Cancer HT-29 Cells |
| - | in-vitro, | CRC, | HT-29 |
| 1461- | SFN, | Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer - contradictory effects and future perspectives |
| - | Review, | BC, | NA |
| 1466- | SFN, | Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway |
| - | vitro+vivo, | Thyroid, | FTC-133 |
| 1469- | SFN, | Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vivo, | Pca, | NA |
| 1471- | SFN, | ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 1472- | SFN, | Sulforaphane Inhibits Autophagy and Induces Exosome-Mediated Paracrine Senescence via Regulating mTOR/TFE3 |
| - | in-vitro, | ESCC, | NA |
| 1475- | SFN, | Form, | Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway |
| - | in-vitro, | Cerv, | HeLa |
| 1315- | SFN, | Sulforaphane Induces Apoptosis of Acute Human Leukemia Cells Through Modulation of Bax, Bcl-2 and Caspase-3 |
| - | in-vitro, | AML, | K562 |
| - | in-vitro, | Pca, | NA |
| 1509- | SFN, | Combination therapy in combating cancer |
| - | Review, | NA, | NA |
| 3646- | SIL, | "Silymarin", a promising pharmacological agent for treatment of diseases |
| - | Review, | NA, | NA |
| 3305- | SIL, | Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vivo, | NA, | NA |
| 3297- | SIL, | Rad, | Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells |
| - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | RKO |
| 3296- | SIL, | Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway |
| - | in-vitro, | Oral, | Ca9-22 | - | in-vivo, | Oral, | YD10B |
| 3326- | SIL, | Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | Hep3B |
| 3323- | SIL, | Anticancer therapeutic potential of silibinin: current trends, scope and relevance |
| - | Review, | Var, | NA |
| 1127- | SIL, | Silibinin suppresses epithelial–mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1 |
| - | in-vitro, | Lung, | A549 |
| 1140- | SIL, | Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth |
| - | in-vitro, | PC, | AsPC-1 | - | in-vivo, | PC, | NA | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 964- | SIL, | Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics |
| - | vitro+vivo, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 |
| 978- | SIL, | A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment |
| - | Review, | NA, | NA |
| 1073- | SK, | Chemo, | Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 965- | SK, | Shikonin suppresses proliferation and induces cell cycle arrest through the inhibition of hypoxia-inducible factor-1α signaling |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW-620 |
| 2360- | SK, | Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway |
| - | in-vitro, | NPC, | HONE1 | - | in-vitro, | NPC, | SUNE-1 |
| 2355- | SK, | Pharmacological properties and derivatives of shikonin-A review in recent years |
| - | Review, | Var, | NA |
| 2234- | SK, | Shikonin Suppresses Cell Tumorigenesis in Gastric Cancer Associated with the Inhibition of c-Myc and Yap-1 |
| - | in-vitro, | GC, | NA |
| 2229- | SK, | Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways |
| - | in-vitro, | Melanoma, | A375 |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 2221- | SK, | Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression |
| - | in-vitro, | Lung, | A549 |
| 2417- | SK, | Shikonin inhibits the Warburg effect, cell proliferation, invasion and migration by downregulating PFKFB2 expression in lung cancer |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H446 |
| 3041- | SK, | Promising Nanomedicines of Shikonin for Cancer Therapy |
| - | Review, | Var, | NA |
| 3044- | SK, | Shikonin Inhibits Non-Small-Cell Lung Cancer H1299 Cell Growth through Survivin Signaling Pathway |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 |
| 3046- | SK, | Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway |
| - | in-vitro, | Lung, | A549 |
| 3051- | SK, | Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation |
| - | Review, | Var, | NA |
| 2192- | SK, | Shikonin Inhibits Tumor Growth of ESCC by suppressing PKM2 mediated Aerobic Glycolysis and STAT3 Phosphorylation |
| - | in-vitro, | ESCC, | KYSE-510 | - | in-vitro, | ESCC, | Eca109 | - | in-vivo, | NA, | NA |
| 2190- | SK, | Shikonin exerts antitumor activity by causing mitochondrial dysfunction in hepatocellular carcinoma through PKM2-AMPK-PGC1α signaling pathway |
| - | in-vitro, | HCC, | HCCLM3 |
| 2182- | SK, | Cisplatin, | Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | PC9 | - | in-vivo, | NA, | NA |
| 2203- | SK, | Shikonin suppresses small cell lung cancer growth via inducing ATF3-mediated ferroptosis to promote ROS accumulation |
| - | in-vitro, | Lung, | NA |
| 2198- | SK, | Shikonin suppresses proliferation of osteosarcoma cells by inducing ferroptosis through promoting Nrf2 ubiquitination and inhibiting the xCT/GPX4 regulatory axis |
| - | in-vitro, | OS, | MG63 | - | in-vitro, | OS, | 143B |
| 2195- | SK, | Shikonin induces ferroptosis in osteosarcomas through the mitochondrial ROS-regulated HIF-1α/HO-1 axis |
| - | in-vitro, | OS, | NA |
| 1291- | SM, | Tanshinone IIA inhibits human breast cancer cells through increased Bax to Bcl-xL ratios |
| - | in-vitro, | BC, | MDA-MB-231 |
| 1195- | SM, | Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 338- | SNP, | Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer |
| - | vitro+vivo, | Bladder, | 5637 |
| 383- | SNP, | In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells |
| - | in-vitro, | GC, | MKN45 |
| 400- | SNP, | MF, | Polyvinyl Alcohol Capped Silver Nanostructures for Fortified Apoptotic Potential Against Human Laryngeal Carcinoma Cells Hep-2 Using Extremely-Low Frequency Electromagnetic Field |
| - | in-vitro, | Laryn, | HEp2 |
| 1908- | SNP, | Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase |
| - | in-vitro, | Lung, | A549 |
| 1594- | SNP, | Citrate, | Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7 |
| - | in-vitro, | BC, | MCF-7 |
| 2287- | SNP, | Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine |
| - | in-vitro, | Nor, | HUVECs |
| 2538- | SNP, | SDT, | Z, | Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatment |
| - | Study, | Var, | NA | - | vitro+vivo, | NA, | NA |
| 4549- | SNP, | Silver nanoparticles: Synthesis, medical applications and biosafety |
| - | Review, | Var, | NA | - | Review, | Diabetic, | NA |
| 4432- | SNP, | Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions |
| - | Review, | NA, | NA |
| 4435- | SNP, | Gluc, | Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 |
| 4436- | SNP, | Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma |
| - | in-vitro, | Kidney, | 786-O |
| 4437- | SNP, | Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer |
| - | in-vitro, | Oral, | NA |
| 4891- | Sper, | Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 1019- | TQ, | Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation |
| - | vitro+vivo, | CRC, | LoVo |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3559- | TQ, | Molecular signaling pathway targeted therapeutic potential of thymoquinone in Alzheimer’s disease |
| - | Review, | AD, | NA | - | Review, | Var, | NA |
| 3417- | TQ, | Antiproliferative Effects of Thymoquinone in MCF-7 Breast and HepG2 Liver Cancer Cells: Possible Role of Ceramide and ER Stress |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Liver, | HepG2 |
| 3416- | TQ, | Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 253J | - | in-vitro, | Nor, | SV-HUC-1 |
| 3421- | TQ, | Insights into the molecular interactions of thymoquinone with histone deacetylase: evaluation of the therapeutic intervention potential against breast cancer |
| - | Analysis, | Nor, | NA | - | in-vivo, | Nor, | NA | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | HaCaT |
| 3431- | TQ, | PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | SW48 |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 3401- | TQ, | Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review |
| - | Review, | Var, | NA |
| 3408- | TQ, | Thymoquinone: A small molecule from nature with high therapeutic potential |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 3411- | TQ, | Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone |
| - | Review, | Var, | NA |
| 1936- | TQ, | Thymoquinone induces apoptosis and increase ROS in ovarian cancer cell line |
| - | in-vitro, | Ovarian, | CaOV3 | - | in-vitro, | Nor, | WRL68 |
| 1308- | TQ, | Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 2121- | TQ, | Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2119- | TQ, | Dual properties of Nigella Sativa: anti-oxidant and pro-oxidant |
| - | Review, | Var, | NA |
| 2099- | TQ, | Cisplatin, | Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo |
| - | in-vitro, | Lung, | H460 | - | in-vitro, | Lung, | H146 | - | in-vivo, | NA, | NA |
| 2097- | TQ, | Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 2105- | TQ, | Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation |
| - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | Hs766t | - | in-vivo, | NA, | NA |
| 2104- | TQ, | The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa |
| 1928- | TQ, | Thymoquinone Crosstalks with DR5 to Sensitize TRAIL Resistance and Stimulate ROS-Mediated Cancer Apoptosis |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1929- | TQ, | Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells |
| - | in-vitro, | Bladder, | 5637 | - | in-vitro, | Bladder, | T24 |
| 1930- | TQ, | Therapeutic implications and clinical manifestations of thymoquinone |
| - | Review, | Var, | NA |
| 3747- | TTT, | Tumor treating induced fields: a new treatment option for patients with glioblastoma |
| - | in-vitro, | GBM, | U87MG |
| 1020- | UA, | Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 5022- | UA, | Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks |
| - | Review, | Var, | NA |
| 5021- | UA, | Anticancer effect of ursolic acid via mitochondria-dependent pathways |
| - | Review, | Var, | NA |
| 5019- | UA, | Ursolic acid in colorectal cancer: mechanisms, current status, challenges, and future research directions |
| - | Review, | Var, | NA |
| 4856- | Uro, | Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro |
| - | in-vitro, | NPC, | CNE1 | - | in-vitro, | NPC, | CNE2 |
| 4853- | Uro, | Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer |
| - | vitro+vivo, | PC, | MIA PaCa-2 | - | in-vitro, | NA, | PANC1 |
| 4849- | Uro, | Urolithin A suppresses tumor progression and induces autophagy in gastric cancer via the PI3K/Akt/mTOR pathway |
| - | vitro+vivo, | GC, | NA |
| 4847- | Uro, | Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells |
| - | in-vitro, | CRC, | SW-620 |
| 4843- | Uro, | The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide |
| - | in-vitro, | Pca, | LNCaP |
| 4842- | Uro, | Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages |
| - | vitro+vivo, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | 4T1 |
| 4841- | Uro, | Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| 4840- | Uro, | Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancer |
| - | vitro+vivo, | BC, | NA |
| 4837- | Uro, | Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review |
| - | Review, | Var, | NA |
| 4833- | Uro, | Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | IBD, | NA |
| 3143- | VitC, | ATO, | Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis |
| - | in-vitro, | OS, | NA |
| 3133- | VitC, | Vitamin C supplementation had no side effect in non-cancer, but had anticancer properties in ovarian cancer cells |
| - | in-vitro, | Ovarian, | NA |
| 1739- | VitD3, | Effect of Vitamin D3 Supplements on Development of Advanced Cancer |
| - | Trial, | Var, | NA |
| 1213- | VitK2, | Vitamin K2 Inhibits Hepatocellular Carcinoma Cell Proliferation by Binding to 17β-Hydroxysteroid Dehydrogenase 4 |
| - | in-vitro, | HCC, | HepG2 |
| 1816- | VitK2, | Role of Vitamin K in Selected Malignant Neoplasms in Women |
| - | Review, | Var, | NA |
| 1833- | VitK2, | Divergent effects of vitamins K1 and K2 on triple negative breast cancer cells |
| - | in-vitro, | BC, | HS587T | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | SUM159 |
| 1829- | VitK2, | Vitamin K: New insights related to senescence and cancer metastasis |
| - | Review, | Var, | NA |
| 1823- | VitK2, | VitK3, | Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells |
| - | in-vitro, | CRC, | NA | - | in-vivo, | NA, | NA |
| 1839- | VitK3, | Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 1834- | VitK3, | PDT, | Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 Cells |
| - | in-vitro, | Melanoma, | A431 |
| 2621- | Wog, | Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review |
| - | Review, | Var, | NA |
| - | in-vitro, | Nor, | RAW264.7 |
| 4886- | ZER, | Zerumbone induced apoptosis in liver cancer cells via modulation of Bax/Bcl-2 ratio |
| - | in-vitro, | Liver, | HepG2 |
| 4889- | ZER, | Zerumbone reduces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha |
| - | in-vitro, | CRC, | HCT116 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:327 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid