Database Query Results : , , p62

p62, p62/sequestosome 1 (SQSTM1): Click to Expand ⟱
Source:
Type:
A protein that plays a crucial role in various cellular processes, including autophagy, cell signaling, and protein degradation.
p62 is a scaffold protein that interacts with various signaling molecules, including kinases, phosphatases, and ubiquitin ligases. It is also a substrate of autophagy, a process by which cells recycle damaged or dysfunctional organelles and proteins.
p62 is overexpressed in various types of cancer, including breast, lung, colon, and liver cancer.
Its overexpression has been associated with poor prognosis and reduced survival in some cancers.


Scientific Papers found: Click to Expand⟱
1069- AL,    Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling
- vitro+vivo, ESCC, TE1 - vitro+vivo, ESCC, KYSE-510 - in-vitro, Nor, Het-1A
TumCP↓, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, p‑AMPK↑, mTOR↓, TumAuto↑, NCOA4↑, MDA↑, Iron↑, TumW↓, TumVol↓, ATG5↑, ATG7↑, TfR1/CD71↓, FTH1↓, ROS↑, Iron↑, Ferroptosis↑, *toxicity↓,
265- ALA,    Alpha-Lipoic Acid Reduces Cell Growth, Inhibits Autophagy, and Counteracts Prostate Cancer Cell Migration and Invasion: Evidence from In Vitro Studies
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
ROS↓, SOD↓, GSTP1/GSTπ↓, NRF2↓, p62↓, p62↑, SOD↑, p‑mTOR↑, Beclin-1↓, ROS↑, SOD1↑,
313- Api,    Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells
- in-vitro, Thyroid, BCPAP
LC3s↝, p62↓, ROS↑, TumCCA↑, CDC25↓, TumAuto↑, Beclin-1↑, AVOs↑, DNAdam↑,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, toxicity↑, Ferroptosis↑, ROS↑, TumCCA↑, BioAv↝, eff↝, Half-Life↓, Ferritin↓, GPx4↓, NADPH↓, GSH↓, BAX↑, Cyt‑c↑, cl‑Casp3↑, VEGF↓, IL8↓, COX2↓, MMP9↓, E-cadherin↑, MMP2↓, NF-kB↓, p16↑, CDK4↓, cycD1/CCND1↓, p62↓, LC3II↑, EMT↓, CSCs↓, Wnt↓, β-catenin/ZEB1↓, uPA↓, TumAuto↑, angioG↓, ChemoSen↑,
1528- Ba,    Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma
- in-vitro, OS, CAL27
Apoptosis↑, ROS↑, eff↓, TumAuto↑, cl‑PARP↑, Bax:Bcl2↑, Beclin-1↑, p62↓,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2296- Ba,    The most recent progress of baicalein in its anti-neoplastic effects and mechanisms
- Review, Var, NA
CDK1↓, Cyc↓, p27↑, P21↑, P53↑, TumCCA↑, TumCI↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Vim↓, LC3A↑, p62↓, p‑mTOR↓, PD-L1↓, CAFs/TAFs↓, VEGF↓, ROCK1↓, Bcl-2↓, Bcl-xL↓, BAX↑, ROS↑, cl‑PARP↑, Casp3↑, Casp9↑, PTEN↑, MMP↓, Cyt‑c↑, Ca+2↑, PERK↑, IRE1↑, CHOP↑, Copper↑, Snail↓, Vim↓, Twist↓, GSH↓, NRF2↓, HO-1↓, GPx4↓, XIAP↓, survivin↓, DR5↑,
1377- BBR,    Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway
- in-vitro, Arthritis, NA
Apoptosis↑, MMP↓, Bax:Bcl2↑, LC3‑Ⅱ/LC3‑Ⅰ↓, p62↑, *ROS↓,
3679- BBR,    Berberine alleviates Alzheimer's disease by activating autophagy and inhibiting ferroptosis through the JNK-p38MAPK signaling pathway
- in-vivo, AD, NA
*Beclin-1↑, *LC3B↑, *p62↓, *ROS↓, *lipid-P↓, *MDA↓, *Ferroptosis↓, *TfR1/CD71↓, *FTH1↑, *memory↑, *JNK↓, *p38↓, *Aβ↓, *Inflam↓,
2720- BetA,    Betulinic acid induces apoptosis of HeLa cells via ROS-dependent ER stress and autophagy in vitro and in vivo
- in-vitro, Cerv, HeLa
Keap1↝, ROS↑, Ca+2↑, Beclin-1↓, GRP78/BiP↑, LC3II↑, p62↑, ERStress↑, TumAuto↑,
765- Bor,    High concentrations of boric acid induce autophagy in cancer cell lines
p62↓, LC3II↑, TumAuto↑,
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑, TumCCA↓, TumCMig↓, TumMeta↓, ChemoSen↑, eff↑, eff↑, eff↓, eff↝, Dose∅, AMPK↑, p62↓, LC3II↑, Ca+2↑, Bax:Bcl2↑, CDK4↑, CDK6↑, RB1↑, EMT↓, E-cadherin↑, Vim↓, β-catenin/ZEB1↓, NF-kB↓, angioG↑, VEGF↓, TSP-1↑, MMP9↓, MMP2↓, ChemoSen↑, eff↑, ROS↑, CSCs↓, Fas↑, P53↑, BAX↑, Casp↑, β-catenin/ZEB1↓, NDRG1↑, STAT3↓, MAPK↑, ERK↑, eff↑, eff↑, eff↑,
1101- CA,  Tras,    Cooperative antitumor activities of carnosic acid and Trastuzumab in ERBB2+ breast cancer cells
- in-vitro, BC, NA
ChemoSen↑, HER2/EBBR2↓, PI3K↓, Akt↓, mTOR↓, p62↑,
2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoPv↑, Ca+2↑, antiOx↑, *ROS↓, *MMP∅, *Cyt‑c∅, *Casp3∅, *eff↑, *Inflam↓, *NF-kB↓, *COX2↓, iNOS↓, TRPV1↑, i-Ca+2?, MMP↓, Cyt‑c↑, Bax:Bcl2↑, P53↑, JNK↑, PI3K↓, Akt↓, mTOR↓, LC3II↑, ATG5↑, p62↑, Fap1↓, Casp3↑, Apoptosis↑, ROS↑, MMP9↓, eff↑, eff↓, eff↑, selectivity↑, eff↑, ChemoSen↑,
1580- Citrate,    Citrate activates autophagic death of prostate cancer cells via downregulation CaMKII/AKT/mTOR pathway
- in-vitro, Pca, PC3 - in-vivo, PC, NA - in-vitro, Pca, LNCaP - in-vitro, Pca, WPMY-1
Apoptosis↑, Ca+2↓, Akt↓, mTOR↓, selectivity↑, TumCP↓, cl‑Casp3↑, cl‑PARP↑, LC3‑Ⅱ/LC3‑Ⅰ↑, p62↓, ATG5↑, ATG7↑, Beclin-1↑, TumAuto↑, CaMKII ↓,
872- CUR,  RES,    New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects
- in-vitro, BC, TUBO - in-vitro, BC, SALTO
TumCP↓, tumCV↓, p62↓, p62↑, TumAuto↑, TumAuto↓, ROS↑, ROS↓, CHOP↑,
404- CUR,    Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, H1299
TumAuto↑, TumCG↓, TumCP↓, Iron↑, GSH↓, lipid-P↑, GPx↓, mtDam↑, autolysosome↑, Beclin-1↑, LC3s↑, p62↓, Ferroptosis↑,
435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑, TumAuto↑, LC3‑Ⅱ/LC3‑Ⅰ↑, Beclin-1↑, p62↓, PI3K↓, Akt↓, mTOR↓, p‑Akt↓, p‑mTOR↓,
477- CUR,    Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells
- in-vitro, Cerv, SiHa
TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, CycB/CCNB1↓, CDC25↓, ROS↑, p62↑, LC3‑Ⅱ/LC3‑Ⅰ↑, cl‑Casp3↑, cl‑PARP↑, P53↑, P21↑,
463- CUR,    Curcumin induces autophagic cell death in human thyroid cancer cells
- in-vitro, Thyroid, K1 - in-vitro, Thyroid, FTC-133 - in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, 8505C
TumAuto↑, LC3II↑, Beclin-1↑, p‑p38↑, p‑JNK↑, p‑ERK↑, p62↓, p‑PDK1↓, p‑Akt↓, p‑p70S6↓, p‑PIK3R1↓, p‑S6↓, p‑4E-BP1↓,
471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑, TumAuto↑, p62↓, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, Casp9↑, PARP↑, ATG3↑, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↑,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
4901- DCA,  Sal,    Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer
- Review, NSCLC, NA
Glycolysis↓, OXPHOS↑, PDKs↓, ROS↑, Apoptosis↑, GlucoseCon↓, lactateProd↓, RadioS↑, TumAuto↑, mTOR↓, LC3s↓, p62↑, TumCG↓, OS↑, toxicity↝, ChemoSen↑, eff↑, eff↑, Ferritin↓, CSCs↓, EMT↓, ROS↑, Cyt‑c↑, Casp3↑, ER Stress↑, selectivity↑, eff↑, TumCG↓,
1863- dietFMD,  Chemo,    Effect of fasting on cancer: A narrative review of scientific evidence
- Review, Var, NA
eff↑, ChemoSideEff↓, ChemoSen↑, Insulin↓, HDAC↓, IGF-1↓, STAT5↓, BG↓, MAPK↓, HO-1↓, ATG3↑, Beclin-1↑, p62↑, SIRT1↑, LAMP2↑, OXPHOS↑, ROS↑, P53↑, DNAdam↑, TumCD↑, ATP↑, Treg lymp↓, M2 MC↓, CD8+↑, Glycolysis↓, GutMicro↑, GutMicro↑, Warburg↓, Dose↝,
5008- DSF,  Cu,    Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis
- in-vitro, HCC, NA
selectivity↑, TumCD↑, TumCMig↓, TumCI↓, angioG↓, mtDam↑, Iron↑, lipid-P↑, Ferroptosis↑, NF-kB↑, p‑p62↑, Keap1↓, eff↑, eff↓, ChemoSen↑,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1/CCND1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
1962- GamB,  HCQ,    Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species
- in-vitro, PC, NA
LC3II↑, Beclin-1↑, p62↓, MMP↓, ROS↑, TumAuto↑, eff↑,
2507- H2,    Hydrogen protects against chronic intermittent hypoxia induced renal dysfunction by promoting autophagy and alleviating apoptosis
- in-vivo, NA, NA
*RenoP↑, *ROS↓, *Apoptosis↓, *ER Stress↓, *CHOP↓, *Casp12↓, *GRP78/BiP↓, *LC3‑Ⅱ/LC3‑Ⅰ↑, *Beclin-1↑, *p62↓, *mTOR↓,
2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, BioAv↓, TumCP↓, selectivity↑, P53↑, P21↑, CDK4↓, cycD1/CCND1↓, mtDam↑, ROS↑, eff↓, Casp3↑, BAX↑, LC3II↑, Beclin-1↑, ATG7↑, p62↑, eff↑, ChemoSen↑, *toxicity↓,
2177- itraC,    Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression
- Study, Colon, NA - in-vitro, CRC, COLO205 - in-vitro, CRC, HCT116
OS↑, tumCV↓, Casp3↑, TumCCA↑, HH↓, TumAuto↑, LC3B↑, p62↑, TKT↓,
1070- IVM,    Ivermectin accelerates autophagic death of glioma cells by inhibiting glycolysis through blocking GLUT4 mediated JAK/STAT signaling pathway activation
- vitro+vivo, GBM, NA
TumCG↓, LC3II↑, p62↓, ATP↓, Pyruv↓, GlucoseCon↑, HK2↓, PFK1↓, GLUT4↓, Glycolysis↓, JAK2↓, p‑STAT3↓, p‑STAT5↓,
1918- JG,    ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro
- in-vitro, Liver, HepG2 - in-vivo, NA, NA
TumCG↓, TumCP↓, Apoptosis↑, TumAuto↑, AMPK↑, mTOR↑, P53↑, H2O2↑, ROS↑, toxicity↝, p62↓, DR5↑, Casp8↑, PARP↑, cl‑Casp3↑,
1709- Lyco,    Lycopene prevents carcinogen-induced cutaneous tumor by enhancing activation of the Nrf2 pathway through p62-triggered autophagic Keap1 degradation
- in-vitro, Nor, JB6
*antiOx↑, *NRF2↑, *GSH/GSSG↓, *Catalase↝, *GR↝, *SOD↝, *GPx↝, *GSH↑, *Keap1↓, *p62↑,
227- MFrot,  MF,    Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway
- in-vivo, Lung, A549 - in-vitro, Lung, A549
TumCG↓, miR-486↑, BCAP↓, Apoptosis↑, ROS↑, TumAuto↑, LC3II↑, ATG5↑, Beclin-1↑, p62↑, TumCP↓,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
2983- RES,    Resveratrol Improves Diabetic Retinopathy via Regulating MicroRNA-29b/Specificity Protein 1/Apoptosis Pathway by Enhancing Autophagy
- in-vitro, Nor, NA
*Beclin-1↑, *p62↓, *Sp1/3/4↓, *Apoptosis↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
1018- Sel,    Selenite-induced autophagy antagonizes apoptosis in colorectal cancer cells in vitro and in vivo
- vitro+vivo, CRC, HCT116 - vitro+vivo, CRC, SW480
TumAuto↑, LC3s↑, TumW↓, Weight∅, Beclin-1↑, p62↓, ROS↑,
1483- SFN,    Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment
- in-vitro, OS, 143B - in-vitro, Nor, HEK293 - in-vivo, OS, NA
AntiCan↑, *toxicity∅, Ferroptosis↑, ROS↑, lipid-P↑, GSH↓, p62↑, SLC12A5↓, eff↓, GPx4↓, i-Iron↑, eff↓, MDA↑, TumVol↓, TumW↓, Ki-67↓, LC3B↑, *Weight∅,
2009- SK,    Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer
- in-vitro, Bladder, NA
TumCG↓, selectivity↑, *toxicity∅, Necroptosis↑, ROS↑, p62↑, Keap1↑, *NRF2↑, eff↑,
312- SNP,  wortm,    Inhibition of autophagy enhances the anticancer activity of silver nanoparticles
- vitro+vivo, NA, HeLa
APA↑, p62↓, PIK3CA↑, TumVol↓,
317- SNP,    Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure
- in-vitro, Kidney, HEK293
TumAuto↑, p62↑,
357- SNP,    Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Lung, L132
mtDam↑, ROS↑, Hif1a↑, LC3s↑, p62↑, eff↓,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
5024- TQ,    Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients?
- Review, Covid, NA
*NRF2↑, *NF-kB↓, *Inflam↓, *ROS↓, *HO-1↑, antiOx↑, GSH↑, GSTs↑, GSR↑, SOD1↑, Catalase↑, GPx↑, p62↓, Beclin-1↑, Sepsis↓, cardioP↑, hepatoP↑, neuroP↑,
5022- UA,    Ursolic Acid’s Alluring Journey: One Triterpenoid vs. Cancer Hallmarks
- Review, Var, NA
TumCP↓, Apoptosis↑, angioG↑, TumMeta↓, BioAv↓, Hif1a↓, Glycolysis↓, mitResp↓, Akt↓, MAPK↓, ERK↓, mTOR↓, P53↑, P21↑, E2Fs↑, STAT3↓, MMP↓, NLRP3↓, iNOS↓, CHK1↓, Chk2↓, BRCA1↓, E-cadherin↑, N-cadherin↓, Casp↑, p62↓, LC3II↑, Vim↓, ROS↑, CSCs↓, DNAdam↑, GutMicro↑, VEGF↓,
4862- Uro,    Neuroprotective effect of Urolithin A via downregulating VDAC1-mediated autophagy in Alzheimer's disease
- in-vivo, AD, NA - in-vitro, Nor, PC12
*cognitive↑, *p‑PI3K↓, *p‑Akt↓, *AMPK↑, *VDAC1↓, *neuroP↑, *PARK2↑, *PTEN↑, *LC3‑Ⅱ/LC3‑Ⅰ↑, *p62↓, *Aβ↓, *Apoptosis↓,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
2274- VitK2,    Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop
- in-vitro, Nor, SH-SY5Y
*Bcl-2↓, *BAX↑, *MMP↑, *ROS↓, *p62↓, *LC3A↑, *Dose↝, *Apoptosis↓, *PINK1↑, *PARK2↑,
2280- VitK2,    Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, AML, HL-60
ROS↑, p62↓, eff↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 52

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↑, 3,   Catalase↑, 1,   Copper↑, 1,   Ferroptosis↑, 5,   GPx↓, 1,   GPx↑, 1,   GPx1↓, 1,   GPx4↓, 4,   GSH↓, 5,   GSH↑, 1,   GSR↑, 1,   GSTP1/GSTπ↓, 1,   GSTs↑, 1,   H2O2↑, 1,   HO-1↓, 2,   HO-1↑, 1,   Iron↑, 4,   i-Iron↑, 1,   Keap1↓, 1,   Keap1↑, 1,   Keap1↝, 1,   lipid-P↑, 3,   MDA↑, 2,   NRF2↓, 2,   OXPHOS↑, 2,   PARK2↑, 1,   PYCR1↓, 1,   ROS↓, 2,   ROS↑, 36,   SOD↓, 2,   SOD↑, 1,   SOD1↑, 2,   TKT↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 2,   FTH1↓, 1,   NCOA4↑, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 3,   ATP↑, 1,   CDC25↓, 2,   EGF↓, 1,   FGFR1↓, 1,   Insulin↓, 1,   mitResp↓, 1,   MMP↓, 10,   mtDam↑, 6,   OCR↓, 1,   PINK1↑, 1,   XIAP↓, 1,  

Core Metabolism/Glycolysis

AMPK↑, 3,   p‑AMPK↑, 1,   ATG7↑, 3,   BCAP↓, 1,   CAIX↓, 1,   cMyc↓, 1,   GlucoseCon↓, 1,   GlucoseCon↑, 1,   GlutMet↓, 1,   Glycolysis↓, 6,   HK2↓, 2,   lactateProd↓, 1,   LDH↓, 4,   NADPH↓, 1,   p‑PDK1↓, 1,   PDKs↓, 1,   PFK↓, 2,   PFK1↓, 1,   PIK3CA↑, 1,   p‑PIK3R1↓, 1,   PKM2↓, 2,   POLD1↓, 1,   Pyruv↓, 1,   p‑S6↓, 1,   SIRT1↑, 2,   Warburg↓, 1,  

Cell Death

Akt↓, 8,   p‑Akt↓, 4,   Apoptosis?, 1,   Apoptosis↑, 17,   BAD↑, 1,   p‑BAD↓, 1,   BAX↓, 1,   BAX↑, 8,   Bax:Bcl2↑, 5,   Bcl-2↓, 7,   Bcl-xL↓, 2,   BIM↑, 1,   Casp↑, 3,   Casp3↓, 1,   Casp3↑, 8,   cl‑Casp3↑, 5,   Casp8↑, 2,   Casp9↑, 3,   Chk2↓, 1,   CK2↓, 1,   Cyt‑c↑, 6,   DR5↑, 2,   Fap1↓, 1,   Fas↑, 1,   Ferroptosis↑, 5,   hTERT/TERT↓, 1,   iNOS↓, 3,   iNOS↑, 1,   JNK↑, 1,   p‑JNK↑, 1,   MAPK↓, 2,   MAPK↑, 1,   MLKL↑, 1,   p‑MLKL↓, 1,   Necroptosis↑, 2,   p27↑, 1,   p‑p38↑, 1,   survivin↓, 1,   Telomerase↓, 1,   TRAIL↑, 1,   TRPV1↑, 1,   TumCD↑, 2,  

Kinase & Signal Transduction

CaMKII ↓, 1,   HER2/EBBR2↓, 1,   p‑p70S6↓, 1,  

Transcription & Epigenetics

tumCV↓, 4,  

Protein Folding & ER Stress

CHOP↑, 2,   ER Stress↑, 2,   ERStress↑, 1,   GRP78/BiP↑, 1,   HSP27↑, 1,   IRE1↑, 1,   PERK↑, 1,  

Autophagy & Lysosomes

APA↑, 1,   ATG3↑, 2,   ATG5↑, 4,   autolysosome↑, 1,   AVOs↑, 1,   Beclin-1↓, 3,   Beclin-1↑, 14,   LAMP2↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↓, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 5,   LC3A↑, 1,   LC3B↑, 3,   LC3II↑, 15,   LC3s↓, 1,   LC3s↑, 3,   LC3s↝, 1,   p62↓, 26,   p62↑, 19,   p‑p62↑, 1,   TumAuto↓, 1,   TumAuto↑, 24,  

DNA Damage & Repair

BRCA1↓, 1,   CHK1↓, 1,   DNAdam↑, 5,   p16↑, 1,   P53↑, 10,   p‑P53↑, 1,   PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP↑, 6,   TP53↓, 1,  

Cell Cycle & Senescence

CDK1↓, 1,   CDK4↓, 3,   CDK4↑, 1,   Cyc↓, 1,   CycB/CCNB1↓, 1,   cycD1/CCND1↓, 4,   E2Fs↑, 1,   P21↓, 1,   P21↑, 5,   RB1↑, 1,   TumCCA↓, 1,   TumCCA↑, 8,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   BMI1↓, 1,   CSCs↓, 5,   EMT↓, 5,   ERK↓, 2,   ERK↑, 2,   p‑ERK↑, 1,   FOXO4↓, 1,   GSK‐3β↓, 1,   HDAC↓, 2,   HDAC8↓, 1,   HH↓, 1,   IGF-1↓, 2,   miR-34a↑, 1,   mTOR↓, 9,   mTOR↑, 2,   p‑mTOR↓, 3,   p‑mTOR↑, 1,   p‑P70S6K↓, 1,   PI3K↓, 5,   PTEN↑, 1,   STAT3↓, 3,   p‑STAT3↓, 1,   STAT5↓, 1,   p‑STAT5↓, 1,   STAT6↓, 1,   TumCG↓, 8,   TumCG↑, 1,   Wnt↓, 1,  

Migration

Ca+2↓, 1,   Ca+2↑, 4,   i-Ca+2?, 1,   CAFs/TAFs↓, 1,   E-cadherin↑, 6,   Fibronectin↓, 1,   Ki-67↓, 3,   miR-139-5p↑, 1,   miR-486↑, 1,   MMP2↓, 4,   MMP9↓, 5,   MMPs↓, 1,   N-cadherin↓, 3,   RIP3↑, 1,   p‑RIP3↑, 1,   ROCK1↓, 1,   Slug↓, 1,   SMAD2↓, 1,   SMAD3↓, 1,   Snail↓, 3,   TGF-β↓, 1,   TIMP1↓, 1,   Treg lymp↓, 1,   TSP-1↑, 1,   TumCI?, 1,   TumCI↓, 4,   TumCMig↓, 3,   TumCMig↑, 1,   TumCP↓, 11,   TumMeta↓, 4,   Twist↓, 1,   uPA↓, 1,   Vim?, 1,   Vim↓, 5,   Zeb1↓, 1,   β-catenin/ZEB1↓, 4,  

Angiogenesis & Vasculature

angioG↓, 3,   angioG↑, 2,   eNOS↑, 1,   Hif1a↓, 3,   Hif1a↑, 1,   VEGF↓, 7,  

Barriers & Transport

GLUT4↓, 1,   SLC12A5↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 2,   CRP↓, 1,   IL10↓, 2,   IL1β↓, 1,   IL1β↑, 1,   IL4↓, 1,   IL8↓, 1,   Inflam↓, 3,   JAK2↓, 2,   M2 MC↓, 1,   NF-kB↓, 5,   NF-kB↑, 2,   p65↓, 1,   PD-1↓, 1,   PD-L1↓, 1,   Th1 response↑, 1,   TLR4↓, 2,   TNF-α↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

CDK6↓, 1,   CDK6↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↝, 1,   ChemoSen↓, 1,   ChemoSen↑, 11,   Dose↑, 1,   Dose↝, 1,   Dose∅, 5,   eff↓, 11,   eff↑, 29,   eff↝, 3,   Half-Life↓, 1,   RadioS↑, 4,   selectivity↓, 1,   selectivity↑, 9,  

Clinical Biomarkers

BG↓, 1,   BRCA1↓, 1,   CRP↓, 1,   Ferritin↓, 2,   GutMicro↑, 3,   HER2/EBBR2↓, 1,   hTERT/TERT↓, 1,   Ki-67↓, 3,   LDH↓, 4,   PD-L1↓, 1,   TP53↓, 1,  

Functional Outcomes

AntiCan↑, 5,   AntiTum↑, 1,   cardioP↑, 1,   ChemoSideEff↓, 3,   hepatoP↑, 1,   NDRG1↑, 1,   neuroP↑, 1,   OS↑, 3,   toxicity↑, 1,   toxicity↝, 2,   TumVol↓, 3,   TumW↓, 5,   Weight∅, 1,  

Infection & Microbiome

CD8+↑, 2,   Sepsis↓, 1,  
Total Targets: 307

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 3,   Catalase↑, 1,   Catalase↝, 1,   Ferroptosis↓, 2,   GPx↝, 1,   GSH↓, 1,   GSH↑, 1,   GSH/GSSG↓, 1,   HO-1↑, 2,   Keap1↓, 2,   lipid-P↓, 2,   MDA↓, 1,   MDA↑, 1,   NRF2↑, 5,   PARK2↑, 3,   ROS↓, 8,   ROS↑, 1,   SOD↑, 1,   SOD↝, 1,   VDAC1↓, 1,  

Metal & Cofactor Biology

FTH1↑, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP↑, 1,   MMP↓, 1,   MMP↑, 2,   MMP∅, 1,   PINK1↑, 1,  

Core Metabolism/Glycolysis

AMPK↑, 2,  

Cell Death

Akt↓, 1,   p‑Akt↓, 1,   Apoptosis↓, 5,   BAX↑, 3,   Bcl-2↓, 3,   Casp12↓, 1,   Casp3↑, 2,   Casp3∅, 1,   Cyt‑c∅, 1,   Ferroptosis↓, 2,   JNK↓, 1,   MAPK↓, 1,   p38↓, 1,  

Kinase & Signal Transduction

Sp1/3/4↓, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   ER Stress↓, 1,   GRP78/BiP↓, 1,  

Autophagy & Lysosomes

Beclin-1↑, 3,   LC3‑Ⅱ/LC3‑Ⅰ↑, 2,   LC3A↑, 1,   LC3B↑, 1,   LC3II↑, 1,   MitoP↑, 1,   p62↓, 6,   p62↑, 3,  

Proliferation, Differentiation & Cell State

mTOR↓, 2,   PI3K↓, 1,   p‑PI3K↓, 1,   PTEN↑, 1,  

Migration

Cartilage↑, 1,   TumCP↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   CRP↓, 1,   IL1β↓, 1,   IL6↓, 1,   Inflam↓, 5,   NF-kB↓, 3,   TNF-α↓, 1,  

Synaptic & Neurotransmission

p‑tau↓, 1,  

Protein Aggregation

Aβ↓, 3,   NLRP3↓, 1,  

Hormonal & Nuclear Receptors

GR↝, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   Dose↝, 1,   eff↓, 1,   eff↑, 2,  

Clinical Biomarkers

CRP↓, 1,   IL6↓, 1,  

Functional Outcomes

cardioP↑, 1,   cognitive↑, 1,   memory↑, 1,   motorD↑, 1,   neuroP↑, 3,   radioP↑, 1,   RenoP↑, 1,   Risk↓, 1,   Strength↑, 1,   toxicity↓, 2,   toxicity∅, 2,   Weight∅, 1,  
Total Targets: 90

Scientific Paper Hit Count for: p62, p62/sequestosome 1 (SQSTM1)
7 Curcumin
4 Silver-NanoParticles
3 Propolis -bee glue
3 Resveratrol
2 Apigenin (mainly Parsley)
2 Baicalein
2 Berberine
2 Urolithin
2 Vitamin K2
1 Allicin (mainly Garlic)
1 Alpha-Lipoic-Acid
1 Metformin
1 Artemisinin
1 Butyrate
1 Betulinic acid
1 Boron
1 Caffeic acid
1 Carnosic acid
1 Trastuzumab
1 Capsaicin
1 Citric Acid
1 Dichloroacetate
1 salinomycin
1 diet FMD Fasting Mimicking Diet
1 Chemotherapy
1 Disulfiram
1 Copper and Cu NanoParticlex
1 Ferulic acid
1 Gambogic Acid
1 hydroxychloroquine
1 Hydrogen Gas
1 Honokiol
1 itraconazole
1 Ivermectin
1 Juglone
1 Lycopene
1 Magnetic Field Rotating
1 Magnetic Fields
1 Selenite
1 Sulforaphane (mainly Broccoli)
1 Shikonin
1 wortmannin
1 Thymoquinone
1 Ursolic acid
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:602  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page