| Source: |
| Type: |
| γH2AX (gamma-H2AX) is a histone protein that plays a crucial role in the repair of DNA double-strand breaks (DSBs). It is a phosphorylated form of the H2AX protein, which is a component of chromatin. γH2AX is often used as a biomarker for DNA damage and genomic instability. When DNA is damaged, the H2AX protein is phosphorylated, forming γH2AX, which recruits and activates DNA repair proteins to the site of damage. γ-H2AX, a marker for DNA double-strand breaks. Cancer cells often exhibit increased levels of γH2AX due to their high rate of DNA replication and repair errors. Gamma-H2AX, on the other hand, refers to a phosphorylated form of H2AX. |
| 234- | AL, | Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy |
| - | in-vitro, | HCC, | Hep3B |
| 591- | Api, | doxoR, | Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines |
| - | in-vitro, | AML, | Jurkat | - | in-vitro, | AML, | THP1 |
| 1365- | Ash, | Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells |
| - | in-vitro, | Oral, | Ca9-22 | - | in-vitro, | Oral, | CAL27 |
| 3160- | Ash, | Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal |
| - | Review, | Var, | NA |
| 1520- | Ba, | Baicalein Induces G2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | TOV-21G |
| 1398- | BBR, | Berberine inhibits the progression of renal cell carcinoma cells by regulating reactive oxygen species generation and inducing DNA damage |
| - | in-vitro, | Kidney, | NA |
| 426- | CUR, | Use of cancer chemopreventive phytochemicals as antineoplastic agents |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | CAL51 |
| 474- | CUR, | Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 1864- | DCA, | MET, | Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | Nor, | MCF10 |
| 3236- | EGCG, | BA, | Molecular mechanisms for inhibition of colon cancer cells by combined epigenetic-modulating epigallocatechin gallate and sodium butyrate |
| - | in-vitro, | Colon, | RKO | - | in-vitro, | Colon, | HCT116 | - | in-vitro, | Colon, | HT29 |
| 1656- | FA, | Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling |
| - | Review, | Var, | NA |
| 1657- | HCAs, | Anticancer Activity of Sinapic Acid by Inducing Apoptosis in HT-29 Human Colon Cancer Cell Line 2023 |
| - | in-vitro, | CRC, | HT-29 |
| 4644- | HT, | The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma Cells |
| - | in-vitro, | Melanoma, | NA |
| 2907- | LT, | Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems |
| - | in-vitro, | Nor, | NA |
| 3277- | Lyco, | Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent |
| - | Review, | Var, | NA |
| 488- | MF, | Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells |
| - | in-vitro, | NA, | HeLa | - | in-vitro, | NA, | IMR90 |
| 2258- | MFrot, | MF, | EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE |
| - | in-vitro, | GBM, | GBM | - | in-vitro, | Nor, | SVGp12 |
| 3355- | QC, | Quercetin exhibits cytotoxicity in cancer cells by inducing two-ended DNA double-strand breaks |
| - | in-vitro, | Cerv, | HeLa |
| 3371- | QC, | Quercetin induces MGMT+ glioblastoma cells apoptosis via dual inhibition of Wnt3a/β-Catenin and Akt/NF-κB signaling pathways |
| - | in-vitro, | GBM, | T98G |
| 924- | RES, | Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells |
| - | in-vitro, | OS, | U2OS | - | in-vitro, | Lung, | A549 |
| 2329- | RES, | Resveratrol induces apoptosis in human melanoma cell through negatively regulating Erk/PKM2/Bcl-2 axis |
| - | in-vitro, | Melanoma, | A375 |
| 3098- | RES, | Regulation of Cell Signaling Pathways and miRNAs by Resveratrol in Different Cancers |
| - | Review, | Var, | NA |
| 4900- | Sal, | Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications |
| - | Review, | BC, | NA |
| 4903- | Sal, | Salinomycin: A new paradigm in cancer therapy |
| - | Review, | Var, | NA |
| 1456- | SFN, | Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cells |
| - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | PANC1 |
| 1460- | SFN, | High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells |
| - | in-vitro, | Lung, | NA |
| 4400- | SNP, | Rad, | Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Nor, | MCF10 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | BT549 | - | in-vivo, | BC, | MDA-MB-231 |
| 4406- | SNP, | Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MDA-MB-231 |
| 2129- | TQ, | doxoR, | Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 631- | VitC, | Vitamin C preferentially kills cancer stem cells in hepatocellular carcinoma via SVCT-2 |
| - | vitro+vivo, | Liver, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:667 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid