| Source: |
| Type: |
| Once the cancer has begun, NO seems to play a protumoral role rather than antitumoral one as the concentration required to cause tumor cell cytotoxicity cannot be achieved by cancer cells. The mechanistic roles of nitric oxide (NO) during cancer progression have been important considerations since its discovery as an endogenously generated free radical. Nonetheless, the impacts of this signaling molecule can be seemingly contradictory, being both pro-and antitumorigenic, which complicates the development of cancer treatments based on the modulation of NO fluxes in tumors. At a fundamental level, low levels of NO drive oncogenic pathways, immunosuppression, metastasis, and angiogenesis, while higher levels lead to apoptosis and reduced hypoxia and also sensitize tumors to conventional therapies. However, clinical outcome depends on the type and stage of the tumor as well as the tumor microenvironment. Nitric oxide is generated by three main nitric oxide synthase isoforms: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). – In many cancers, especially under inflammatory conditions, iNOS expression is upregulated. In contrast, eNOS levels may also be altered in cancers such as breast or prostate cancer. • Expression Patterns in Tumors: – Elevated iNOS expression is commonly observed in various tumor types (e.g., colon, breast, lung, and melanoma) and is often associated with an inflammatory microenvironment. – Changes in eNOS and nNOS expression have also been reported and may contribute to angiogenesis and tumor blood flow regulation. |
| 3972- | ACNs, | Recent Research on the Health Benefits of Blueberries and Their Anthocyanins |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2660- | AL, | Allicin: A review of its important pharmacological activities |
| - | Review, | AD, | NA | - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 3544- | ALA, | Alpha lipoic acid for dementia |
| - | Review, | AD, | NA |
| 3549- | ALA, | Important roles of linoleic acid and α-linolenic acid in regulating cognitive impairment and neuropsychiatric issues in metabolic-related dementia |
| - | Review, | AD, | NA |
| 3552- | ALA, | The dietary fatty acids α-linolenic acid (ALA) and linoleic acid (LA) selectively inhibit microglial nitric oxide production |
| - | in-vitro, | AD, | BV2 |
| 1253- | aLinA, | The Antitumor Effects of α-Linolenic Acid |
| - | Review, | NA, | NA |
| 931- | And, | Effect of Andrographis Paniculata Aqueous Extract on Hyperammonemia Induced Alteration of Oxidative and Nitrosative Stress Factors in the Liver, Spleen and Kidney of Rats |
| - | in-vivo, | NA, | NA |
| 1146- | AP, | Potential use of nanoformulated ascorbyl palmitate as a promising anticancer agent: First comparative assessment between nano and free forms |
| - | in-vivo, | Nor, | NA |
| 3886- | Api, | Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease |
| - | in-vitro, | AD, | NA |
| 3665- | ART/DHA, | Artemisinin B Improves Learning and Memory Impairment in AD Dementia Mice by Suppressing Neuroinflammation |
| - | Review, | AD, | NA |
| 1074- | ART/DHA, | Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells |
| - | in-vitro, | Nor, | BV2 |
| 556- | ART/DHA, | Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing |
| - | Review, | NA, | NA |
| 1177- | Ash, | Withaferin A downregulates COX-2/NF-κB signaling and modulates MMP-2/9 in experimental endometriosis |
| - | in-vivo, | EC, | NA |
| 1522- | Ba, | Baicalein reduces lipopolysaccharide-induced inflammation via suppressing JAK/STATs activation and ROS production |
| - | in-vitro, | Nor, | RAW264.7 |
| 4276- | BA, | Baicalin Attenuates Oxygen–Glucose Deprivation/Reoxygenation–Induced Injury by Modulating the BDNF-TrkB/PI3K/Akt and MAPK/Erk1/2 Signaling Axes in Neuron–Astrocyte Cocultures |
| - | in-vivo, | Stroke, | NA |
| 2626- | Ba, | Molecular targets and therapeutic potential of baicalein: a review |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Stroke, | NA |
| 2749- | BetA, | Anti-Inflammatory Activities of Betulinic Acid: A Review |
| - | Review, | Nor, | NA |
| 3514- | Bor, | CUR, | Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta |
| - | in-vivo, | AD, | NA |
| 3507- | Bor, | Boron inhibits apoptosis in hyperapoptosis condition: Acts by stabilizing the mitochondrial membrane and inhibiting matrix remodeling |
| 1448- | Bos, | A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 2776- | Bos, | Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities |
| - | Review, | Var, | NA |
| 4263- | CA, | Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action |
| - | Review, | AD, | NA |
| 3872- | Carno, | Carnosine Protects Macrophages against the Toxicity of Aβ1-42 Oligomers by Decreasing Oxidative Stress |
| - | in-vitro, | AD, | NA |
| 3871- | Carno, | Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper |
| - | Review, | NA, | NA |
| 2794- | CHr, | An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches |
| - | Review, | Park, | NA | - | Review, | Stroke, | NA |
| 1603- | Cu, | BP, | SDT, | Glutathione Depletion-Induced ROS/NO Generation for Cascade Breast Cancer Therapy and Enhanced Anti-Tumor Immune Response |
| - | in-vitro, | BC, | 4T1 | - | in-vivo, | NA, | NA |
| 1792- | CUR, | LEC, | Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism |
| - | in-vitro, | Arthritis, | RAW264.7 | - | NA, | NA, | HCC-38 |
| 1418- | CUR, | Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis |
| - | Review, | Arthritis, | NA |
| 2308- | CUR, | Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells |
| - | in-vitro, | Liver, | HepG2 |
| 2818- | CUR, | Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways |
| - | Review, | AD, | NA |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 466- | CUR, | Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HuT78 |
| 20- | EGCG, | Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the Most Abundant Catechin in Green Tea, and Its Role in the Therapy of Various Types of Cancer |
| - | in-vivo, | Liver, | NA | - | in-vivo, | Tong, | NA |
| 643- | EGCG, | New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate |
| - | Analysis, | NA, | NA |
| 1974- | EGCG, | Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes |
| - | in-vitro, | Nor, | NA |
| 3716- | FA, | Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells |
| - | in-vitro, | IBD, | NA | - | in-vivo, | NA, | NA |
| 2861- | FIS, | The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress |
| - | Review, | Nor, | NA | - | Review, | Stroke, | NA | - | Review, | Park, | NA |
| 2862- | FIS, | Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rat |
| - | in-vivo, | Diabetic, | NA |
| 2825- | FIS, | Exploring the molecular targets of dietary flavonoid fisetin in cancer |
| - | Review, | Var, | NA |
| 2843- | FIS, | Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential |
| - | Review, | Var, | NA |
| 4028- | FulvicA, | Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells |
| - | in-vitro, | Liver, | HUH7 |
| 3723- | Gb, | Can We Use Ginkgo biloba Extract to Treat Alzheimer’s Disease? Lessons from Preclinical and Clinical Studies |
| - | Review, | AD, | NA |
| 4343- | H2, | Inhibitory effects of hydrogen on in vitro platelet activation and in vivo prevention of thrombosis formation |
| - | vitro+vivo, | NA, | NA |
| 3770- | H2, | Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 3764- | H2, | Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model |
| - | in-vivo, | AD, | NA |
| 3767- | H2, | The role of hydrogen therapy in Alzheimer's disease management: Insights into mechanisms, administration routes, and future challenges |
| - | Review, | AD, | NA |
| 3768- | H2, | Effects of Hydrogen Gas Inhalation on Community-Dwelling Adults of Various Ages: A Single-Arm, Open-Label, Prospective Clinical Trial |
| - | Trial, | AD, | NA |
| 1637- | HCA, | OLST, | Orlistat and Hydroxycitrate Ameliorate Colon Cancer in Rats: The Impact of Inflammatory Mediators |
| - | in-vivo, | Colon, | NA |
| 2883- | HNK, | Honokiol targets mitochondria to halt cancer progression and metastasis |
| - | Review, | Var, | NA |
| 2871- | HNK, | Antihyperalgesic Properties of Honokiol in Inflammatory Pain Models by Targeting of NF-κB and Nrf2 Signaling |
| - | in-vivo, | Nor, | NA |
| 2916- | LT, | Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 3278- | Lyco, | Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells |
| - | in-vitro, | Colon, | SW480 |
| 3264- | Lyco, | Pharmacological potentials of lycopene against aging and aging‐related disorders: A review |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Stroke, | NA |
| 3261- | Lyco, | Lycopene and Vascular Health |
| - | Review, | Stroke, | NA |
| 3528- | Lyco, | The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene |
| - | Review, | Nor, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 1782- | MEL, | Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities |
| - | Review, | Var, | NA |
| 1777- | MEL, | Melatonin as an antioxidant: under promises but over delivers |
| - | Review, | NA, | NA |
| 2238- | MF, | Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects |
| - | Review, | Var, | NA |
| 3477- | MF, | Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis |
| - | Review, | NA, | NA |
| 3536- | MF, | Targeting Mesenchymal Stromal Cells/Pericytes (MSCs) With Pulsed Electromagnetic Field (PEMF) Has the Potential to Treat Rheumatoid Arthritis |
| - | Review, | Arthritis, | NA | - | Review, | Stroke, | NA |
| 4105- | MF, | Extremely low frequency electromagnetic fields stimulation modulates autoimmunity and immune responses: a possible immuno-modulatory therapeutic effect in neurodegenerative diseases |
| - | Review, | AD, | NA |
| 4101- | MF, | Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation |
| - | Human, | Stroke, | NA |
| 4111- | MF, | Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell |
| - | Review, | Arthritis, | NA |
| 194- | MF, | Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke |
| - | Review, | Stroke, | NA |
| 204- | MFrot, | MF, | Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization |
| - | in-vivo, | AD, | NA |
| 229- | MFrot, | MF, | Molecular mechanism of effect of rotating constant magnetic field on organisms |
| - | in-vivo, | Nor, | NA |
| 3814- | mushLions, | Lion's Mane (Hericium erinaceus) Exerts Anxiolytic Effects in the rTg4510 Tau Mouse Model |
| - | in-vitro, | AD, | NA |
| 4631- | OLE, | Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions |
| - | Review, | Var, | NA |
| 1666- | PBG, | Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer |
| - | Review, | Var, | NA |
| 1680- | PBG, | Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, a Propolis Derivative |
| - | in-vitro, | Nor, | HS68 |
| 3249- | PBG, | Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence |
| - | Review, | Var, | NA |
| 3251- | PBG, | The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways |
| - | Review, | AD, | NA | - | Review, | Diabetic, | NA | - | Review, | Var, | NA | - | in-vitro, | Nor, | H9c2 |
| 3259- | PBG, | Propolis and its therapeutic effects on renal diseases: A review |
| - | Review, | Nor, | NA |
| 4954- | PEITC, | Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate |
| - | vitro+vivo, | Ovarian, | SKOV3 |
| 4944- | PEITC, | Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations |
| - | in-vitro, | Oral, | NA |
| 1947- | PL, | Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | NA |
| 2950- | PL, | Overview of piperlongumine analogues and their therapeutic potential |
| - | Review, | Var, | NA |
| 2941- | PL, | Selective killing of cancer cells by a small molecule targeting the stress response to ROS |
| - | in-vivo, | BC, | MDA-MB-231 | - | in-vitro, | OS, | U2OS | - | in-vitro, | BC, | MDA-MB-453 |
| 2971- | PL, | Piperlongumine attenuates IL-1β-induced inflammatory response in chondrocytes |
| - | NA, | OS, | NA |
| 3918- | PTS, | Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway |
| - | in-vitro, | AD, | BV2 |
| 3380- | QC, | Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases |
| - | Review, | Var, | NA | - | Review, | Park, | NA | - | Review, | AD, | NA |
| 3368- | QC, | The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update |
| - | Review, | Var, | NA |
| 2338- | QC, | Quercetin: A Flavonoid with Potential for Treating Acute Lung Injury |
| - | Review, | Nor, | NA |
| 3099- | RES, | Resveratrol and cognitive decline: a clinician perspective |
| - | Review, | Nor, | NA | - | NA, | AD, | NA |
| 3616- | RosA, | Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders |
| - | Review, | AD, | NA |
| 3007- | RosA, | Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action |
| - | Review, | NA, | NA |
| 4190- | Sesame, | Sesame Seeds: A Nutrient-Rich Superfood |
| - | Review, | NA, | NA |
| 3660- | SFN, | Sulforaphane - role in aging and neurodegeneration |
| - | Review, | AD, | NA |
| 3194- | SFN, | Sulforaphane impedes mitochondrial reprogramming and histone acetylation in polarizing M1 (LPS) macrophages |
| - | in-vitro, | Nor, | NA |
| 2445- | SFN, | Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | SkBr3 |
| 1478- | SFN, | acet, | Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells |
| - | in-vitro, | Nor, | NA |
| 3310- | SIL, | Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro |
| - | in-vitro, | Lung, | A549 |
| - | in-vivo, | Nor, | NA |
| 3328- | SIL, | Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB |
| - | in-vivo, | BPH, | NA |
| 3320- | SIL, | Neuroprotective Potential of Silymarin against CNS Disorders: Insight into the Pathways and Molecular Mechanisms of Action |
| - | Review, | AD, | NA |
| 3318- | SIL, | Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2220- | SK, | Shikonin Alleviates Gentamicin-Induced Renal Injury in Rats by Targeting Renal Endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades |
| - | in-vivo, | Nor, | NA |
| 398- | SNP, | Silver nanoparticles induced testicular damage targeting NQO1 and APE1 dysregulation, apoptosis via Bax/Bcl-2 pathway, fibrosis via TGF-β/α-SMA upregulation in rats |
| - | in-vivo, | Testi, | NA |
| 2205- | SNP, | Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model |
| - | in-vivo, | Nor, | NA |
| 2206- | SNP, | RES, | ENHANCED EFFICACY OF RESVERATROL-LOADED SILVER NANOPARTICLE IN ATTENUATING SEPSIS-INDUCED ACUTE LIVER INJURY: MODULATION OF INFLAMMATION, OXIDATIVE STRESS, AND SIRT1 ACTIVATION |
| - | in-vivo, | Nor, | NA |
| 4558- | SNP, | Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells |
| - | in-vitro, | PC, | PANC1 |
| 4382- | SNP, | Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism |
| - | in-vitro, | Nor, | RAW264.7 |
| 4363- | SNP, | Immunomodulatory properties of silver nanoparticles contribute to anticancer strategy for murine fibrosarcoma |
| - | in-vivo, | fibroS, | NA |
| - | in-vivo, | AD, | NA |
| 3560- | TQ, | Protective effects of thymoquinone on D-galactose and aluminum chloride induced neurotoxicity in rats: biochemical, histological and behavioral changes |
| - | in-vivo, | AD, | NA |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 1937- | TQ, | Migration and Proliferation Effects of Thymoquinone-Loaded Nanostructured Lipid Carrier (TQ-NLC) and Thymoquinone (TQ) on In Vitro Wound Healing Models |
| - | NA, | Nor, | 3T3 |
| 1928- | TQ, | Thymoquinone Crosstalks with DR5 to Sensitize TRAIL Resistance and Stimulate ROS-Mediated Cancer Apoptosis |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2411- | UA, | Ursolic acid in health and disease |
| - | Review, | Var, | NA |
| 2350- | UA, | Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 2427- | Wog, | Anti-cancer natural products isolated from chinese medicinal herbs |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:563 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid