| Source: CGL-Driver Genes |
| Type: Oncogene |
| DNA (cytosine-5-)-methyltransferase 3 alpha, commonly referred to as DNMT3A, is an enzyme that plays a crucial role in the process of DNA methylation, which is an important mechanism for regulating gene expression and maintaining genomic stability. The expression levels of DNMT3A and the presence of mutations can serve as prognostic markers in certain cancers. In some cancers, DNMT3A is overexpressed, leading to increased DNA methylation of tumor suppressor genes. Biological Consequences of DNMT3A Loss -Epigenetic drift rather than uniform hypomethylation -Persistence of stem-like transcriptional programs -Increased self-renewal of hematopoietic stem cells -Impaired differentiation with preserved viability Importantly, DNMT3A loss does not strongly increase proliferation on its own—it increases clonal persistence and evolutionary potential. |
| 3435- | aLinA, | Alpha-linolenic acid-mediated epigenetic reprogramming of cervical cancer cell lines |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Cerv, | SiHa | - | in-vitro, | Cerv, | C33A |
| 1561- | Api, | Apigenin Reactivates Nrf2 Anti-oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells Through Epigenetics Modifications |
| - | in-vivo, | Nor, | JB6 |
| 1433- | Ash, | SFN, | A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 422- | CUR, | Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines |
| - | in-vitro, | BC, | HCC-38 | - | in-vitro, | BC, | T47D |
| 470- | CUR, | Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line |
| - | in-vitro, | Ovarian, | SKOV3 |
| 443- | CUR, | Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | SW480 |
| 672- | EGCG, | Molecular Targets of Epigallocatechin—Gallate (EGCG): A Special Focus on Signal Transduction and Cancer |
| - | Review, | NA, | NA |
| 3233- | EGCG, | Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 4234- | H2, | Hydrogen gas alleviates sepsis-induced neuroinflammation and cognitive impairment through regulation of DNMT1 and DNMT3a-mediated BDNF promoter IV methylation in mice |
| - | in-vivo, | Sepsis, | NA |
| 2915- | LT, | Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | CRC, | SNU-407 | - | in-vitro, | Nor, | FHC |
| 3357- | QC, | The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes |
| - | in-vitro, | AML, | HL-60 | - | NA, | NA, | U937 |
| 3359- | QC, | Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa |
| 3660- | SFN, | Sulforaphane - role in aging and neurodegeneration |
| - | Review, | AD, | NA |
| 3193- | SFN, | Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress |
| - | Review, | Var, | NA |
| 1730- | SFN, | Sulforaphane: An emergent anti-cancer stem cell agent |
| - | Review, | Var, | NA |
| 1437- | SFN, | Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition |
| - | Review, | NA, | NA |
| 3426- | TQ, | Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms |
| - | in-vitro, | BC, | MDA-MB-468 | - | in-vitro, | AML, | JK |
| 3423- | TQ, | Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics |
| - | Review, | Var, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:86 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid