| Source: |
| Type: |
| SP2 (Specificity Protein 2) and SP3 (Specificity Protein 3) are also members of the Sp/KLF (Sp1/Krüppel-like factor) family of transcription factors, similar to SP1. They share some functional similarities but also have distinct roles in cellular processes and cancer biology. -Sp proteins are a family of transcription factors that play a crucial role in regulating gene expression. -SP1 is often overexpressed in various types of cancer, including breast, prostate, and lung cancers. However, expression levels of Sp in normal cells and tissues are low to undetectable. SP inhibitors: -Curcumin, Resveratrol, EGCG, Genistein, Piperlongumine, Betulinic acid |
| 1358- | Ash, | Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms |
| - | Review, | Var, | NA |
| 1178- | Ash, | Withaferin A suppresses the expression of vascular endothelial growth factor in Ehrlich ascites tumor cells via Sp1 transcription factor |
| - | in-vitro, | Nor, | HUVECs | - | in-vivo, | NA, | NA |
| 3174- | Ash, | Withaferin A Acts as a Novel Regulator of Liver X Receptor-α in HCC |
| - | in-vitro, | HCC, | HepG2 | - | in-vitro, | HCC, | Hep3B | - | in-vitro, | HCC, | HUH7 |
| 2702- | BBR, | The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1 |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1975 |
| 2754- | BetA, | Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors |
| - | in-vitro, | Pca, | LNCaP |
| 2745- | BetA, | Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors |
| - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vivo, | NA, | NA |
| 2743- | BetA, | Betulinic acid and the pharmacological effects of tumor suppression |
| - | Review, | Var, | NA |
| 2759- | BetA, | Chemopreventive and Chemotherapeutic Potential of Betulin and Betulinic Acid: Mechanistic Insights From In Vitro, In Vivo and Clinical Studies |
| - | Review, | Var, | NA |
| 2727- | BetA, | Betulinic acid in the treatment of breast cancer: Application and mechanism progress |
| - | Review, | BC, | NA |
| 2729- | BetA, | Betulinic acid in the treatment of tumour diseases: Application and research progress |
| - | Review, | Var, | NA |
| 2738- | BetA, | Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | NA, | NA |
| 2737- | BetA, | Multiple molecular targets in breast cancer therapy by betulinic acid |
| - | Review, | Var, | NA |
| - | Review, | Var, | NA |
| 2735- | BetA, | Betulinic acid as apoptosis activator: Molecular mechanisms, mathematical modeling and chemical modifications |
| - | Review, | Var, | NA |
| 2731- | BetA, | Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives |
| - | Review, | GBM, | NA | - | Review, | Park, | NA | - | Review, | AD, | NA |
| 2653- | Cela, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 2980- | CUR, | Inhibition of NF B and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation |
| - | in-vivo, | PC, | NA |
| 2979- | CUR, | GB, | Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | Lung, | H1299 |
| 2978- | CUR, | N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells |
| - | in-vitro, | Lung, | A549 |
| 2977- | CUR, | Curcumin Down-Regulates Toll-Like Receptor-2 Gene Expression and Function in Human Cystic Fibrosis Bronchial Epithelial Cells |
| - | in-vitro, | CF, | NA |
| 2976- | CUR, | Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway |
| - | in-vitro, | Oral, | HSC3 | - | in-vitro, | HNSCC, | CAL33 |
| 2975- | CUR, | Curcumin inhibits proliferation, migration and neointimal formation of vascular smooth muscle via activating miR-22 |
| - | in-vivo, | Nor, | NA |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 643- | EGCG, | New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate |
| - | Analysis, | NA, | NA |
| 2993- | EGCG, | Tea polyphenols down-regulate the expression of the androgen receptor in LNCaP prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP |
| 2992- | EGCG, | Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity |
| - | Review, | Var, | NA |
| 2994- | EGCG, | Nano-Engineered Epigallocatechin Gallate (EGCG) Delivery Systems: Overcoming Bioavailability Barriers to Unlock Clinical Potential in Cancer Therapy |
| - | Review, | Var, | NA |
| 2997- | GEN, | Genistein Inhibition of Topoisomerase IIα Expression Participated by Sp1 and Sp3 in HeLa Cell |
| - | in-vitro, | Cerv, | HeLa |
| 3262- | Lyco, | Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1 |
| - | in-vitro, | adrenal, | SK-HEP-1 |
| 4949- | PEITC, | Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells |
| - | in-vitro, | Cerv, | HeLa |
| 2948- | PL, | The promising potential of piperlongumine as an emerging therapeutics for cancer |
| - | Review, | Var, | NA |
| 2946- | PL, | Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent |
| - | Review, | Var, | NA |
| 2940- | PL, | Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | Lung, | A549 | - | in-vitro, | Kidney, | 786-O | - | in-vitro, | BC, | SkBr3 |
| 2995- | PL, | Piperlongumine overcomes osimertinib resistance via governing ubiquitination-modulated Sp1 turnover |
| - | in-vitro, | Lung, | H1975 | - | in-vitro, | Lung, | PC9 | - | in-vivo, | NA, | NA |
| 923- | QC, | Quercetin as an innovative therapeutic tool for cancer chemoprevention: Molecular mechanisms and implications in human health |
| - | Review, | Var, | NA |
| 104- | RES, | QC, | Resveratrol and Quercetin in Combination Have Anticancer Activity in Colon Cancer Cells and Repress Oncogenic microRNA-27a |
| - | in-vitro, | Colon, | HT-29 |
| 3079- | RES, | Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action |
| - | Review, | Var, | NA |
| 2981- | RES, | Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways |
| - | in-vitro, | Colon, | HT-29 | - | in-vitro, | Colon, | SW48 |
| 2982- | RES, | The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1 |
| - | in-vitro, | Melanoma, | MSTO-211H |
| 2983- | RES, | Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagy |
| - | in-vitro, | Nor, | NA |
| 2984- | RES, | Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue |
| - | in-vivo, | Nor, | NA |
| 2985- | RES, | Resveratrol Inhibits Diabetic-Induced Müller Cells Apoptosis through MicroRNA-29b/Specificity Protein 1 Pathway |
| - | in-vivo, | Nor, | NA | - | vitro+vivo, | Diabetic, | NA |
| 2986- | RES, | Effect of the natural compound trans‑resveratrol on human MCM4 gene transcription |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | AML, | HL-60 |
| 2987- | RES, | Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1 |
| - | in-vivo, | Nor, | NA |
| 2988- | RES, | The Antimetastatic Effects of Resveratrol on Hepatocellular Carcinoma through the Downregulation of a Metastasis-Associated Protease by SP-1 Modulation |
| - | in-vitro, | HCC, | HUH7 |
| 2989- | RES, | Resveratrol Represses Pokemon Expression in Human Glioma Cells |
| - | in-vitro, | GBM, | NA |
| 2990- | RES, | Resveratrol reduces cerebral edema through inhibition of de novo SUR1 expression induced after focal ischemia |
| - | in-vivo, | Stroke, | NA |
| 2991- | RES, | Chemo, | Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells |
| - | in-vitro, | Melanoma, | MSTO-211H | - | in-vitro, | Nor, | MeT5A |
| 3192- | SFN, | Transcriptome analysis reveals a dynamic and differential transcriptional response to sulforaphane in normal and prostate cancer cells and suggests a role for Sp1 in chemoprevention |
| - | in-vitro, | Pca, | PC3 |
| 3430- | TQ, | Targeting microRNAs with thymoquinone: a new approach for cancer therapy |
| - | Review, | Var, | NA |
| 3429- | TQ, | Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells |
| - | in-vitro, | AML, | NA | - | in-vivo, | NA, | NA |
| 942- | UA, | Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling |
| - | vitro+vivo, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 5017- | UA, | Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells |
| - | in-vitro, | Cerv, | INT-407 | - | in-vitro, | CRC, | HCT116 |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:506 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid