| Source: |
| Type: |
| CD44 represents a common biomarker of cancer stem cells, and promotes epithelial-mesenchymal transition. CD44 is a well-known marker of CSCs and plays important roles in tumor initiation and development. |
| 3454- | ALA, | Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 419- | Api, | Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line |
| - | in-vitro, | SCC, | HN30 | - | in-vitro, | SCC, | HN8 |
| 4660- | Ash, | Withaferin A Alone and in Combination with Cisplatin Suppresses Growth and Metastasis of Ovarian Cancer by Targeting Putative Cancer Stem Cells |
| - | in-vitro, | Ovarian, | NA |
| 3156- | Ash, | Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug |
| - | Review, | Var, | NA |
| 4658- | BBR, | Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m6A Methylation |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 |
| 4656- | CUR, | EGCG, | Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 437- | CUR, | Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids |
| - | vitro+vivo, | CRC, | TCO1 | - | vitro+vivo, | CRC, | TCO2 |
| 420- | CUR, | Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 450- | CUR, | Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 |
| 3244- | EGCG, | Novel epigallocatechin gallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells |
| 4682- | EGCG, | Human cancer stem cells are a target for cancer prevention using (−)-epigallocatechin gallate |
| - | Review, | Var, | NA |
| 4683- | EGCG, | Epigallocatechin-3-gallate inhibits self-renewal ability of lung cancer stem-like cells through inhibition of CLOCK |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vivo, | Lung, | A549 |
| 4684- | EGCG, | EGCG inhibits CSC-like properties through targeting miR-485/CD44 axis in A549-cisplatin resistant cells |
| - | in-vivo, | NSCLC, | A549 |
| 1113- | FIS, | Fisetin suppresses migration, invasion and stem-cell-like phenotype of human non-small cell lung carcinoma cells via attenuation of epithelial to mesenchymal transition |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 2829- | FIS, | Fisetin: An anticancer perspective |
| - | Review, | Var, | NA |
| 4664- | GEN, | CUR, | RES, | EGCG, | SFN | Targeting cancer stem cells by nutraceuticals for cancer therapy |
| - | Review, | Var, | NA |
| 4659- | HNK, | Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction |
| - | in-vitro, | Oral, | NA |
| 4637- | HT, | Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells |
| - | in-vitro, | Nor, | RWPE-1 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 |
| 4640- | HT, | The anti-cancer potential of hydroxytyrosol |
| - | Review, | Var, | NA |
| 3500- | MF, | Moderate Static Magnet Fields Suppress Ovarian Cancer Metastasis via ROS-Mediated Oxidative Stress |
| - | in-vitro, | Ovarian, | SKOV3 |
| 2077- | PB, | Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| 4960- | PEITC, | Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells |
| - | in-vivo, | Cerv, | HeLa |
| 4957- | PEITC, | Phenethyl Isothiocyanate (PEITC) from Cruciferous Vegetables Targets Human Cancer Stem-Like Cells |
| - | vitro+vivo, | Cerv, | HeLa |
| 4956- | PEITC, | Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells |
| - | vitro+vivo, | Lung, | A549 |
| 4694- | PTS, | Pterostilbene as a Multifaceted Anticancer Agent: Molecular Mechanisms, Therapeutic Potential and Future Directions |
| 4690- | PTS, | immuno, | Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies |
| - | Review, | Var, | NA |
| 1236- | PTS, | Pterostilbene inhibits the metastasis of TNBC via suppression of β-catenin-mediated epithelial to mesenchymal transition and stemness |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 |
| 3353- | QC, | Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells |
| - | in-vitro, | Oral, | KON | - | in-vitro, | Nor, | MRC-5 |
| 3081- | RES, | Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? |
| - | Review, | CRC, | NA |
| 2687- | RES, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | NA, | NA | - | Review, | AD, | NA |
| 4657- | RES, | Resveratrol, cancer and cancer stem cells: A review on past to future |
| - | Review, | Var, | NA |
| 4663- | RES, | Exploring resveratrol’s inhibitory potential on lung cancer stem cells: a scoping review of mechanistic pathways across cancer models |
| - | Review, | Var, | NA |
| 4667- | RES, | CUR, | SFN, | Physiological modulation of cancer stem cells by natural compounds: Insights from preclinical models |
| - | Review, | Var, | NA |
| 4995- | Sal, | Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway |
| - | vitro+vivo, | BC, | MDA-MB-231 |
| 4996- | Sal, | The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1726- | SFN, | Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential |
| - | Review, | Var, | NA |
| 1458- | SFN, | Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma |
| - | Review, | Bladder, | NA |
| 1508- | SFN, | Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment |
| - | Review, | Var, | NA |
| 3282- | SIL, | Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions |
| - | Review, | NA, | NA |
| 4386- | SNP, | Evaluation of hepatic cancer stem cells (CD73+, CD44+, and CD90+) induced by diethylnitrosamine in male rats and treatment with biologically synthesized silver nanoparticles |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:48 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid