Database Query Results : , , CD4+

CD4+, CD4+ T Cells: Click to Expand ⟱
Source:
Type:
CD4+ T cells are T lymphocytes that express T cell receptors (TCRs).
Majority of cancer immunotherapies focus on harnessing the anti-tumour CD8+ cytotoxic T cell response, the potential role of CD4+ ‘helper’ T cells has largely remained in the background. multifaceted role of CD4+ T cells in the anti-tumour immune response.
CD4+ T cells play a critical role in developing and sustaining effective anti-tumour immunity, even in cancer immunotherapies specifically designed to activate a CD8+ CTL response.


Scientific Papers found: Click to Expand⟱
542- Akk,  immuno,    Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
CD4+↑, CXCc↑, PD-1↝,
315- Api,    Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer
- vitro+vivo, PC, Panc02
CK2↓, CD4+↑, CD8+↑, Ikaros↑,
560- ART/DHA,    Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo
- in-vivo, NA, NA
IL4↓, CD4+↓, CD25+↓, FoxP3+↓, Treg lymp↓,
562- ART/DHA,    Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression
- in-vivo, NA, HeLa
CD4+↓, CD25+↓, FoxP3+↓, Treg lymp↓, PGE2↓, FOXP3↓, COX2↓,
561- ART/DHA,    Antitumor and immunomodulatory properties of artemether and its ability to reduce CD4+ CD25+ FoxP3+ T reg cells in vivo
- in-vivo, NA, NA
TumCG↓, CD4+↓, CD25+↓, FoxP3+↓, IL4↑,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
1205- Caff,  immuno,    Caffeine-enhanced anti-tumor activity of anti-PD1 monoclonal antibody
- in-vivo, Melanoma, B16-F10
OS↑, CD4+↑, CD8+↑, AntiTum↑, TNF-α↑, IFN-γ↑,
1033- CHr,    Chrysin inhibits hepatocellular carcinoma progression through suppressing programmed death ligand 1 expression
- vitro+vivo, HCC, NA
TumCG↓, CD4+↑, CD8+↑, PD-L1↓,
451- CUR,    The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer
- vitro+vivo, HNSCC, SCC15 - vitro+vivo, HNSCC, SNU1076 - vitro+vivo, HNSCC, SNU1041
TumCMig↓, TumCG↓, PD-L1↓, PD-L2↓, Galectin-9↓, EMT↓, T-Cell↑, TILs↑, PD-1↓, TIM-3↓, CD4+↓, CD25+↓, FoxP3+↓, E-cadherin↑, CD8+↑, IFN-γ↑,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
2518- H2,    Hydrogen Therapy Reverses Cancer-Associated Fibroblasts Phenotypes and Remodels Stromal Microenvironment to Stimulate Systematic Anti-Tumor Immunity
- in-vitro, BC, 4T1 - in-vitro, Nor, 3T3
TumCD↑, CD4+↑, ROS↓,
1021- HNK,    Honokiol suppress the PD-L1 expression to improve anti-tumor immunity in lung cancer
- in-vivo, Lung, NA
PD-L1↓, T-Cell↑, CD4+↑, CD8+↑, TumCG↓,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1/CCND1↓, CDK4↓, CycB/CCNB1↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
193- MFrot,  MF,    Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune Dysfunctions
- in-vivo, Arthritis, NA
BMD↑, Cartilage↑, IL17↓, IL22↓, IL23↓, IL28↓, CD4+↓, CD8+↓, LAMB3↑, COL4↓, THBS2↓, ITGA11↓, PPARγ↑, ACAA1↓, PLIN1↓, FABP4↓, PCK1↓, UCP1↓, TNF-α↓,
221- MFrot,  MF,    Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma
- in-vivo, Liver, NA
OS↑, TumCG↓, IL6↓, GM-CSF↓, CXCc↓, Macrophages↑, DCells↑, CD4+↑, CD8+↑, IL12↑,
228- MFrot,  MF,    Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17
- NA, MS, NA
*CD4+↑, *MCP1↓, RANTES↓, *MIP‑1α↓, *Treg lymp↓, *IFN-γ↓, *IL17↓, *CXCc↓,
4936- PEITC,    PEITC treatment suppresses myeloid derived tumor suppressor cells to inhibit breast tumor growth
- in-vivo, BC, MDA-MB-231
TumCG↓, CD34↓, CD11b↓, CSCs↓, ALC∅, CD4+↓, NF-kB↓, STAT3↓, Hif1a↓,
1282- RES,    Resveratrol Inhibits CD4+ T Cell Activation by Enhancing the Expression and Activity of Sirt1
- vitro+vivo, NA, NA
T-Cell↓, SIRT1↑, CD4+↓,
346- SNP,  RSQ,    Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma Treatment
- in-vivo, Melanoma, SK-MEL-28 - in-vivo, Melanoma, WM35
ROS↑, Ca+2↝, Casp3↑, Casp8↑, Casp9↑, CD4+↑, CD8+↑, tumCV↓, eff↓, *toxicity↓,
3141- VitC,    High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer
- in-vitro, CRC, HCT116
Glycolysis↓, eff↑, PD-L1↓, AMPK↑, HK2↓, NF-kB↓, Warburg↓, tumCV↓, GLUT1↓, PKM2↓, LDHA↓, CD4+↑, CD8+↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 20

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

ROS?, 1,   ROS↓, 1,   ROS↑, 2,  

Metal & Cofactor Biology

Ikaros↑, 1,  

Mitochondria & Bioenergetics

CDC25↓, 2,   MMP↓, 2,   mtDam↑, 1,   UCP1↓, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

ACAA1↓, 1,   AMPK↑, 2,   CAIX↑, 1,   FABP4↓, 1,   Glycolysis↓, 1,   HK2↓, 1,   LDHA↓, 1,   PCK1↓, 1,   PKM2↓, 1,   PLIN1↓, 1,   PPARγ↑, 1,   SIRT1↑, 1,   Warburg↓, 2,  

Cell Death

Akt↓, 1,   Apoptosis↑, 2,   BAX↑, 3,   Bcl-2↓, 3,   Bcl-xL↓, 1,   Casp3↓, 1,   Casp3↑, 2,   cl‑Casp3↑, 1,   Casp8↑, 2,   Casp9↑, 3,   CK2↓, 1,   Cyt‑c↑, 2,   Fas↑, 1,   FasL↑, 1,   GSDME-N↑, 1,   IAP1↓, 1,   JNK↑, 1,   MAPK↓, 1,   MAPK↑, 1,   MDM2↓, 1,   p27↑, 1,   Pyro↑, 1,   survivin↓, 1,   TumCD↑, 1,  

Transcription & Epigenetics

other↓, 1,   tumCV?, 1,   tumCV↓, 2,  

Autophagy & Lysosomes

LC3II↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

ATM↑, 1,   DNArepair↑, 1,   P53↑, 2,   p‑P53↑, 1,  

Cell Cycle & Senescence

CDK4↓, 2,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 1,   P21↑, 1,   RB1↑, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

CD34↓, 1,   CSCs↓, 1,   EMT↓, 1,   EMT↑, 1,   ERK↓, 1,   IGF-1R↓, 1,   mTOR↓, 1,   PI3K↓, 1,   PTEN↑, 1,   RAS↓, 1,   STAT3↓, 2,   TumCG↓, 7,   TumCG↑, 1,  

Migration

Ca+2↝, 1,   Cartilage↑, 1,   CD11b↓, 1,   COL4↓, 1,   E-cadherin↑, 2,   FAK↓, 1,   Galectin-9↓, 1,   ITGA11↓, 1,   LAMB3↑, 1,   MMP1↓, 1,   MMP13↓, 2,   MMP2↓, 2,   MMP3↓, 1,   MMP9↓, 2,   Rho↓, 1,   ROCK1↓, 1,   TGF-β↓, 1,   THBS2↓, 1,   Treg lymp↓, 3,   TumCI↓, 1,   TumCMig↓, 1,   TumCP↓, 2,   TumMeta↓, 1,   TumMeta↑, 1,   uPA↓, 1,   Vim↓, 1,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 2,   NO↓, 1,   VEGF↓, 1,  

Barriers & Transport

CellMemb↓, 1,   GLUT1↓, 1,   GLUT1↑, 1,   GLUT3↑, 1,  

Immune & Inflammatory Signaling

CD25+↓, 4,   CD4+↓, 8,   CD4+↑, 11,   COX2↓, 4,   CXCc↓, 1,   CXCc↑, 1,   DCells↑, 1,   FOXP3↓, 2,   FoxP3+↓, 4,   GM-CSF↓, 1,   IFN-γ↑, 2,   IL1↓, 1,   IL12↑, 1,   IL17↓, 1,   IL22↓, 1,   IL23↓, 1,   IL28↓, 1,   IL4↓, 1,   IL4↑, 1,   IL6↓, 3,   IL8↓, 1,   Inflam↓, 1,   Macrophages↑, 1,   MCP1↓, 1,   NF-kB↓, 5,   NK cell↑, 1,   PD-1↓, 1,   PD-1↝, 1,   PD-L1↓, 4,   PD-L2↓, 1,   PGE2↓, 2,   RANTES↓, 1,   T-Cell↓, 1,   T-Cell↑, 3,   Th1 response↑, 1,   TILs↑, 1,   TNF-α↓, 2,   TNF-α↑, 2,  

Cellular Microenvironment

TIM-3↓, 1,  

Hormonal & Nuclear Receptors

RANKL↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↝, 1,   ChemoSen↑, 2,   Dose∅, 1,   eff↓, 2,   eff↑, 4,   RadioS↑, 1,  

Clinical Biomarkers

ALC∅, 1,   BMD↑, 1,   IL6↓, 3,   PD-L1↓, 4,  

Functional Outcomes

AntiCan↑, 3,   AntiTum↑, 2,   ChemoSideEff↓, 1,   OS↑, 3,   radioP↑, 1,   RenoP↑, 1,  

Infection & Microbiome

CD8+↓, 1,   CD8+↑, 9,  
Total Targets: 167

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 2,   GPx↑, 2,   GSH↑, 1,   ROS↓, 2,   SOD↑, 1,  

Migration

Treg lymp↓, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   CXCc↓, 1,   IFN-γ↓, 1,   IL17↓, 1,   MCP1↓, 1,   MIP‑1α↓, 1,  

Functional Outcomes

toxicity↓, 1,  
Total Targets: 14

Scientific Paper Hit Count for: CD4+, CD4+ T Cells
3 Artemisinin
3 Magnetic Field Rotating
3 Magnetic Fields
2 immunotherapy
1 Akkermansia
1 Apigenin (mainly Parsley)
1 Berberine
1 Caffeine
1 Chrysin
1 Curcumin
1 Gambogic Acid
1 Hydrogen Gas
1 Honokiol
1 Melatonin
1 Phenethyl isothiocyanate
1 Resveratrol
1 Silver-NanoParticles
1 Resiquimod
1 Vitamin C (Ascorbic Acid)
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:544  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page