| Source: |
| Type: |
| Bax and Bcl-2 are the major members of Bcl-2 family that play a key role in tumor progression or inhibition of intrinsic apoptotic pathway triggered by mitochondrial dysfunction. Bax/Bcl-2 ratio is typically significantly lower in tumors. |
| 2327- | 2DG, | 2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents |
| - | Review, | Var, | NA |
| 147- | AG, | EGCG, | CUR, | Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | MCF-7 |
| 254- | AL, | Allicin and Cancer Hallmarks |
| - | Review, | Var, | NA |
| 261- | ALA, | The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1078- | And, | Andrographolide inhibits breast cancer through suppressing COX-2 expression and angiogenesis via inactivation of p300 signaling and VEGF pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | HUVECs | - | in-vivo, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | BT549 | - | in-vitro, | BC, | MDA-MB-361 |
| 1151- | Api, | Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: In vitro and in vivo study |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
| 416- | Api, | In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma |
| - | vitro+vivo, | NA, | NA |
| 1536- | Api, | Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells |
| - | in-vitro, | MM, | MSTO-211H | - | in-vitro, | MM, | H2452 |
| 1547- | Api, | Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading |
| - | Review, | NA, | NA |
| 1548- | Api, | A comprehensive view on the apigenin impact on colorectal cancer: Focusing on cellular and molecular mechanisms |
| - | Review, | Colon, | NA |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 2639- | Api, | Plant flavone apigenin: An emerging anticancer agent |
| - | Review, | Var, | NA |
| 1295- | AS, | Cisplatin, | Chemosensitizing Effect of Astragalus Polysaccharides on Nasopharyngeal Carcinoma Cells by Inducing Apoptosis and Modulating Expression of Bax/Bcl-2 Ratio and Caspases |
| - | in-vivo, | Laryn, | NA |
| 1367- | Ash, | An anti-cancerous protein fraction from Withania somnifera induces ROS-dependent mitochondria-mediated apoptosis in human MDA-MB-231 breast cancer cells |
| - | in-vitro, | BC, | MDA-MB-231 |
| - | in-vivo, | BC, | 4T1 |
| 1528- | Ba, | Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma |
| - | in-vitro, | OS, | CAL27 |
| 2603- | Ba, | Baicalein inhibits prostate cancer cell growth and metastasis via the caveolin-1/AKT/mTOR pathway |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 2623- | Ba, | Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells |
| - | in-vitro, | Nor, | HEI193 |
| 2477- | Ba, | Baicalein induces apoptosis via a mitochondrial-dependent caspase activation pathway in T24 bladder cancer cells |
| - | in-vitro, | CRC, | T24 |
| 1299- | BBR, | Effects of Berberine and Its Derivatives on Cancer: A Systems Pharmacology Review |
| - | Review, | NA, | NA |
| 1402- | BBR, | Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction |
| - | in-vitro, | GBM, | T98G |
| 1377- | BBR, | Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway |
| - | in-vitro, | Arthritis, | NA |
| 2685- | BBR, | Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells |
| - | in-vitro, | neuroblastoma, | NA |
| 2686- | BBR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Nor, | NA |
| 2718- | BetA, | The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis |
| - | in-vitro, | AML, | U937 |
| - | in-vitro, | Pca, | DU145 |
| 1297- | CA, | Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes |
| - | in-vitro, | Ovarian, | OV7 |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 2019- | CAP, | Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer |
| - | Review, | Var, | NA |
| 4776- | CoQ10, | Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 4772- | CoQ10, | The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | BC, | MDA-MB-231 |
| 1981- | CUR, | Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity |
| - | in-vitro, | Lung, | NA |
| 9- | CUR, | Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo |
| - | vitro+vivo, | MG, | U87MG | - | vitro+vivo, | MG, | T98G |
| 1606- | EA, | Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells |
| - | in-vitro, | Colon, | HCT15 |
| 1605- | EA, | Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence |
| - | Review, | Var, | NA |
| 1620- | EA, | Rad, | Radiosensitizing effect of ellagic acid on growth of Hepatocellular carcinoma cells: an in vitro study |
| - | in-vitro, | Liver, | HepG2 |
| 26- | EGCG, | QC, | docx, | Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy |
| - | vitro+vivo, | Pca, | PC3 |
| 1318- | EMD, | Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species |
| - | in-vitro, | Nor, | HL7702 |
| 1321- | EMD, | Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model |
| - | in-vitro, | CRC, | LS1034 | - | in-vivo, | NA, | NA |
| 1328- | EMD, | Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways |
| - | in-vitro, | Tong, | SCC4 |
| 1332- | EMD, | Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway |
| - | in-vivo, | Nor, | HepaRG |
| 1329- | EMD, | Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells |
| - | in-vitro, | Tong, | SCC4 |
| 1330- | EMD, | Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway |
| - | in-vitro, | NA, | NA |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 1086- | GA, | Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation |
| - | in-vitro, | AML, | K562 |
| 830- | GAR, | Garcinol modulates tyrosine phosphorylation of FAK and subsequently induces apoptosis through down-regulation of Src, ERK, and Akt survival signaling in human colon cancer cells |
| - | in-vitro, | CRC, | HT-29 |
| 821- | GAR, | Garcinol inhibits cell growth in hepatocellular carcinoma Hep3B cells through induction of ROS-dependent apoptosis |
| - | in-vitro, | Liver, | Hep3B |
| 845- | Gra, | A Review on Annona muricata and Its Anticancer Activity |
| - | Review, | NA, | NA |
| 2438- | Gra, | Emerging therapeutic potential of graviola and its constituents in cancers |
| - | Review, | Var, | NA |
| 2516- | H2, | Hydrogen Gas in Cancer Treatment |
| - | Review, | Var, | NA |
| 1649- | HCAs, | Anticancer Properties of Hydroxycinnamic Acids -A Review |
| - | Review, | Var, | NA |
| 4639- | HT, | Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 4209- | Hup, | Huperzine A, reduces brain iron overload and alleviates cognitive deficit in mice exposed to chronic intermittent hypoxia |
| - | in-vivo, | NA, | NA |
| 1927- | JG, | Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway |
| - | in-vitro, | GC, | SGC-7901 |
| 4292- | LT, | Luteolin for neurodegenerative diseases: a review |
| - | Review, | AD, | NA | - | Review, | Park, | NA | - | Review, | MS, | NA | - | Review, | Stroke, | NA |
| 2913- | LT, | Luteolin induces apoptosis by impairing mitochondrial function and targeting the intrinsic apoptosis pathway in gastric cancer cells |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | GC, | MKN45 |
| 4777- | Lyco, | Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells |
| - | in-vitro, | GC, | AGS |
| 4779- | Lyco, | Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells |
| - | in-vitro, | PC, | PANC1 |
| 4782- | Lyco, | New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene |
| - | Review, | Var, | NA |
| 1013- | Lyco, | Lycopene induces apoptosis by inhibiting nuclear translocation of β-catenin in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 4533- | MAG, | Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways |
| - | in-vitro, | GC, | SGC-7901 |
| 1128- | Myr, | Myricetin suppresses TGF-β-induced epithelial-to-mesenchymal transition in ovarian cancer |
| - | vitro+vivo, | Ovarian, | NA |
| 1141- | Myr, | Myricetin: targeting signaling networks in cancer and its implication in chemotherapy |
| - | Review, | NA, | NA |
| 4225- | NarG, | Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury |
| - | in-vivo, | NA, | NA |
| 1660- | PBG, | Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents |
| - | Review, | Var, | NA |
| 3371- | QC, | Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways |
| - | in-vitro, | GBM, | T98G |
| 81- | QC, | EGCG, | Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea |
| - | in-vivo, | Pca, | NA |
| 98- | QC, | Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway |
| - | in-vivo, | Stroke, | NA |
| 82- | QC, | AG, | Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 1744- | RosA, | Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity |
| - | Review, | Var, | NA |
| - | in-vivo, | CRC, | Caco-2 | - | vitro+vivo, | CRC, | CX-1 |
| 1735- | SFN, | Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane |
| - | in-vitro, | GBM, | T98G | - | in-vitro, | GBM, | U87MG |
| - | in-vitro, | Bladder, | T24 |
| 1458- | SFN, | Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma |
| - | Review, | Bladder, | NA |
| 1474- | SFN, | Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway |
| - | in-vitro, | Colon, | SW480 |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 334- | SNP, | Silver-Based Nanoparticles Induce Apoptosis in Human Colon Cancer Cells Mediated Through P53 |
| - | in-vitro, | Colon, | HCT116 |
| 377- | SNP, | Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis |
| - | in-vitro, | BC, | SkBr3 |
| 2129- | TQ, | doxoR, | Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 2114- | TQ, | Anti-Aging Effect of Nigella Sativa Fixed Oil on D-Galactose-Induced Aging in Mice |
| - | in-vivo, | Nor, | NA |
| 2124- | TQ, | Thymoquinone: an emerging natural drug with a wide range of medical applications |
| - | Review, | Var, | NA |
| 2097- | TQ, | Crude extract of Nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 2095- | TQ, | Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis |
| - | Review, | Var, | NA |
| 2108- | TQ, | Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa |
| - | Review, | Var, | NA |
| 2085- | TQ, | Anticancer Activities of Nigella Sativa (Black Cumin) |
| - | Review, | Var, | NA |
| 2112- | TQ, | Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1313- | VitD3, | MEL, | The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell line |
| - | in-vitro, | BC, | MCF-7 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:352 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid