| Source: |
| Type: |
| The caspase family of proteases are essential to initiate and execute apoptotic cell death. Targeting caspase pathways by gene therapy or endogenous inhibitors represents a promising therapeutic strategy for cancer. Caspases are divided into two groups: the initiator caspases (caspase-2, -8, -9 and -10), which are the first to be activated in response to a signal, and the executioner caspases (caspase-3, -6, and -7) that carry out the demolition phase of apoptosis. Caspases are a cysteine protease that speed up a chemical reaction via pointing their target substrates following an aspartic acid residue.1 They are grouped into apoptotic (caspase-2, 3, 6, 7, 8, 9 and 10) and inflammatory (caspase-1, 4, 5, 11 and 12) mediated caspases. |
| 2647- | AL, | The Mechanism in Gastric Cancer Chemoprevention by Allicin |
| - | Review, | GC, | NA |
| 2658- | AL, | The Toxic Effect Ways of Allicin on Different Cell Lines |
| - | Review, | Var, | NA |
| 282- | ALA, | Alpha-lipoic acid induced apoptosis of PC3 prostate cancer cells through an alteration on mitochondrial membrane depolarization and MMP-9 mRNA expression |
| - | in-vitro, | Pca, | PC3 |
| 259- | ALA, | Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | FaO |
| 3442- | ALA, | α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | C4-2B | - | in-vitro, | Nor, | 3T3 |
| 1253- | aLinA, | The Antitumor Effects of α-Linolenic Acid |
| - | Review, | NA, | NA |
| 1564- | Api, | Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vivo, | NA, | NA |
| 2632- | Api, | Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress |
| - | in-vitro, | EC, | NA |
| 2640- | Api, | Apigenin: A Promising Molecule for Cancer Prevention |
| - | Review, | Var, | NA |
| 2699- | BBR, | Plant Isoquinoline Alkaloid Berberine Exhibits Chromatin Remodeling by Modulation of Histone Deacetylase To Induce Growth Arrest and Apoptosis in the A549 Cell Line |
| - | in-vitro, | Lung, | A549 |
| 2754- | BetA, | Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors |
| - | in-vitro, | Pca, | LNCaP |
| 2748- | BetA, | Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy |
| - | Review, | Var, | NA |
| 2743- | BetA, | Betulinic acid and the pharmacological effects of tumor suppression |
| - | Review, | Var, | NA |
| 2735- | BetA, | Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications |
| - | Review, | Var, | NA |
| 2730- | BetA, | Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells |
| - | in-vitro, | Bladder, | T24 |
| - | in-vitro, | Pca, | DU145 |
| 1448- | Bos, | A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2775- | Bos, | The journey of boswellic acids from synthesis to pharmacological activities |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | PSA, | NA |
| 2768- | Bos, | Boswellic acids as promising agents for the management of brain diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1651- | CA, | PBG, | Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer |
| - | Review, | Var, | NA |
| 4493- | Chit, | Selenate, | Se, | A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway |
| - | in-vitro, | Lung, | A549 |
| 2781- | CHr, | PBG, | Chrysin a promising anticancer agent: recent perspectives |
| - | Review, | Var, | NA |
| 2783- | CHr, | Apoptotic Effects of Chrysin in Human Cancer Cell Lines |
| - | Review, | Var, | NA |
| 4826- | CUR, | The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management |
| - | Review, | Var, | NA |
| 1442- | Deg, | Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention |
| - | Review, | Var, | NA |
| 1608- | EA, | Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Liver, | HepG2 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Nor, | HUVECs |
| 680- | EGCG, | Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea |
| - | Review, | NA, | NA |
| 2994- | EGCG, | Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy |
| - | Review, | Var, | NA |
| 3779- | FA, | A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease |
| - | Review, | AD, | NA |
| 2846- | FIS, | Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity |
| - | in-vitro, | Nor, | NA |
| 2847- | FIS, | Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells |
| - | in-vitro, | CCA, | NA |
| 2855- | FIS, | Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells |
| - | in-vitro, | RCC, | Caki-1 |
| 2825- | FIS, | Exploring the molecular targets of dietary flavonoid fisetin in cancer |
| - | Review, | Var, | NA |
| 2827- | FIS, | The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment |
| - | Review, | Var, | NA |
| 2832- | FIS, | Fisetin's Promising Antitumor Effects: Uncovering Mechanisms and Targeting for Future Therapies |
| - | Review, | Var, | NA |
| 1960- | GamB, | Vem, | Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | AML, | K562 |
| 810- | GAR, | GEM, | Garcinol sensitizes human pancreatic adenocarcinoma cells to gemcitabine in association with microRNA signatures |
| - | in-vitro, | PC, | NA |
| 1504- | GEN, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 836- | Gra, | Graviola: A Novel Promising Natural-Derived Drug That Inhibits Tumorigenicity and Metastasis of Pancreatic Cancer Cells In Vitro and In Vivo Through Altering Cell Metabolism |
| - | vitro+vivo, | PC, | NA |
| 856- | Gra, | https://pubmed.ncbi.nlm.nih.gov/33048613/ |
| - | in-vitro, | BC, | MCF-7 |
| 858- | Gra, | Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells |
| - | in-vitro, | CRC, | HT-29 | - | in-vitro, | CRC, | HCT116 |
| 4639- | HT, | Hydroxytyrosol Induces Apoptosis, Cell Cycle Arrest and Suppresses Multiple Oncogenic Signaling Pathways in Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 2906- | LT, | Luteolin, a flavonoid with potentials for cancer prevention and therapy |
| - | Review, | Var, | NA |
| 4353- | MF, | Chemo, | Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 1762- | MF, | Fe, | Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane |
| - | in-vitro, | RCC, | NA |
| 1807- | NarG, | A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies |
| - | Review, | NA, | NA |
| 4975- | Nimb, | Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma |
| - | in-vitro, | Oral, | NA |
| 4974- | Nimb, | Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma |
| - | in-vitro, | OS, | NA |
| 1992- | Part, | Parthenolide induces ROS-dependent cell death in human gastric cancer cell |
| - | in-vitro, | BC, | MGC803 |
| 1989- | Part, | Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties |
| - | Review, | Var, | NA |
| 2046- | PB, | Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | Nor, | MCF10 |
| 1668- | PBG, | Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms |
| - | Review, | Var, | NA |
| 1663- | PBG, | Propolis and Their Active Constituents for Chronic Diseases |
| - | Review, | Var, | NA |
| 4694- | PTS, | Pterostilbene as a Multifaceted Anticancer Agent: Molecular Mechanisms, Therapeutic Potential and Future Directions |
| 40- | QC, | Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells |
| - | in-vitro, | lymphoma, | U937 |
| 39- | QC, | A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells |
| - | Analysis, | NA, | NA |
| 1746- | RosA, | Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells |
| - | in-vitro, | AML, | U937 |
| 4903- | Sal, | Salinomycin: A new paradigm in cancer therapy |
| - | Review, | Var, | NA |
| 4714- | Se, | Selenium in cancer management: exploring the therapeutic potential |
| - | Review, | Var, | NA |
| 4742- | Se, | Antitumor Effects of Selenium |
| - | Review, | Var, | NA | - | Review, | Arthritis, | NA | - | Review, | Sepsis, | NA |
| 4734- | Se, | CPT-11, | Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles |
| - | in-vitro, | CRC, | HCT8 | - | in-vivo, | NA, | NA |
| 1733- | SFN, | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in Regulating Pancreatic Cancer Stem Cell Self-Renewal |
| - | in-vitro, | PC, | PanCSC | - | in-vitro, | Nor, | HPNE | - | in-vitro, | Nor, | HNPSC |
| 1465- | SFN, | TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells |
| - | NA, | Bladder, | NA |
| 1476- | SFN, | PDT, | Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphane |
| - | in-vitro, | HNSCC, | NA |
| 3649- | SIL, | Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 3288- | SIL, | Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations |
| - | Review, | Var, | NA |
| 2230- | SK, | Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vivo, | NA, | NA |
| 2227- | SK, | Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species |
| - | in-vitro, | GC, | BGC-823 | - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | Nor, | GES-1 |
| 2469- | SK, | Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2 |
| - | in-vitro, | Lung, | H1975 |
| 2010- | SK, | Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | H1650 | - | in-vitro, | Nor, | CCD19 |
| 361- | SNP, | Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines |
| - | in-vitro, | Lung, | A549 |
| 4403- | SNP, | Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment |
| - | in-vitro, | GBM, | U251 | - | in-vitro, | GBM, | U87MG | - | in-vitro, | GBM, | GL26 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | CRC, | RKO |
| 3429- | TQ, | Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells |
| - | in-vitro, | AML, | NA | - | in-vivo, | NA, | NA |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 1933- | TQ, | Thymoquinone: potential cure for inflammatory disorders and cancer |
| - | Review, | Var, | NA |
| 2129- | TQ, | doxoR, | Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 2127- | TQ, | Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways |
| - | Review, | GBM, | NA |
| 2094- | TQ, | Cytotoxicity of Nigella sativa Extracts Against Cancer Cells: A Review of In Vitro and In Vivo Studies |
| - | Review, | Var, | NA |
| 1929- | TQ, | Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells |
| - | in-vitro, | Bladder, | 5637 | - | in-vitro, | Bladder, | T24 |
| 5022- | UA, | Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks |
| - | Review, | Var, | NA |
| 4841- | Uro, | Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells |
| - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| 4833- | Uro, | Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | IBD, | NA |
| 3142- | VitC, | Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF12A |
| 1818- | VitK2, | New insights on vitamin K biology with relevance to cancer |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:443 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid