| Source: |
| Type: proliferation marker |
| A high Ki-67 proliferation index means many cells are dividing quickly and that the cancer is likely to grow and spread. Markers of proliferation index (Ki-67) • Ki-67 serves primarily as a proliferation marker: higher levels are generally indicative of aggressive disease and poorer outcomes across many cancer types. • While Ki-67 itself is not considered a driver of tumorigenesis, its expression mirrors the high proliferative activity associated with protumoral behavior. • It is widely used in clinical practice to aid in tumor grading, prognostication, and treatment planning. |
| 262- | ALA, | Lipoic acid decreases breast cancer cell proliferation by inhibiting IGF-1R via furin downregulation |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1351- | And, | MEL, | Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids |
| - | in-vitro, | CRC, | T84 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | DLD1 |
| 584- | Api, | Cisplatin, | Apigenin potentiates the antitumor activity of 5-FU on solid Ehrlich carcinoma: Crosstalk between apoptotic and JNK-mediated autophagic cell death platforms |
| - | in-vivo, | Var, | NA |
| 3383- | ART/DHA, | Dihydroartemisinin: A Potential Natural Anticancer Drug |
| - | Review, | Var, | NA |
| 557- | ART/DHA, | Artemisinin and Its Derivatives in Cancer Care |
| - | Review, | Var, | NA |
| 1333- | AS, | Astragalus polysaccharide inhibits breast cancer cell migration and invasion by regulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway |
| - | in-vitro, | BC, | NA |
| 1028- | ASA, | Aspirin Suppressed PD-L1 Expression through Suppressing KAT5 and Subsequently Inhibited PD-1 and PD-L1 Signaling to Attenuate OC Development |
| - | vitro+vivo, | Ovarian, | NA |
| 2001- | Ash, | Withania somnifera: from prevention to treatment of cancer |
| - | Review, | Var, | NA |
| 2291- | Ba, | BA, | Baicalein and Baicalin Promote Melanoma Apoptosis and Senescence via Metabolic Inhibition |
| - | in-vitro, | Melanoma, | SK-MEL-28 | - | in-vitro, | Melanoma, | A375 |
| 2335- | BBR, | Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 1030- | BBR, | Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5 |
| - | in-vitro, | Lung, | H460 |
| 940- | BBR, | Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression |
| - | vitro+vivo, | PC, | PANC1 | - | in-vivo, | PC, | MIA PaCa-2 |
| 2741- | BetA, | Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress |
| - | in-vitro, | GC, | SNU16 | - | in-vitro, | GC, | NCI-N87 | - | in-vivo, | NA, | NA |
| 1169- | Bos, | Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers |
| - | in-vivo, | CRC, | NA |
| 2773- | Bos, | Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer |
| - | Review, | Var, | NA |
| 1262- | CAP, | Capsaicin Inhibits Proliferation and Induces Apoptosis in Breast Cancer by Down-Regulating FBI-1-Mediated NF-κB Pathway |
| - | vitro+vivo, | BC, | NA |
| 2781- | CHr, | PBG, | Chrysin a promising anticancer agent: recent perspectives |
| - | Review, | Var, | NA |
| 1584- | Citrate, | Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 |
| 2270- | dietMet, | Methionine-restricted diet inhibits growth of MCF10AT1-derived mammary tumors by increasing cell cycle inhibitors in athymic nude mice |
| - | in-vivo, | Var, | NA |
| 1621- | EA, | The multifaceted mechanisms of ellagic acid in the treatment of tumors: State-of-the-art |
| - | Review, | Var, | NA |
| 26- | EGCG, | QC, | docx, | Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy |
| - | vitro+vivo, | Pca, | PC3 |
| 686- | EGCG, | Prevention effect of EGCG in rat's lung cancer induced by benzopyrene |
| - | in-vivo, | Lung, | NA |
| 680- | EGCG, | Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea |
| - | Review, | NA, | NA |
| 3215- | EGCG, | Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer |
| - | in-vitro, | NSCLC, | A549 | - | in-vitro, | NSCLC, | H1299 |
| 1654- | FA, | Molecular mechanism of ferulic acid and its derivatives in tumor progression |
| - | Review, | Var, | NA |
| 2827- | FIS, | The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment |
| - | Review, | Var, | NA |
| 817- | GAR, | Garcinol inhibits esophageal cancer metastasis by suppressing the p300 and TGF-β1 signaling pathways |
| - | vitro+vivo, | SCC, | KYSE150 | - | vitro+vivo, | SCC, | KYSE450 |
| 801- | GAR, | Cisplatin, | Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers |
| - | in-vivo, | HNSCC, | NA |
| 1190- | Gb, | Extract of Ginkgo biloba exacerbates liver metastasis in a mouse colon cancer Xenograft model |
| - | in-vivo, | CRC, | SW-620 |
| 4505- | GLA, | Gamma linolenic acid suppresses hypoxia-induced proliferation and invasion of non-small cell lung cancer cells by inhibition of HIF1α |
| - | in-vitro, | NSCLC, | Calu-1 |
| 2511- | H2, | Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation |
| - | in-vivo, | GBM, | U87MG |
| 2516- | H2, | Hydrogen Gas in Cancer Treatment |
| - | Review, | Var, | NA |
| 3268- | Lyco, | Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders |
| - | Review, | AD, | NA |
| 1714- | Lyco, | Lycopene reduces ovarian tumor growth and intraperitoneal metastatic load |
| - | in-vitro, | Ovarian, | OV-MZ-6 | - | in-vivo, | NA, | NA |
| 4528- | MAG, | Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update |
| - | Review, | Nor, | NA |
| 1043- | MET, | immuno, | Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy |
| - | in-vitro, | NA, | NA |
| 1182- | MushCha, | Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the β-catenin pathway in colorectal cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | SW-620 | - | in-vitro, | CRC, | DLD1 |
| 4963- | PEITC, | Sensory Acceptable Equivalent Doses of β - Phenylethyl isothiocyanate (PEITC) Induce Cell Cycle Arrest and Retard Growth of p53 Mutated Oral Cancer In Vitro and In Vivo |
| - | vitro+vivo, | Oral, | CAL27 | - | vitro+vivo, | Oral, | FaDu | - | vitro+vivo, | Oral, | SCC4 | - | vitro+vivo, | Oral, | SCC9 |
| 4948- | PEITC, | Sensory acceptable equivalent doses of β-phenylethyl isothiocyanate (PEITC) induce cell cycle arrest and retard the growth of p53 mutated oral cancer in vitro and in vivo |
| - | vitro+vivo, | Oral, | CAL27 | - | vitro+vivo, | Oral, | FaDu | - | vitro+vivo, | Oral, | SCC4 | - | vitro+vivo, | Oral, | SCC9 |
| 1938- | PL, | Piperlongumine regulates epigenetic modulation and alleviates psoriasis-like skin inflammation via inhibition of hyperproliferation and inflammation |
| - | Study, | PSA, | NA | - | in-vivo, | NA, | NA |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 4968- | PSO, | Psoralidin: emerging biological activities of therapeutic benefits and its potential utility in cervical cancer |
| - | in-vitro, | Cerv, | NA |
| 3930- | PTS, | A Review of Pterostilbene Antioxidant Activity and Disease Modification |
| - | Review, | Var, | NA | - | Review, | adrenal, | NA | - | Review, | Stroke, | NA |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| 81- | QC, | EGCG, | Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea |
| - | in-vivo, | Pca, | NA |
| 99- | QC, | Quercetin Inhibits Epithelial-to-Mesenchymal Transition (EMT) Process and Promotes Apoptosis in Prostate Cancer via Downregulating lncRNA MALAT1 |
| - | in-vitro, | Pca, | PC3 |
| 96- | QC, | docx, | Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways |
| - | vitro+vivo, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 2440- | RES, | Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway |
| - | in-vitro, | Lung, | H460 | - | in-vivo, | Lung, | NA | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Lung, | HCC827 |
| 3092- | RES, | Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action |
| - | Review, | BC, | MDA-MB-231 | - | Review, | BC, | MCF-7 |
| 3081- | RES, | Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? |
| - | Review, | CRC, | NA |
| 3010- | RosA, | Exploring the mechanism of rosmarinic acid in the treatment of lung adenocarcinoma based on bioinformatics methods and experimental validation |
| - | in-vitro, | Lung, | A549 | - | in-vivo, | NA, | NA |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1483- | SFN, | Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment |
| - | in-vitro, | OS, | 143B | - | in-vitro, | Nor, | HEK293 | - | in-vivo, | OS, | NA |
| 1434- | SFN, | GEM, | Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity |
| - | in-vitro, | CCA, | HuCCT1 | - | in-vitro, | CCA, | HuH28 | - | in-vivo, | NA, | NA |
| 1140- | SIL, | Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth |
| - | in-vitro, | PC, | AsPC-1 | - | in-vivo, | PC, | NA | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | Bxpc-3 |
| 383- | SNP, | In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells |
| - | in-vitro, | GC, | MKN45 |
| 378- | SNP, | Antitumor efficacy of silver nanoparticles reduced with β-D-glucose as neoadjuvant therapy to prevent tumor relapse in a mouse model of breast cancer |
| - | ex-vivo, | BC, | 4T1 |
| 3573- | TQ, | Chronic diseases, inflammation, and spices: how are they linked? |
| - | Review, | Var, | NA |
| 3425- | TQ, | Advances in research on the relationship between thymoquinone and pancreatic cancer |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 2121- | TQ, | Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1931- | TQ, | doxoR, | Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms |
| - | in-vivo, | AML, | NA |
| 2411- | UA, | Ursolic acid in health and disease |
| - | Review, | Var, | NA |
| 1216- | VitC, | Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer |
| - | in-vitro, | Laryn, | FaDu | - | in-vitro, | SCC, | SCC-154 |
| 1913- | Xyl, | Partial Substitution of Glucose with Xylitol Prolongs Survival and Suppresses Cell Proliferation and Glycolysis of Mice Bearing Orthotopic Xenograft of Oral Cancer |
| - | in-vivo, | Oral, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:425 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid