| Source: |
| Type: |
| Plays a key role in activation of cellular immunity and subsequently, stimulation of antitumor immune-response. Based on its cytostatic, pro-apoptotic and antiproliferative functions, IFN-γ is considered potentially useful for adjuvant immunotherapy for different types of cancer. Moreover, it IFN-γ may inhibit angiogenesis in tumor tissue, induce regulatory T-cell apoptosis, and/or stimulate the activity of M1 proinflammatory macrophages to overcome tumor progression. However, the current understanding of the roles of IFN-γ in the tumor microenvironment (TME) may be misleading in terms of its clinical application. IFN-γ is often expressed in the tumor microenvironment, particularly in response to immune cell infiltration. Its expression can be influenced by the presence of tumor-infiltrating lymphocytes (TILs) and other immune cells. High levels of IFN-γ are typically associated with a Th1 immune response, which is generally considered beneficial for anti-tumor immunity. Tumor Suppression: In many cases, IFN-γ has tumor-suppressive effects, as it can inhibit tumor cell proliferation and induce apoptosis in certain cancer types. |
| 1253- | aLinA, | The Antitumor Effects of α-Linolenic Acid |
| - | Review, | NA, | NA |
| 1000- | AS, | 5-FU, | Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation |
| - | vitro+vivo, | BC, | 4T1 |
| 4810- | ASTX, | Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Nor, | MCF10 |
| 874- | B-Gluc, | Potential promising anticancer applications of β-glucans: a review |
| - | Review, | NA, | NA |
| 2713- | BBR, | Berberine improved the microbiota in lung tissue of colon cancer and reversed the bronchial epithelial cell changes caused by cancer cells |
| - | in-vitro, | Nor, | BEAS-2B |
| 2749- | BetA, | Anti-Inflammatory Activities of Betulinic Acid: A Review |
| - | Review, | Nor, | NA |
| 741- | Bor, | Boron Derivatives Inhibit the Proliferation of Breast Cancer Cells and Affect Tumor-Specific T Cell Activity In Vitro by Distinct Mechanisms |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 1205- | Caff, | immuno, | Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody |
| - | in-vivo, | Melanoma, | B16-F10 |
| 3854- | CAP, | Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice |
| - | in-vivo, | AD, | NA |
| 2794- | CHr, | An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches |
| - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 1601- | Cu, | The copper (II) complex of salicylate phenanthroline induces immunogenic cell death of colorectal cancer cells through inducing endoplasmic reticulum stress |
| - | in-vitro, | CRC, | NA |
| 423- | CUR, | Inhibition of TLR4/TRIF/IRF3 Signaling Pathway by Curcumin in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 451- | CUR, | The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer |
| - | vitro+vivo, | HNSCC, | SCC15 | - | vitro+vivo, | HNSCC, | SNU1076 | - | vitro+vivo, | HNSCC, | SNU1041 |
| 1841- | dietFMD, | Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer |
| - | Trial, | Var, | NA |
| 1283- | GA, | immuno, | Gallic acid induces T-helper-1-like Treg cells and strengthens immune checkpoint blockade efficacy |
| - | vitro+vivo, | CRC, | NA |
| 4346- | H2, | Medical Application of Hydrogen in Hematological Diseases |
| - | Review, | NA, | NA |
| 1004- | HNK, | RAPA, | Honokiol downregulates PD-L1 expression and enhances antitumor effects of mTOR inhibitors in renal cancer cells |
| - | in-vitro, | RCC, | NA |
| 2921- | LT, | Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies |
| - | Review, | Nor, | NA |
| 2914- | LT, | Therapeutic Potential of Luteolin on Cancer |
| - | Review, | Var, | NA |
| 3529- | Lyco, | The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke |
| - | in-vivo, | Nor, | NA |
| 1041- | Lyco, | immuno, | Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells |
| - | in-vivo, | Lung, | NA |
| 220- | MFrot, | MF, | Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation |
| - | in-vitro, | Melanoma, | B16-F10 |
| 228- | MFrot, | MF, | Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17 |
| - | NA, | MS, | NA |
| 3257- | PBG, | The Potential Use of Propolis as a Primary or an Adjunctive Therapy in Respiratory Tract-Related Diseases and Disorders: A Systematic Scoping Review |
| - | Review, | Var, | NA |
| 1164- | PI, | Inhibition of T cell activation by the phytochemical piperine |
| - | in-vitro, | Nor, | NA |
| 3347- | QC, | Recent Advances in Potential Health Benefits of Quercetin |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 39- | QC, | A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells |
| - | Analysis, | NA, | NA |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 4499- | Se, | Selenium and Selenoproteins in Gut Inflammation—A Review |
| - | Review, | IBD, | NA |
| 1432- | SFN, | Evaluation of biodistribution of sulforaphane after administration of oral broccoli sprout extract in melanoma patients with multiple atypical nevi |
| - | Human, | Melanoma, | NA |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 3648- | SIL, | Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years |
| - | Review, | NA, | NA |
| 3646- | SIL, | "Silymarin", a promising pharmacological agent for treatment of diseases |
| - | Review, | NA, | NA |
| 3300- | SIL, | Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy |
| - | Review, | Var, | NA |
| 3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
| - | Review, | Var, | NA |
| 3290- | SIL, | A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents |
| - | Analysis, | Var, | NA |
| 3314- | SIL, | Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review |
| - | Review, | NA, | NA |
| 1049- | SK, | Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2 |
| - | in-vivo, | NA, | NA |
| 3042- | SK, | The protective effects of Shikonin on lipopolysaccharide/D -galactosamine-induced acute liver injury via inhibiting MAPK and NF-kB and activating Nrf2/HO-1 signaling pathways |
| - | in-vivo, | Nor, | NA |
| 1195- | SM, | Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated -MAPK and -NF-κB signaling pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | CRC, | HCT116 |
| 3571- | TQ, | The Role of Thymoquinone in Inflammatory Response in Chronic Diseases |
| - | Review, | Var, | NA | - | Review, | Stroke, | NA |
| 3563- | TQ, | Thymoquinone (TQ) demonstrates its neuroprotective effect via an anti-inflammatory action on the Aβ(1–42)-infused rat model of Alzheimer's disease |
| - | in-vivo, | AD, | NA |
| 3410- | TQ, | Anti-inflammatory effects of thymoquinone and its protective effects against several diseases |
| - | Review, | Arthritis, | NA |
| 3112- | VitC, | Antioxidative and Anti-Inflammatory Activity of Ascorbic Acid |
| - | Review, | Nor, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:442 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid