| Source: |
| Type: |
| CDC25 (Cell Division Cycle 25) is a family of dual-specificity phosphatases that play a crucial role in regulating the cell cycle. There are three main isoforms of CDC25: CDC25A, CDC25B, and CDC25C. These proteins are involved in the activation of cyclin-dependent kinases (CDKs) by dephosphorylating them, which is essential for the progression of the cell cycle from G2 phase to mitosis. CDC25 proteins, particularly CDC25A, are often found to be overexpressed in various types of cancer. This overexpression can lead to uncontrolled cell proliferation, as the normal regulatory mechanisms of the cell cycle are disrupted. High levels of CDC25 have been associated with advanced stages of cancer and poor prognosis in several malignancies, including breast, colorectal, and prostate cancers. CDC25 interacts with various oncogenes and tumor suppressor proteins, such as p53. The loss of p53 function, which is common in many cancers, can lead to increased CDC25 activity, further promoting tumorigenesis. CDC25A overexpressed: breast, CRC, lung, prostate. CDC25B: breast, ovarian, lung. CDC25C: liver,breast, prostate. |
| 171- | Api, | Apigenin in cancer therapy: anti-cancer effects and mechanisms of action |
| - | Review, | Var, | NA |
| 173- | Api, | Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells |
| - | in-vitro, | Colon, | HCT116 |
| 313- | Api, | Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells |
| - | in-vitro, | Thyroid, | BCPAP |
| 310- | Api, | Apigenin inhibits renal cell carcinoma cell proliferation |
| - | vitro+vivo, | RCC, | ACHN | - | in-vitro, | RCC, | 786-O | - | in-vitro, | RCC, | Caki-1 | - | in-vitro, | RCC, | HK-2 |
| 3391- | ART/DHA, | Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug |
| - | Review, | Var, | NA |
| 1520- | Ba, | Baicalein Induces G2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | TOV-21G |
| 2674- | BBR, | Berberine: A novel therapeutic strategy for cancer |
| - | Review, | Var, | NA | - | Review, | IBD, | NA |
| 2719- | BetA, | Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential |
| - | in-vitro, | CRC, | T24 | - | in-vitro, | Bladder, | UMUC3 | - | in-vitro, | Bladder, | 5637 |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 425- | CUR, | Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells |
| - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 |
| 477- | CUR, | Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 1329- | EMD, | Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells |
| - | in-vitro, | Tong, | SCC4 |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 2857- | FIS, | A review on the chemotherapeutic potential of fisetin: In vitro evidences |
| - | Review, | Var, | NA |
| 2827- | FIS, | The Potential Role of Fisetin, a Flavonoid in Cancer Prevention and Treatment |
| - | Review, | Var, | NA |
| 2828- | FIS, | Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review |
| - | Review, | Var, | NA |
| 2829- | FIS, | Fisetin: An anticancer perspective |
| - | Review, | Var, | NA |
| 1923- | JG, | Mechanism of Juglone-Induced Cell Cycle Arrest and Apoptosis in Ishikawa Human Endometrial Cancer Cells |
| - | in-vitro, | Endo, | NA |
| 2069- | PB, | Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes |
| - | in-vitro, | Tong, | NA |
| 4940- | PEITC, | Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death |
| - | in-vitro, | Oral, | HSC3 |
| - | in-vitro, | Pca, | DU145 |
| 1434- | SFN, | GEM, | Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity |
| - | in-vitro, | CCA, | HuCCT1 | - | in-vitro, | CCA, | HuH28 | - | in-vivo, | NA, | NA |
| 1480- | SFN, | Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells |
| - | in-vitro, | CRC, | HCT116 |
| 3427- | TQ, | Chemopreventive and Anticancer Effects of Thymoquinone: Cellular and Molecular Targets |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:526 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid