| Source: |
| Type: |
| Members of the caspase family of proteases play essential roles in the initiation and execution of apoptosis. These caspases are divided into two groups: the initiator caspases (caspase-2, −8, −9 and −10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, −6, and −7) that carry out the demolition phase of apoptosis.
Downregulation of caspase-3 is an effective apoptosis-evading mechanism frequently observed in cancer cells in association with acquired chemoresistance to apoptosis-inducing anticancer drugs. Indeed, re-expression of caspase-3 often restores sensitivity to apoptosis. Caspase-7: Role: Executioner caspase similar to caspase-3. Cancers: Expression levels can vary; often studied in breast and prostate cancers. Prognosis: Its prognostic value is less clear and may depend on the cancer type. |
| 270- | Api, | Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo via inactivation of Akt and activation of JNK |
| - | in-vivo, | AML, | U937 |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 2474- | Ba, | Anticancer properties of baicalein: a review |
| - | Review, | Var, | NA | - | in-vitro, | Nor, | BV2 |
| 2691- | BBR, | Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells |
| - | in-vitro, | Oral, | KB |
| 2744- | BetA, | Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential |
| - | Review, | Var, | NA |
| 2755- | BetA, | Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | H460 |
| 738- | Bor, | Borax induces ferroptosis of glioblastoma by targeting HSPA5/NRF2/GPx4/GSH pathways |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | A172 | - | in-vitro, | Nor, | SVGp12 |
| 739- | Bor, | Borax regulates iron chaperone- and autophagy-mediated ferroptosis pathway in glioblastoma cells |
| - | in-vitro, | GBM, | U87MG | - | in-vitro, | Nor, | HMC3 |
| 1652- | CA, | Caffeic Acid and Diseases—Mechanisms of Action |
| - | Review, | Var, | NA |
| 1145- | CHr, | Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways |
| - | in-vitro, | Cerv, | HeLa |
| 2805- | CHr, | Chrysin serves as a novel inhibitor of DGKα/FAK interaction to suppress the malignancy of esophageal squamous cell carcinoma (ESCC) |
| - | in-vitro, | ESCC, | KYSE150 | - | in-vivo, | ESCC, | NA |
| 26- | EGCG, | QC, | docx, | Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy |
| - | vitro+vivo, | Pca, | PC3 |
| 22- | EGCG, | Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics |
| - | in-vitro, | PC, | CD133+ | - | in-vitro, | PC, | CD44+ | - | in-vitro, | PC, | CD24+ | - | in-vitro, | PC, | ESA+ |
| 3208- | EGCG, | Induction of Endoplasmic Reticulum Stress Pathway by Green Tea Epigallocatechin-3-Gallate (EGCG) in Colorectal Cancer Cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | Nor, | 3T3 |
| 1155- | F, | The anti-cancer effects of fucoidan: a review of both in vivo and in vitro investigations |
| - | Review, | NA, | NA |
| 2859- | FIS, | The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways |
| - | in-vitro, | Liver, | HepG2 | - | NA, | Colon, | Caco-2 |
| 2824- | FIS, | Fisetin in Cancer: Attributes, Developmental Aspects, and Nanotherapeutics |
| - | Review, | Var, | NA |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Nor, | CCD841 |
| 850- | Gra, | Selective cytotoxic and anti-metastatic activity in DU-145 prostate cancer cells induced by Annona muricata L. bark extract and phytochemical, annonacin |
| - | in-vitro, | PC, | PC3 | - | in-vitro, | Pca, | DU145 |
| 2879- | HNK, | Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function |
| - | in-vitro, | Lung, | H226 | - | in-vivo, | NA, | NA |
| 1064- | LT, | Cisplatin, | Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells |
| - | vitro+vivo, | Lung, | LNM35 | - | in-vitro, | CRC, | HT-29 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1715- | Lyco, | Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence |
| - | Review, | Var, | NA |
| 4353- | MF, | Chemo, | Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 3486- | MF, | Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death |
| - | in-vitro, | NA, | NA |
| 1762- | MF, | Fe, | Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane |
| - | in-vitro, | RCC, | NA |
| 497- | MF, | In Vitro and in Vivo Study of the Effect of Osteogenic Pulsed Electromagnetic Fields on Breast and Lung Cancer Cells |
| - | vitro+vivo, | NA, | MCF-7 | - | vitro+vivo, | NA, | A549 |
| 506- | MF, | doxoR, | Pulsed Electromagnetic Field Stimulation Promotes Anti-cell Proliferative Activity in Doxorubicin-treated Mouse Osteosarcoma Cells |
| - | in-vitro, | OS, | LM8 |
| 184- | MFrot, | MF, | Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells |
| - | in-vitro, | GBM, | GBM |
| 2039- | PB, | TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4‐phenylbutyrate treatment |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HEK293 |
| 2078- | PB, | Butyrate-induced apoptosis in HCT116 colorectal cancer cells includes induction of a cell stress response |
| - | in-vitro, | CRC, | HCT116 |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| - | in-vitro, | Pca, | CD44+ | - | in-vitro, | NA, | CD133+ | - | in-vitro, | NA, | PC3 | - | in-vitro, | NA, | LNCaP |
| - | in-vitro, | Pca, | pCSCs |
| 36- | QC, | Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | SiHa |
| 93- | QC, | Chemical Proteomics Identifies Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1 as the Molecular Target of Quercetin in Its Anti-cancer Effects in PC-3 Cells |
| - | in-vitro, | Pca, | PC3 |
| 1388- | Sco, | Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells |
| - | in-vitro, | CRC, | NA |
| 1403- | SDT, | BBR, | From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C60-Berberine Nanocomplex on Cancer Cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | LLC1 |
| 2448- | SFN, | Sulforaphane and bladder cancer: a potential novel antitumor compound |
| - | Review, | Bladder, | NA |
| 1733- | SFN, | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal |
| - | in-vitro, | PC, | PanCSC | - | in-vitro, | Nor, | HPNE | - | in-vitro, | Nor, | HNPSC |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| 1474- | SFN, | Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway |
| - | in-vitro, | Colon, | SW480 |
| 2197- | SK, | Shikonin derivatives for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 351- | SNP, | Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D |
| 381- | SNP, | Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression |
| - | in-vitro, | Bladder, | 5637 |
| 377- | SNP, | Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis |
| - | in-vitro, | BC, | SkBr3 |
| 3554- | TQ, | Neuroprotective efficacy of thymoquinone against amyloid beta-induced neurotoxicity in human induced pluripotent stem cell-derived cholinergic neurons |
| - | in-vitro, | AD, | NA |
| 3416- | TQ, | Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | 253J | - | in-vitro, | Nor, | SV-HUC-1 |
| 3397- | TQ, | Thymoquinone: A Promising Therapeutic Agent for the Treatment of Colorectal Cancer |
| - | Review, | CRC, | NA |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 3413- | TQ, | Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase |
| - | in-vitro, | CRC, | HCT116 |
| 2120- | TQ, | Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3 |
| - | in-vitro, | Melanoma, | A431 |
| 2083- | TQ, | Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro |
| - | in-vitro, | GC, | HGC27 | - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vivo, | NA, | NA |
| 2112- | TQ, | Crude flavonoid extract of the medicinal herb Nigella sativa inhibits proliferation and induces apoptosis in breastcancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 1020- | UA, | Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway |
| - | in-vitro, | Melanoma, | RPMI-8226 |
| 1816- | VitK2, | Role of Vitamin K in Selected Malignant Neoplasms in Women |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:43 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid