Database Query Results : , , tumCV

tumCV, Cell Viability: Click to Expand ⟱
Source:
Type:
Cell Viability


Scientific Papers found: Click to Expand⟱
239- AL,    Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways
- in-vitro, GC, SGC-7901
Apoptosis↑, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, Fas↑, tumCV↓, DNAdam↑, ROS↑, Telomerase↓,
246- AL,    Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway
- in-vitro, GC, MGC803
Apoptosis↑, cl‑Casp3↑, p38↑, tumCV↓, BAX↑, Bcl-2↑,
250- AL,    Allicin Induces p53-Mediated Autophagy in Hep G2 Human Liver Cancer Cells
- in-vitro, Liver, HepG2
P53↓, PI3K↓, mTOR↓, Bcl-2↓, AMPK↑, TSC2↑, Beclin-1↑, TumAuto↑, tumCV↓, ATG7↑, MMP↓,
2646- AL,    Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress
- in-vitro, Pca, DU145 - in-vitro, Melanoma, RPMI-8226
AntiCan↑, eff↓, ChemoSen↑, ER Stress↑, tumCV↓, DNAdam↑, GSH∅, HSP70/HSPA5↓, UPR↑, β-catenin/ZEB1↓, ROS↑, HO-2↑, SIRT1↑, GlucoseCon∅, lactateProd∅, chemoP↑,
3434- ALA,    Alpha lipoic acid modulates metabolic reprogramming in breast cancer stem cells enriched 3D spheroids by targeting phosphoinositide 3-kinase: In silico and in vitro insights
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, PI3K↓, p‑Akt↓, p‑P70S6K↓, mTOR↓, ATP↓, GlucoseCon↓, ROS↑, PKM2↓, LDHA↓, Glycolysis↓, ChemoSen↑,
3442- ALA,    α‑lipoic acid modulates prostate cancer cell growth and bone cell differentiation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, C4-2B - in-vitro, Nor, 3T3
tumCV↓, TumCMig↓, TumCI↓, ROS↑, Hif1a↑, JNK↑, Casp↑, TumCCA↑, Apoptosis↑, selectivity↑,
1007- And,    In vitro and in silico evaluation of Andrographis paniculata ethanolic crude extracts on fatty acid synthase expression on breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, EMT6
tumCV↓, i-FASN↓,
1024- Api,  CUR,    Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects
- vitro+vivo, Melanoma, A375 - in-vitro, Melanoma, A2058 - in-vitro, Melanoma, RPMI-7951
TumCG↓, Apoptosis↑, PD-L1↓, STAT1↓, tumCV↓, T-Cell↑,
1008- Api,    Apigenin-induced lysosomal degradation of β-catenin in Wnt/β-catenin signaling
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
Wnt/(β-catenin)↓, β-catenin/ZEB1↓, TumAuto↑, Akt↓, mTOR↓, tumCV↓, TumCCA↑, TumAuto↑, p‑Akt↓, p‑p70S6↓, p‑4E-BP1↓,
1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓, ROS↑, MMP↓, ATP↓, Apoptosis↑, Necroptosis↑, DNAdam↑, TumCCA↑, Casp3↑, cl‑PARP↑, MLKL↑, p‑RIP3↑, Bax:Bcl2↑, eff↓, eff↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2576- ART/DHA,  AL,    The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo
- in-vitro, OS, MG63 - in-vivo, NA, NA
eff↑, tumCV↓, Casp3↑, Casp9↑, Apoptosis↑, TumCG↓,
1368- Ash,  Cisplatin,    Withania somnifera Root Extract Enhances Chemotherapy through ‘Priming’
- in-vitro, Colon, HT-29 - in-vitro, BC, MDA-MB-231
tumCV↓, *toxicity↓, ROS↑, mitResp↓, ChemoSen↑,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
4809- ASTX,    Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression
- in-vitro, GC, AGS - in-vitro, GC, MKN45
tumCV↓, TumCP↓, TumCCA↑, p‑ERK↓, p27↑, cycD1/CCND1↓, CDK4↓,
4818- ASTX,  MEL,    Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
TumCD↑, DNAdam↑, *antiOx↑, *AntiTum↑, Inflam↓, tumCV↓, Bcl-2↓, Apoptosis↓, selectivity↑, eff↑, Dose↓,
4822- ASTX,  Rad,    Astaxanthin Synergizes with Ionizing Radiation (IR) in Oral Squamous Cell Carcinoma (OSCC)
tumCV↓, selectivity↑, RadioS↑, GPx4↓, Ferroptosis↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1529- Ba,    Studies on the Inhibitory Mechanisms of Baicalein in B16F10 Melanoma Cell Proliferation
- in-vitro, Melanoma, B16-F10
ROS↑, eff↓, tumCV↓, Casp3↑, necrosis↑,
2475- Ba,    Baicalein triggers ferroptosis in colorectal cancer cells via blocking the JAK2/STAT3/GPX4 axis
- in-vitro, CRC, HCT116 - in-vitro, CRC, DLD1 - in-vivo, NA, NA
tumCV↓, GPx4↓, STAT3↓, Ferroptosis↑,
1396- BBR,    Berberine induced down-regulation of matrix metalloproteinase-1, -2 and -9 in human gastric cancer cells (SNU-5) in vitro
- in-vitro, GC, SNU1041 - in-vitro, GC, SNU5
tumCV↓, ROS↑, MMP1↓, MMP2↓, MMP9↓, MMP7∅,
1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓, ROS↑, Ca+2↑, ER Stress↑, eff↓, Bax:Bcl2↑, MMP↓, Casp9↑, Casp3↑, cl‑PARP↑,
1386- BBR,    Berberine-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species generation and mitochondrial-related apoptotic pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, ROS↑, JNK↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, AIF↝,
2715- BBR,  Rad,    Berberine Can Amplify Cytotoxic Effect of Radiotherapy by Targeting Cancer Stem Cells
- in-vitro, BC, MCF-7
tumCV↓, OCT4↓, SOX2↓, RadioS↑, CSCs↓,
2691- BBR,    Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells
- in-vitro, Oral, KB
tumCV↓, DNAdam↑, Casp3↑, Casp7↑, FasL↑, Casp8↑, Casp9↑, PARP↑, BAX↑, BAD↑, APAF1↑, MMP2↓, MMP9↓, p‑p38↑, ERK↑, MAPK↑,
2751- BetA,    Betulinic acid inhibits proliferation and triggers apoptosis in human breast cancer cells by modulating ER (α/β) and p53
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
tumCV↓, ER-α36↓,
2750- BetA,  GEM,    Betulinic acid, a major therapeutic triterpene of Celastrus orbiculatus Thunb., acts as a chemosensitizer of gemcitabine by promoting Chk1 degradation
- in-vitro, PC, Bxpc-3 - in-vitro, Lung, H1299
CHK1↓, ChemoSen↑, tumCV↓, Apoptosis↑, DNAdam↑,
2742- BetA,    Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, 4T1 - in-vitro, BC, MCF-7
tumCV↓, TumCMig↓, TumCI↓, STAT3↑, FAK↓, MMPs↓, MMP2↓, MMP9↓, TIMP2↑,
2757- BetA,    Betulinic Acid Inhibits Glioma Progression by Inducing Ferroptosis Through the PI3K/Akt and NRF2/HO-1 Pathways
- in-vitro, GBM, U251
tumCV↓, TumCMig↓, TumCI↓, Apoptosis↑, p‑PI3K↓, p‑Akt↓, Ferroptosis↑, HO-1↑, NRF2↑,
2723- BetA,    Betulinic acid and oleanolic acid modulate CD81 expression and induce apoptosis in triple-negative breast cancer cells through ROS generation
- in-vitro, BC, MDA-MB-231
Apoptosis↑, tumCV↓, ROS↑,
2726- BetA,    Betulinic acid induces DNA damage and apoptosis in SiHa cells
- in-vitro, Cerv, SiHa
tumCV↓, DNAdam↑, MMP↓, ROS↑, TumCCA↑, TOP1↓,
2734- BetA,    Betulinic Acid Modulates the Expression of HSPA and Activates Apoptosis in Two Cell Lines of Human Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW480
tumCV↓, HSP70/HSPA5⇅, ROS↑, cl‑Casp3↑, mt-Apoptosis↑, Dose↝,
2730- BetA,    Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells
- in-vitro, Bladder, T24
tumCV↓, TumCP↓, TumCMig↓, Casp↑, TumAuto↑, LC3B-II↑, p‑AMPK↑, mTOR↓, BMI1↓, ROS↑, eff↓,
725- Bor,    Boric acid exert anti-cancer effect in poorly differentiated hepatocellular carcinoma cells via inhibition of AKT signaling pathway
- in-vitro, HCC, NA
tumCV↓, Apoptosis↑, TumAuto↑, p‑Akt↓,
1424- Bos,    Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
tumCV↓, Apoptosis↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑,
1447- Bos,    Boswellia carterii n-hexane extract suppresses breast cancer growth via induction of ferroptosis by downregulated GPX4 and upregulated transferrin
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, BC, 4T1 - in-vitro, Nor, MCF10
tumCV↓, AntiCan↑, *toxicity↓, Ferroptosis↑, i-Iron↑, GPx4↓, ROS↑, lipid-P↑, Tf↑, TumCG↓,
1104- CAR,    Carvacrol Ameliorates Transforming Growth Factor-β1-Induced Extracellular Matrix Deposition and Reduces Epithelial-Mesenchymal Transition by Regulating The Phosphatidylinositol 3-Kinase/Protein Kinase B Pathway In Hk-2 Cells
- in-vitro, Kidney, HK-2
tumCV↓, COL4↓, COL1↓, Fibronectin↓, E-cadherin↑, Snail↑, Vim↑, α-SMA↑, PI3K↓, Akt↓,
939- Catechins,  5-FU,    Targeting Lactate Dehydrogenase A with Catechin Resensitizes SNU620/5FU Gastric Cancer Cells to 5-Fluorouracil
- vitro+vivo, GC, SNU620
lactateProd↓, ROS↑, tumCV↓, LDHA↓, mt-ROS↑, proApCas↑,
4493- Chit,  Selenate,  Se,    A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway
- in-vitro, Lung, A549
tumCV↓, Apoptosis↑, TumCCA↑, Fas↑, FasL↑, FADD↑, Casp↑,
1145- CHr,    Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways
- in-vitro, Cerv, HeLa
tumCV↓, BAX↑, BID↑, BOK↑, APAF1↑, TNF-α↑, FasL↑, Fas↑, FADD↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, Mcl-1↓, NAIP↓, Bcl-2↓, CDK4↓, CycB/CCNB1↓, cycD1/CCND1↓, cycE1↓, TRAIL↑, p‑Akt↓, Akt↓, mTOR↓, PDK1↓, BAD↓, GSK‐3β↑, AMPK↑, p27↑, P53↑,
2797- CHr,    A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells
- in-vivo, BC, NA - in-vitro, BC, 4T1
tumCV↓, p‑STAT3↓, VEGF↓, Weight∅, angioG↓,
2787- CHr,    Network pharmacology unveils the intricate molecular landscape of Chrysin in breast cancer therapeutics
- Analysis, Var, MCF-7
TumCP↓, angioG↓, TumCI↓, TumMeta↓, TP53↑, Akt↓, Casp3↑, tumCV↓, TNF-α↓, BioAv↑, BioAv↑, AKT1↓,
1584- Citrate,    Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, i-Ca+2↓, TumCMig↓, CD133↓, pH↑, eff↑, Ki-67↓, eff↑,
1592- Citrate,    Inhibition of Mcl-1 expression by citrate enhances the effect of Bcl-xL inhibitors on human ovarian carcinoma cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, IGROV1
eff↑, tumCV↓, Mcl-1↓, eff↑,
1593- Citrate,    Citrate Induces Apoptotic Cell Death: A Promising Way to Treat Gastric Carcinoma?
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901
PFK↓, Glycolysis↓, tumCV↓, cl‑Casp3↑, cl‑PARP↑, Apoptosis↑, ATP↓, ChemoSen↑, Mcl-1↓, glucoNG↑, FBPase↑, OXPHOS↓, TCA↓, β-oxidation↓, HK2↓, PDH↓, ROS↑,
4776- CoQ10,    Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy
- vitro+vivo, Ovarian, SKOV3
ROS↑, eff↓, AntiCan↑, Apoptosis↑, tumCV↓, TumCG↓, TumCCA↑, LC3s↑, ERStress↑, Beclin-1↑, Bax:Bcl2↑, HER2/EBBR2↓, Akt↓, mTOR↓,
4764- CoQ10,  VitE,    Auxiliary effect of trolox on coenzyme Q10 restricts angiogenesis and proliferation of retinoblastoma cells via the ERK/Akt pathway
- in-vitro, RPE, Y79 - in-vitro, Nor, ARPE-19 - in-vivo, NA, NA
tumCV↓, Apoptosis↑, ROS↑, MMP↓, TumCCA↑, VEGF↓, ERK↓, Akt↓, ChemoSen↑, chemoP↑, toxicity↓, angioG↓,
1642- Cu,  HCAs,    Copper-assisted anticancer activity of hydroxycinnamic acid terpyridine conjugates on triple-negative breast cancer
- in-vitro, BC, 4T1 - in-vitro, Nor, L929
tumCV↓, selectivity↑,
1639- Cu,  HCAs,    Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
angioG↓, tumCV↓, Dose↓, ROS↑,
1410- CUR,    Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway
- vitro+vivo, OS, MG63
tumCV↓, Apoptosis↑, TumCG↓, NRF2↓, GPx4↓, HO-1↓, xCT↓, ROS↑, MDA↑, GSH↓,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
2976- CUR,    Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway
- in-vitro, Oral, HSC3 - in-vitro, HNSCC, CAL33
tumCV↓, Sp1/3/4↓, p65↓, HSF1↓, NF-kB↓,
2820- CUR,    Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic Pathways
- in-vitro, HCC, HepG2
*hepatoP↑, *ROS↓, tumCV↓,
872- CUR,  RES,    New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects
- in-vitro, BC, TUBO - in-vitro, BC, SALTO
TumCP↓, tumCV↓, p62↓, p62↑, TumAuto↑, TumAuto↓, ROS↑, ROS↓, CHOP↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
4913- DSF,    Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies
- Review, Var, NA
Apoptosis↑, tumCV↑, eff↑, toxicity↓, antiNeop↑, ChemoSen↑, RadioS↑, OS↑, ROS↑, SOD↓, MMP1↓, eff↑, Half-Life↓,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
3241- EGCG,    Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, Liver, HepG2 - in-vitro, Liver, HUH7
tumCV↓, mtDam↑, Apoptosis↑, ATP↓, lipoGen↓, eff↑,
1321- EMD,    Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model
- in-vitro, CRC, LS1034 - in-vivo, NA, NA
tumCV↓, TumCCA↑, ROS↑, Ca+2↑, MMP↓, Apoptosis↑, Cyt‑c↑, Casp9↑, Bax:Bcl2↑,
1332- EMD,    Induction of Apoptosis in HepaRG Cell Line by Aloe-Emodin through Generation of Reactive Oxygen Species and the Mitochondrial Pathway
- in-vivo, Nor, HepaRG
*tumCV↓, *ROS↑, *MMP↓, *Fas↑, *P53↑, *P21↑, *Bax:Bcl2↑, *Casp3↑, *Casp8↑, *Casp9↑, *cl‑PARP↑, *TumCCA↑, *P21↑, *cycE/CCNE↑, *cycA1/CCNA1↓, *CDK2↓,
1330- EMD,    Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway
- in-vitro, NA, NA
tumCV↓, Casp3↑, Casp9↑, MMP↓, Cyt‑c↑, BAX↑, Bax:Bcl2↑,
3460- EP,    Picosecond pulsed electric fields induce apoptosis in HeLa cells via the endoplasmic reticulum stress and caspase-dependent signaling pathways
- in-vitro, Cerv, HeLa
tumCV↓, Apoptosis↑, TumCCA↑, GRP78/BiP↑, GRP94↑, CEBPA↑, CHOP↑, Ca+2↑, Casp12↑, Casp9↑, Casp3↑, Cyt‑c↑, BAX↑, Bcl-2↓, ER Stress↑, MMP↓,
975- Est,    Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism
- vitro+vivo, UEC, NA
GLS↑, cMyc↑, GlutMet↑, tumCV↑, TumAuto↓,
1114- F,    The Potential Effect of Fucoidan on Inhibiting Epithelial-to-Mesenchymal Transition, Proliferation, and Increase in Apoptosis for Endometriosis Treatment: In Vivo and In Vitro Study
- vitro+vivo, NA, NA
tumCV↓, TumCMig↓, VEGF↓, EMT↓, Apoptosis↑,
1112- FA,    Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition
- in-vitro, BC, MDA-MB-231 - in-vivo, BC, NA
tumCV↓, Apoptosis↑, AntiTum↑, TumMeta↓, EMT↓, TumVol↓, TumW↓,
2844- FIS,    Fisetin, a dietary flavonoid induces apoptosis via modulating the MAPK and PI3K/Akt signalling pathways in human osteosarcoma (U-2 OS) cells
- in-vitro, OS, U2OS
tumCV↓, Apoptosis↑, Casp3↑, Casp8↑, Casp9↑, BAX↑, BAD↑, Bcl-2↓, Bcl-xL↓, PI3K↓, Akt↓, ERK↓, p‑JNK↑, p‑cJun↑, p‑p38↑, ROS↑, MMP↓, mTORC1↓, PTEN↑, p‑GSK‐3β↓, GSK‐3β↑, NF-kB↓, IKKα↑, Cyt‑c↑,
2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, ChemoSen↑, TumCMig↓, ROS↑, TumCI↓, angioG↓, CDK2↓, PI3K↓, Akt↓, mTOR↓, EGFR↓, Casp↑, mTORC1↓, mTORC2↑, cycD1/CCND1↓, cycE/CCNE↓, MMP2↓, MMP9↓, ER Stress↑, Ca+2↑, eff↓,
2851- FIS,    Apoptosis induction in breast cancer cell lines by the dietary flavonoid fisetin
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, SkBr3 - in-vitro, Nor, NA
tumCV↓, selectivity↑, TumCCA↑, Apoptosis↑, ROS∅,
2856- FIS,    N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells
- in-vitro, Colon, COLO205
eff↑, ROS↑, tumCV↓, Casp3↑, Bcl-2↓, MMP↓, eff↑,
2841- FIS,    Fisetin, an Anti-Inflammatory Agent, Overcomes Radioresistance by Activating the PERK-ATF4-CHOP Axis in Liver Cancer
- in-vitro, Nor, RAW264.7 - in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B - in-vitro, Liver, HUH7
*Inflam↓, *TNF-α↓, *IL1β↓, *IL6↓, Apoptosis↓, ER Stress↑, Ca+2↑, PERK↑, ATF4↑, CHOP↑, GRP78/BiP↑, tumCV↓, LDH↑, Casp3↑, cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, p‑eIF2α↑, RadioS↑,
2843- FIS,    Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential
- Review, Var, NA
NRF2↑, Keap1↓, ChemoSen↑, BioAv↓, Cyt‑c↑, Casp3↑, Casp9↑, BAX↑, tumCV↓, Mcl-1↓, cl‑PARP↑, IGF-1↓, Akt↓, CDK6↓, TumCCA↑, P53?, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, MMP2↓, MMP9↓, MMP1↓, MMP7↓, MMP3↓, VEGF↓, PI3K↓, mTOR↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, ERK↓, ROS↑, angioG↓, TNF-α↓, PGE2↓, iNOS↓, NO↓, IL6↓, HSP70/HSPA5↝, HSP27↝,
4027- FulvicA,    Mummy Induces Apoptosis Through Inhibiting of Epithelial-Mesenchymal Transition (EMT) in Human Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, selectivity↑, TGF-β↓, Twist↓, NOTCH1↓, CTNNB1↓, Src↓, E-cadherin↑, EMT↓, TumMeta↓, BioAv↑,
4025- FulvicA,    Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatment
- in-vitro, Bladder, T24 - Review, AD, NA
tumCV↓, selectivity↑, TumCCA↑, other↝, *neuroP↑, *memory↑, *tau↓, *other↝, *lipid-P↓, *VitC↑, *antiOx↑,
4024- FulvicA,    ANTI-CARCINOGENIC ACTIVITY OF SHILAJIT REGARDING TO APOPTOSIS ASSAY IN CANCER CELLS: A SYSTEMATIC REVIEW OF IN-VITRO STUDIES
- Review, Var, NA
*Inflam↓, *antiOx↑, TumCG↓, tumCV↓, ROS↑, ChemoSen↑, toxicity↝,
4023- FulvicA,    Shilajit (Mumio) Elicits Apoptosis and Suppresses Cell Migration in Oral Cancer Cells through Targeting Urokinase-type Plasminogen Activator and Its Receptor and Chemokine Signaling Pathways
- in-vitro, Oral, NA
tumCV↓, selectivity↑, Apoptosis↑, uPA↓, TumCMig↓, Dose↝, CXCc↓,
1065- GA,    Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression
- vitro+vivo, Pca, NA
tumCV↓, MMP↓, DNAdam↑, HDAC1↓, HDAC2↓, PCNA↓, cycD1/CCND1↓, cycE1↓, P21↑, TumVol↓,
1086- GA,    Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation
- in-vitro, AML, K562
tumCV↓, TumCCA↑, P21↑, p27↑, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Cyt‑c↑, cl‑PARP↓, DNAdam↑, Casp3↑, FASN↓, Casp8↑,
1091- GA,    Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells
- in-vitro, Cerv, HeLa - in-vitro, Cerv, HTB-35
tumCV↓, TumCP↓, ADAM17↓, EGFR↓, p‑Akt↓, p‑ERK↓,
1968- GamB,    Gambogic Acid Shows Anti-Proliferative Effects on Non-Small Cell Lung Cancer (NSCLC) Cells by Activating Reactive Oxygen Species (ROS)-Induced Endoplasmic Reticulum (ER) Stress-Mediated Apoptosis
- in-vitro, Lung, A549
tumCV↓, ROS↑, GRP78/BiP↑, CHOP↑, ATF6↑, Casp12↑, p‑PERK↑,
1956- GamB,    Gambogic Acid Inhibits Malignant Melanoma Cell Proliferation Through Mitochondrial p66shc/ROS-p53/Bax-Mediated Apoptosis
- in-vitro, Melanoma, A375
tumCV↓, Apoptosis↑, ROS↑, p66Shc↑,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
808- GAR,  CUR,    Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1
tumCV↓, Apoptosis↑, Casp3↑, Casp9↑,
828- GAR,  Cisplatin,    Garcinol Alone and in Combination With Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells
- in-vitro, Ovarian, OVCAR-3
tumCV↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, p‑PI3K↓, p‑Akt↓, NF-kB↓,
1186- Gb,    Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis
- in-vitro, PC, NA - in-vitro, Nor, HUVECs - in-vivo, PC, NA
tumCV↓, *toxicity∅, TumCMig↓, TumCI↓, Apoptosis↑, AMPK↑, lipoGen↓, ACC↓, FASN↓,
4509- GLA,    Gamma-linolenic Acid (GLA) sensitizes pancreatic cancer cells to gemcitabine
- in-vitro, PC, PANC1
tumCV↑, selectivity↑, ChemoSen↑,
844- Gra,    Annona muricata Leaf Extract Triggered Intrinsic Apoptotic Pathway to Attenuate Cancerous Features of Triple Negative Breast Cancer MDA-MB-231 Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
tumCV↓, TumCI↓, ROS↑,
839- Gra,    Functional proteomic analysis revels that the ethanol extract of Annona muricata L. induces liver cancer cell apoptosis through endoplasmic reticulum stress pathway
- in-vitro, Liver, HepG2
tumCV↓, Apoptosis↑, HSP70/HSPA5↑, GRP94↑, ER Stress↑, p‑PERK↑, p‑eIF2α↑, GRP78/BiP↑, CHOP↑,
852- Gra,    Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool
- in-vitro, BC, MCF-7 - in-vitro, Colon, HCT116 - in-vitro, Melanoma, A375
tumCV↓,
857- Gra,    The Value of Caspase-3 after the Application of Annona muricata Leaf Extract in COLO-205 Colorectal Cancer Cell Line
- in-vitro, CRC, COLO205
Casp3↑, tumCV↓,
1629- HCA,  Tam,    Hydroxycitric acid reverses tamoxifen resistance through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
ACLY↓, eff↓, tumCV↓, eff↑, Casp3↑, BAX↑, Bcl-2↓,
1153- HNK,    Honokiol Eliminates Glioma/Glioblastoma Stem Cell-Like Cells via JAK-STAT3 Signaling and Inhibits Tumor Progression by Targeting Epidermal Growth Factor Receptor
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
tumCV↓, Apoptosis↑, TumCMig↓, TumCI↓, Bcl-2↓, EGFR↓, CD133↓, Nestin↓, Akt↓, ERK↓, Casp3↑, p‑STAT3↓, TumCG↓,
2881- HNK,    Honokiol Suppressed Pancreatic Cancer Progression via miR-101/Mcl-1 Axis
- in-vitro, PC, PANC1
tumCV↓, Casp3↑, Apoptosis↑, TumCCA↑, TumCI↓, Mcl-1↓, EMT↓,
2879- HNK,    Honokiol Inhibits Lung Tumorigenesis through Inhibition of Mitochondrial Function
- in-vitro, Lung, H226 - in-vivo, NA, NA
tumCV↓, selectivity↑, TumCP↓, TumCCA↑, Apoptosis↑, mt-ROS↑, Casp3↑, Casp7↑, OCR↓, Cyt‑c↑, ATP↓, mitResp↓, AMP↑, AMPK↑,
2880- HNK,    Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vivo, NA, NA
tumCV↓, E-cadherin↑, Snail↓, Slug↓, Vim↓, TumMeta↓, p‑eIF2α↑,
2868- HNK,    Honokiol: A review of its pharmacological potential and therapeutic insights
- Review, Var, NA - Review, Sepsis, NA
*P-gp↓, *ROS↓, *TNF-α↓, *IL10↓, *IL6↓, eIF2α↑, CHOP↑, GRP78/BiP↑, BAX↑, cl‑Casp9↑, p‑PERK↑, ER Stress↑, Apoptosis↑, MMPs↓, cFLIP↓, CXCR4↓, Twist↓, HDAC↓, BMPs↑, p‑STAT3↓, mTOR↓, EGFR↓, NF-kB↓, Shh↓, VEGF↓, tumCV↓, TumCMig↓, TumCI↓, ERK↓, Akt↓, Bcl-2↓, Nestin↓, CD133↓, p‑cMET↑, RAS↑, chemoP↑, *NRF2↑, *NADPH↓, *p‑Rac1↓, *ROS↓, *IKKα↑, *NF-kB↓, *COX2↓, *PGE2↓, *Casp3↓, *hepatoP↑, *antiOx↑, *GSH↑, *Catalase↑, *RenoP↑, *ALP↓, *AST↓, *ALAT↓, *neuroP↑, *cardioP↑, *HO-1↑, *Inflam↓,
2875- HNK,    Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo
- in-vitro, Lung, A549 - in-vitro, Lung, H1299 - in-vitro, Lung, H460 - in-vitro, SCC, H226
HDAC↓, tumCV↓, TumCCA↑, cycD1/CCND1↓, ac‑H3↑, ac‑H4↑, selectivity↑, CDK2↓, CDK4↓,
4522- HNK,  MAG,    Honokiol Is More Potent than Magnolol in Reducing Head and Neck Cancer Cell Growth
- in-vitro, HNSCC, FaDu
AntiCan↑, tumCV↓, eff↑, survivin↓, RadioS↑,
2080- HNK,    Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia Cells
- in-vitro, AML, THP1 - in-vitro, AML, U937 - in-vitro, AML, SK-HEP-1
tumCV↓, TumCCA↑, Ferroptosis↑, lipid-P↑, HO-1↑, GPx4∅,
2081- HNK,    Honokiol induces ferroptosis in colon cancer cells by regulating GPX4 activity
- in-vitro, Colon, RKO - in-vitro, Colon, HCT116 - in-vitro, Colon, SW48 - in-vitro, Colon, HT-29 - in-vitro, Colon, LS174T - in-vitro, Colon, HCT8 - in-vitro, Colon, SW480 - in-vivo, NA, NA
tumCV↓, ROS↑, Iron↑, GPx4↓, mtDam↑, Ferroptosis↑, TumVol↓, TumW↓,
4644- HT,    The Hydroxytyrosol Induces the Death for Apoptosis of Human Melanoma Cells
- in-vitro, Melanoma, NA
tumCV↓, Apoptosis↑, P53↑, γH2AX↑, Akt↓, ROS↑, DNAdam↑,
2177- itraC,    Itraconazole improves survival outcomes in patients with colon cancer by inducing autophagic cell death and inhibiting transketolase expression
- Study, Colon, NA - in-vitro, CRC, COLO205 - in-vitro, CRC, HCT116
OS↑, tumCV↓, Casp3↑, TumCCA↑, HH↓, TumAuto↑, LC3B↑, p62↑, TKT↓,
1917- JG,    Inhibition of human leukemia cells growth by juglone is mediated via autophagy induction, endogenous ROS production, and inhibition of cell migration and invasion
- in-vitro, AML, HL-60
selectivity↑, LC3I↑, LC3II↑, Beclin-1↑, ROS↑, tumCV↓, Dose↝, TumAuto↑,
1922- JG,    Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma
- in-vitro, GBM, U87MG
tumCV↓, TumCP↓, ROS↑, p‑p38↑, eff↓, Apoptosis↑, OS↑,
2915- LT,    Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells
- in-vitro, Colon, HT29 - in-vitro, CRC, SNU-407 - in-vitro, Nor, FHC
DNMTs↓, TET1↑, NRF2↑, HDAC↓, tumCV↓, BAX↑, Casp9↑, Casp3↑, Bcl-2↓, ROS↓, GSS↑, Catalase↑, HO-1↑, DNMT1↓, DNMT3A↓, TET1↑, TET3↑, TET2↓, P53↑, P21↑,
2910- LT,  FA,    Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment
- in-vitro, BC, 4T1 - in-vivo, NA, NA
BioAv↓, BioAv↑, eff↑, tumCV↓, e-H2O2↓, i-H2O2∅,
4777- Lyco,    Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells
- in-vitro, GC, AGS
*antiOx↑, tumCV↓, DNAdam↑, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bax:Bcl2↑, ROS↓, NF-kB↓, COX2↓, EGFR↓, p38↓,
4779- Lyco,    Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, PANC1
ROS↓, NF-kB↓, tumCV↓, Casp3↑, Apoptosis↑, OCR↓, MMP↓, CIP2A↓, survivin↓, Casp3↑, Bax:Bcl2↑,
4803- Lyco,    Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines
- in-vitro, Pca, PC3 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A431 - in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
tumCV↓, GSH↓, MDA↑, ROS↑, Apoptosis↑,
2547- M-Blu,  SDT,    The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue
- in-vitro, Melanoma, B16-BL6
tumCV↓, ROS↑, mtDam↑,
2535- M-Blu,  SDT,    Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic action
- in-vitro, Ovarian, HO-8910
tumCV↓, ROS↑,
2531- M-Blu,    Anticancer activity of methylene blue via inhibition of heat shock protein 70
- in-vitro, Lung, A549 - in-vivo, NA, NA
tumCV↓, HSP70/HSPA5↓, LDH↓, SOD↑,
4518- MAG,  Cisplatin,    Evaluating the Magnolol Anticancer Potential in MKN-45 Gastric Cancer Cells
- in-vitro, GC, MKN45
ChemoSen↑, tumCV↓, BAX↑, Bcl-2↓, P21↑, P53↑, MMP9↓,
4537- MAG,    Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action
- in-vivo, Melanoma, NA - in-vitro, Melanoma, A431
*cl‑Casp8↑, *PARP↑, *P21↑, tumCV↓, TumCP↓, TumCCA↑, CycB/CCNB1↓, cycA1/CCNA1↓, CDK4↓, CDC2↓, P21↑, Apoptosis↑,
2384- MET,    Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication
- in-vitro, Thyroid, BCPAP - in-vivo, NA, NA - in-vitro, Thyroid, TPC-1
Glycolysis↓, OXPHOS↑, tumCV↓, TumCI↓, TumCMig↓, EMT↓, Apoptosis↑, TumCCA↑, LDHA↓, PKM2↓, IDH1↑, TumCG↓,
2387- MET,  GEM,    Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis
- in-vitro, CCA, HCC9810
eff↑, tumCV↓, TumCMig↓, TumCI↓, Apoptosis↑, PKM2↓, PDHB↓,
2375- MET,    Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling
- in-vitro, GC, SGC-7901
tumCV↓, TumCI↓, TumCMig↓, Apoptosis↑, PARP↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, COX2↓,
2249- MF,    Pulsed electromagnetic fields modulate energy metabolism during wound healing process: an in vitro model study
- in-vitro, Nor, L929
*TumCMig↑, *tumCV↑, *Glycolysis↑, *ROS↓, *mitResp↓, *other↝, *OXPHOS↓, *pH↑, *antiOx↑, *PFKM↑, *PFKL↑, *PKM2↑, *HK2↑, *GLUT1↑, *GPx1↑, *GPx4↑, *SOD1↑,
4354- MF,  doxoR,    Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
selectivity↑, Apoptosis↑, TumCI↓, tumCV↓, TumVol↓, eff↓, eff↑, ROS↑, Ca+2↑, TumCMig↓,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
1762- MF,  Fe,    Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane
- in-vitro, RCC, NA
Dose∅, Apoptosis↑, Casp↑, tumCV↓, Casp3↑, Casp7↑, Ca+2↑, Cyt‑c↑,
516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
3496- MFrot,  GoldNP,  MF,    Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles
- in-vitro, Cerv, HeLa
eff↑, tumCV↓,
1737- MFrot,  Fe,  MF,    Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma Cells
- in-vitro, MB, A375
Dose∅, tumCV↓,
3847- MSM,    Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement
- Review, Arthritis, NA
*Inflam↓, *Pain↓, *ROS↓, *antiOx↑, *Dose↝, *Half-Life↝, *NF-kB↓, *IL1↓, *IL6↓, *TNF-α↓, *iNOS↓, *COX2↓, *NLRP3↓, *NRF2↑, *STAT↓, *Cartilage↑, *eff↑, *eff↑, *GSH↑, *uricA↓, tumCV↓, TumCCA↑, necrosis↑, Apoptosis↑, VEGF↓, HSP90↓, IGF-1?,
1203- MSM,    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways
- vitro+vivo, BC, MDA-MB-231
tumCV↓, STAT3↓, STAT5↓, IGF-1↓, Hif1a↓, VEGF↓, Brk/PTK6↓, IGF-1R↓,
1170- MushCha,    Chaga mushroom extract suppresses oral cancer cell growth via inhibition of energy metabolism
- in-vitro, Oral, HSC4
tumCV↓, TumCP↓, TumCCA↑, STAT3↓, Glycolysis↓, MMP↓, TumAuto↑, p38↑, NF-kB↑,
1311- NarG,  Rad,    Naringenin sensitizes lung cancer NCI-H23 cells to radiation by downregulation of akt expression and metastasis while promoting apoptosis
- in-vitro, Lung, H23
tumCV↓, ROS↑, Casp3↑, p‑Akt↓, Akt↓, MMP2↓, P21↓,
1807- NarG,    A Systematic Review of the Preventive and Therapeutic Effects of Naringin Against Human Malignancies
- Review, NA, NA
AntiTum↑, TumCP↓, tumCV↓, TumCCA↑, Mcl-1↓, RAS↓, e-Raf↓, VEGF↓, AntiAg↑, MMP2↓, MMP9↓, TIMP2↑, TIMP1↑, p38↓, Wnt↓, β-catenin/ZEB1↑, Casp↑, P53↑, BAX↑, COX2↓, GLO-I↓, CYP1A1↑, lipid-P↓, p‑Akt↓, p‑mTOR↓, VCAM-1↓, P-gp↓, survivin↓, Bcl-2↓, ROS↑, ROS↑, MAPK↑, STAT3↓, chemoP↑,
4975- Nimb,    Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma
- in-vitro, Oral, NA
Apoptosis↑, ROS↑, Ca+2↑, ER Stress↑, Casp↑, MMP↓, tumCV↓,
4973- Nimb,    Nimbolide Exhibits Potent Anticancer Activity Through ROS-Mediated ER Stress and DNA Damage in Human Non-small Cell Lung Cancer Cells
- in-vitro, NSCLC, A549
tumCV↓, ROS↑, ER Stress↑, DNAdam↑, Apoptosis↑, eff↓,
4627- OLE,    Oleuropein regulates ubiquitination-mediated Mcl-1 turnover and exhibits antitumor activity
- in-vitro, Oral, NA
tumCV↓, Mcl-1↓, TumCG↓, toxicity∅, RadioS↑, AntiTum↑,
1994- Part,    Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells
- in-vitro, Melanoma, A2058 - in-vitro, Nor, L929
tumCV↓, selectivity?, ROS?, BAX↑, TumCCA?, MMP2↓, MMP9↓, TumCMig↓, eff↑,
1993- Part,    Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer
- in-vitro, Cerv, HeLa
tumCV↓, TumAuto↑, Casp3↑, BAX↑, Beclin-1↑, ATG3↑, ATG5↑, Bcl-2↓, mTOR↓, PI3K↓, Akt↓, PTEN↑, ROS↑, MMP↓,
2057- PB,    Trichomonas vaginalis induces apoptosis via ROS and ER stress response through ER–mitochondria crosstalk in SiHa cells
- in-vitro, Cerv, SiHa
ROS↓, tumCV∅, cl‑PARP↓, cl‑Casp3↓, MMP∅, ER Stress↓,
1679- PBG,    Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27)
- in-vitro, SCC, CAL27
tumCV↓, P53↑, Casp9↑, Casp3↑, GSH↓, proline↓,
1674- PBG,  SDT,  HPT,    Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells
- in-vitro, PC, PANC1 - in-vitro, Nor, H6c7
tumCV↓, ROS↑, eff↑, Dose∅, selectivity↑, MMP↓, mtDam↑, cl‑PARP↑, p‑ERK↓, p‑JNK↑, p‑p38↑, eff↓, ChemoSen↑,
1675- PBG,    Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis
- in-vitro, Melanoma, A375 - in-vitro, Melanoma, WM983B
tumCV↓, ROS↑, antiOx↑, Apoptosis↑, BAX↑, P53↑, Casp3↑, Casp9↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
4933- PEITC,    Phenethyl isothiocyanate inhibits metastasis potential of non-small cell lung cancer cells through FTO mediated TLE1 m6A modification
- vitro+vivo, Lung, H1299 - vitro+vivo, SCC, H226
AntiCan↓, TumCP↓, TumMeta↓, ChemoSen↑, tumCV↓, TumCI↓, TumCMig↓, FTO↓, TLE1↓, Akt↓, NF-kB↓,
4935- PEITC,    Phenethyl Isothiocyanate Suppresses Inhibitor of Apoptosis Family Protein Expression in Prostate Cancer Cells in Culture and In Vivo
- in-vivo, Pca, LNCaP - in-vivo, Pca, PC3
Apoptosis↑, XIAP↓, survivin↓, *BioAv↑, tumCV↓, eff↓,
4937- PEITC,    PEITC: Functional Compound for Primary and Tertiary Chemoprevention of Cancer
chemoPv↑, tumCV↓, GSH↓, ROS↑, *toxicity↝,
4925- PEITC,    PEITC triggers multiple forms of cell death by GSH-iron-ROS regulation in K7M2 murine osteosarcoma cells
- in-vitro, OS, NA
tumCV↓, TumCP↓, TumCCA↑, GSH↓, ROS↑, Ferroptosis↑, Apoptosis↑, TumAuto↑, MAPK↑, TumCG↓, Dose⇅,
4920- PEITC,  Cisplatin,    PEITC restores chemosensitivity in cisplatin-resistant non-small cell lung cancer by targeting c-Myc/miR-424-5p
- vitro+vivo, NSCLC, A549
TumCG↓, ChemoSen↑, cMyc↓, PI3K↓, Akt↓, mTOR↓, BioAv↝, tumCV↓, ChemoSen↑,
4940- PEITC,    Phenethyl Isothiocyanate (PEITC) Inhibits the Growth of Human Oral Squamous Carcinoma HSC-3 Cells through G 0/G 1 Phase Arrest and Mitochondria-Mediated Apoptotic Cell Death
- in-vitro, Oral, HSC3
TumCCA↑, Apoptosis↑, BAX↑, BID↑, Bcl-2↓, MMP↓, Cyt‑c↑, AIF↑, tumCV↓, ROS↑, Ca+2↑, CDC25↓, CDK6↓, cycD1/CCND1↓, CDK2↓, cycE/CCNE↓, P53↑, p27↑, P21↑, Casp9↑, Casp3↑, GRP78/BiP↑,
4945- PEITC,    Phenethyl isothiocyanate (PEITC) promotes G2/M phase arrest via p53 expression and induces apoptosis through caspase- and mitochondria-dependent signaling pathways in human prostate cancer DU 145 cells
- in-vitro, Pca, DU145
AntiCan↑, TumCG↓, Apoptosis↑, tumCV↓, TumCCA↑, DNAdam↑, P53↑, CDC25↓, Casp9↑, Casp8↑, mtDam↑, Cyt‑c↑,
4941- PEITC,    PEITC: A resounding molecule averts metastasis in breast cancer cells in vitro by regulating PKCδ/Aurora A interplay
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
PKCδ↑, Apoptosis↓, selectivity↑, tumCV↓, p‑NRF2↑, cl‑PARP1↑, TumCMig↓, ROS↓, Hif1a↓,
1131- PI,    Piperlongumine‑loaded nanoparticles inhibit the growth, migration and invasion and epithelial‑to‑mesenchymal transition of triple‑negative breast cancer cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549
TumCG↓, tumCV↓, TumCMig↓, TumCI↓, MMP2↓, Slug↓, N-cadherin↓, β-catenin/ZEB1↓, SMAD3↓, E-cadherin↑, EMT↓,
1163- PI,    The Effect of Piperine on MMP-9, VEGF, and E-cadherin Expression in Breast Cancer MCF-7 Cell Line
- in-vitro, BC, MC38
tumCV↓, VEGF↓, MMP9↓, E-cadherin↓,
1939- PL,    Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP
- in-vitro, HCC, HepG2 - in-vitro, HCC, HUH7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, ER Stress↑, selectivity↑, tumCV↓, ROS↑, GSH↓, eff↓, Ca+2↑, MAPK↑, CHOP↑, Dose↝,
2948- PL,    The promising potential of piperlongumine as an emerging therapeutics for cancer
- Review, Var, NA
tumCV↓, TumCP↓, TumCI↓, angioG↓, EMT↓, TumMeta↓, *hepatoP↑, *lipid-P↓, *GSH↑, cardioP↑, CycB/CCNB1↓, cycD1/CCND1↓, CDK2↓, CDK1↓, CDK4↓, CDK6↓, PCNA↓, Akt↓, mTOR↓, Glycolysis↓, NF-kB↓, IKKα↓, JAK1↓, JAK2↓, STAT3↓, ERK↓, cFos↓, Slug↓, E-cadherin↑, TOP2↓, P53↑, P21↑, Bcl-2↓, BAX↑, Casp3↑, Casp7↑, Casp8↑, p‑HER2/EBBR2↓, HO-1↑, NRF2↑, BIM↑, p‑FOXO3↓, Sp1/3/4↓, cMyc↓, EGFR↓, survivin↓, cMET↓, NQO1↑, SOD2↑, TrxR↓, MDM2↓, p‑eIF2α↑, ATF4↑, CHOP↑, MDA↑, Ki-67↓, MMP9↓, Twist↓, SOX2↓, Nanog↓, OCT4↓, N-cadherin↓, Vim↓, Snail↓, TumW↓, TumCG↓, HK2↓, RB1↓, IL6↓, IL8↓, SOD1↑, RadioS↑, ChemoSen↑, toxicity↓, Sp1/3/4↓, GSH↓, SOD↑,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
2006- Plum,    Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
tumCV↓, selectivity↑, mtDam↑, Ca+2↓, ER Stress↑, ROS↑, Casp3↑, Casp9↑, Apoptosis↑, eff↓,
2005- Plum,    Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2)
- in-vivo, Nor, EL4 - in-vitro, AML, Jurkat
JNK↑, Cyt‑c↑, FasL↑, BAX↑, ROS↑, *ROS↑, MKP1↓, MKP2↓, selectivity∅, tumCV↑, Cyt‑c↑, Casp3↑, GSH/GSSG↓, ROS↑, mt-ROS↑, *ROS↑, eff↓,
4702- PTS,    Pterostilbene Inhibits Pancreatic Cancer In Vitro
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, TumCG↓, BioAv↑,
3353- QC,    Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells
- in-vitro, Oral, KON - in-vitro, Nor, MRC-5
tumCV↓, selectivity↑, TumCCA↑, TumCMig↓, TumCI↓, Apoptosis↑, TumMeta↓, Bcl-2↓, BAX↑, TIMP1↑, MMP2↓, MMP9↓, *Inflam↓, *neuroP↑, *cardioP↑, p38↓, MAPK↓, Twist↓, P21↓, cycD1/CCND1↓, Casp3↑, Casp9↑, p‑Akt↓, p‑ERK↓, CD44↓, CD24↓, ChemoSen↑, MMP↓, Cyt‑c↑, AIF↑, ROS↑, Ca+2↑, Hif1a↓, VEGF↓,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB/CCNB1↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3379- QC,    The Effect of Quercetin Nanosuspension on Prostate Cancer Cell Line LNCaP via Hedgehog Signaling Pathway
- in-vitro, Pca, LNCaP
tumCV↓, HH↓,
3376- QC,    Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
CDK6↓, tumCV↓, Apoptosis↑, ROS↓, eff↑,
3374- QC,    Therapeutic effects of quercetin in oral cancer therapy: a systematic review of preclinical evidence focused on oxidative damage, apoptosis and anti-metastasis
- Review, Oral, NA - Review, AD, NA
α-SMA↓, α-SMA↑, TumCP↓, tumCV↓, TumVol↓, TumCI↓, TumMeta↓, TumCMig↓, ROS↑, Apoptosis↑, BioAv↓, *neuroP↑, *antiOx↑, *Inflam↓, *Aβ↓, *cardioP↑, MMP↓, Cyt‑c↑, MMP2↓, MMP9↓, EMT↓, MMPs↓, Twist↓, Slug↓, Ca+2↑, AIF↑, Endon↑, P-gp↓, LDH↑, HK2↓, PKA↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, GRP78/BiP↑, Casp12↑, CHOP↑,
3362- QC,    The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action
- in-vitro, Cerv, HeLa
Apoptosis↑, cycD1/CCND1↓, Casp3↑, GRP78/BiP↑, CHOP↑, tumCV↓, IRE1↑, p‑PERK↑, c-ATF6↑, ER Stress↑,
3339- QC,    Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas
- in-vitro, GBM, C6 - in-vitro, GBM, IMR32
BBB↑, tumCV↓, TumCMig↓, Rac1↓, p66Shc↓, ROS↓,
913- QC,    Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression
- in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-435
TumCP↓, TumCCA↑, DNAdam↑, Chk2↑, CycB/CCNB1↓, CDK1↓, tumCV↓, p‑RB1↓, P21↑,
910- QC,    The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism
tumCV↓, Apoptosis↑, PI3k/Akt/mTOR↓, Wnt/(β-catenin)↓, MAPK↝, ERK↝, TumCCA↑, H2O2↑, ROS↑, TumAuto↑, MMPs↓, P53↑, Casp3↑, Hif1a↓, cFLIP↓, IL6↓, IL10↓, lactateProd↓, Glycolysis↓, PKM2↓, GLUT1↓, COX2↓, VEGF↓, OCR↓, ECAR↓, STAT3↓, MMP2↓, MMP9:TIMP1↓, mTOR↓,
3072- RES,    Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway
- in-vitro, GBM, LN229 - in-vitro, GBM, U87MG
tumCV↓, TumCP↓, TumCMig↓, Apoptosis↑, NLRP3↓, JAK2↓, STAT3↓, IL1β↓, IL18↓, IL6↓, TNF-α↓, Inflam↓,
2982- RES,    The flavonoid resveratrol suppresses growth of human malignant pleural mesothelioma cells through direct inhibition of specificity protein 1
- in-vitro, Melanoma, MSTO-211H
tumCV↓, Apoptosis↑, Sp1/3/4↓, p27↓, P21↓, cycD1/CCND1↓, Mcl-1↓, survivin↓,
3094- RES,    Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
CSCs↓, tumCV↓, FASN↑, BNIP3↑, *cardioP↑, *antiOx↑, NF-kB↓, COX2↓, MMP9↓, IGF-1↓, ERK↓, lipid-P↓, CD24↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
1745- RosA,    Rosmarinic acid and its derivatives: Current insights on anticancer potential and other biomedical applications
- Review, Var, NA - Review, AD, NA
ChemoSideEff↓, ChemoSen↑, antiOx↑, MMP2↓, MMP9↓, p‑AMPK↑, DNMTs↓, tumCV↓, COX2↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, Casp3↑, Casp9↓, ROS↓, GSH↑, ERK↓, Akt↓, ROS↓, NF-kB↓, p‑IκB↓, p50↓, p65↓, neuroP↑, Dose↝,
3029- RosA,    Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, tumCV↓, Apoptosis↑, HDAC2↓, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21↑, DNAdam↑, Casp3↑,
3017- RosA,  Per,    Molecular Mechanism of Antioxidant and Anti-Inflammatory Effects of Omega-3 Fatty Acids in Perilla Seed Oil and Rosmarinic Acid Rich Fraction Extracted from Perilla Seed Meal on TNF-α Induced A549 Lung Adenocarcinoma Cells
- in-vitro, Lung, A549
TumCD∅, ROS↓, IL1β↓, IL6↓, IL8↓, TNF-α↓, COX2↓, SOD2↓, FOXO1↓, NF-kB↓, JNK↓, antiOx↑, tumCV∅,
3016- RosA,    Rosmarinic Acid Inhibits Cell Growth and Migration in Head and Neck Squamous Cell Carcinoma Cell Lines by Attenuating Epidermal Growth Factor Receptor Signaling
- in-vitro, HNSCC, UM-SCC-6 - in-vitro, HNSCC, UM-SCC-10B
chemoP↓, EGF↓, tumCV↓, TumCMig↓, ROS↓, PI3K↓, Akt↓, ERK↓, antiOx↑, p‑EGFR↓,
3008- RosA,    Rosmarinic acid decreases viability, inhibits migration and modulates expression of apoptosis-related CASP8/CASP3/NLRP3 genes in human metastatic melanoma cells
- in-vitro, Melanoma, SK-MEL-28
tumCV↓, TumCMig↓, ROS↓, Casp3↑, selectivity↑, Casp8↑, NLRP3↓,
1132- RT,    Rutin Promotes Proliferation and Orchestrates Epithelial–Mesenchymal Transition and Angiogenesis in MCF-7 and MDA-MB-231 Breast Cancer Cells
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
Vim↑, N-cadherin↑, E-cadherin↓, TumCP↑, TumCMig↑, tumCV↑, MKI67↑,
4908- Sal,    Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
tumCV↓, ROS↑, lipid-P↑, UPR↑, ER Stress↑, NRF2↓, NADPH↓, HO-1↓, SOD↓, Catalase↓, GPx↓, eff↓, TumCP↓,
4995- Sal,    Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway
- vitro+vivo, BC, MDA-MB-231
ALDH↓, Nanog↓, OCT4↓, SOX2↓, CSCs↓, tumCV↓, cycD1/CCND1↓, P21↑, TumCG↓, CD44↓, Apoptosis∅,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
1403- SDT,  BBR,    From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C60-Berberine Nanocomplex on Cancer Cells
- in-vitro, Cerv, HeLa - in-vitro, Lung, LLC1
eff↑, tumCV↓, ATP↓, ROS↑, Casp3↑, Casp7↑, mtDam↑,
2549- SDT,    Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation
- Review, Var, NA
sonoP↑, tumCV↓, MMP↓, ROS↑, Ca+2↑, eff↝, eff↑, selectivity↑, Half-Life↝, Dose↝, P-gp↓, ER Stress↑, other↑,
4752- Se,  CUR,  Chemo,    Curcumin-Modified Selenium Nanoparticles Improve S180 Tumour Therapy in Mice by Regulating the Gut Microbiota and Chemotherapy
- in-vitro, Cerv, HeLa - in-vitro, sarcoma, S180
tumCV↓, ROS↑, *GutMicro↑, BioAv↑, other↝, Dose↝,
4473- Se,    Anti-cancerous effect and biological evaluation of green synthesized Selenium nanoparticles on MCF-7 breast cancer and HUVEC cell lines
- in-vitro, BC, MCF-7 - in-vitro, Nor, HUVECs
AntiCan↑, selectivity↓, *Bacteria↓, *antiOx↑, *toxicity↓, ROS↑, tumCV↓,
4488- Se,  Chit,  PEG,    Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats
- in-vivo, Liver, HepG2 - in-vivo, Nor, HL7702
tumCV↓, Apoptosis↑, *GSH↑, *VitC↑, *VitE↑, *SOD↑, *GPx↑, *GR↑, ALAT↓, ALP↓, AST↓, LDH↓, selectivity↑, eff↑,
4484- Se,  Chit,  PEG,    Anti-cancer potential of selenium-chitosan-polyethylene glycol-carvacrol nanocomposites in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
tumCV↓, selectivity↑, ROS↑, MMP↓, Apoptosis↑, BAX↑, Casp3↑, Casp9↑, Bcl-2↓,
3182- SFN,    Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia Cells
- in-vitro, AML, NA
Prx↓, AQPs↓, NOX↓, tumCV↓, AntiCan↑, cardioP↑, neuroP↑, Inflam↓, chemoPv↑, angioG↓, TumMeta↓, selectivity↑, ROS↓,
2405- SFN,    Sulforaphane Targets the TBX15/KIF2C Pathway to Repress Glycolysis and Cell Proliferation in Gastric Carcinoma Cells
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Glycolysis↓, TBX15↑, GlucoseCon↓, lactateProd↓, tumCV↓, PKM2↓, KIF2C↓,
1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓, Apoptosis↑, Cyt‑c↑, Bax:Bcl2↑, Casp9↑, Casp3↑, Casp8∅, cl‑PARP↑, ROS↑, MMP↓, eff↓, ER Stress↑, p‑NRF2↑, HO-1↑,
1434- SFN,  GEM,    Sulforaphane Potentiates Gemcitabine-Mediated Anti-Cancer Effects against Intrahepatic Cholangiocarcinoma by Inhibiting HDAC Activity
- in-vitro, CCA, HuCCT1 - in-vitro, CCA, HuH28 - in-vivo, NA, NA
HDAC↓, ac‑H3↑, ChemoSen↑, tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, TumCI↓, VEGF↓, VEGFR2↓, Hif1a↓, eNOS↓, EMT?, TumCG↓, Ki-67↓, TUNEL↑, P21↑, p‑Chk2↑, CDC25↓, BAX↑, *ROS↓, NQO1?,
1456- SFN,    Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, TumCP↓, cl‑PARP↑, cl‑Casp3↑, TumCCA↑, ROS↑, MMP↓, γH2AX↑, eff↓, *toxicity↓,
1463- SFN,    Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
tumCV↓, CycB/CCNB1↑, p‑CDK1↑, Apoptosis↑, Casp8↑, Casp9↑, Casp3↑, cl‑PARP↑, ROS↑, eff↓,
1480- SFN,    Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116
tumCV↓, TumCCA↑, Apoptosis↑, cycA1/CCNA1↑, CycB/CCNB1↑, CDC25↓, CDK1↓, ROS↑, eff↓, Cyt‑c↑, AIF↑, ER Stress↑,
1476- SFN,  PDT,    Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphane
- in-vitro, HNSCC, NA
eff↑, tumCV↓, ROS↑, eff↓, Casp↑,
1477- SFN,    Sulforaphane Induces Oxidative Stress and Death by p53-Independent Mechanism: Implication of Impaired Glutathione Recycling
- in-vitro, OS, MG63
tumCV↓, Apoptosis↑, Casp3↑, ROS↑, GSR↓, GPx↓,
1479- SFN,    Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5'-monophosphate (AMP)-activated protein kinase/ mechanistic target of rapamycin signaling pathway
- in-vitro, CRC, HCT116
Ferroptosis↑, SIRT3↑, AMPK↑, mTOR↑, tumCV↓, ROS↑, MDA↑, Iron↑,
1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, tumCV↓, Apoptosis↑, P21↑, PI3K↓, Akt↓, mTOR↓, 5HT↓, NRF2↑,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3299- SIL,    Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells
- in-vitro, Colon, HT29
tumCV↓, MMP↓, ROS↑, selectivity↑,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1/CCND1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE/CCNE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
2232- SK,    Shikonin Induces Autophagy and Apoptosis in Esophageal Cancer EC9706 Cells by Regulating the AMPK/mTOR/ULK Axis
- in-vitro, ESCC, EC9706
tumCV↓, TumCMig↓, TumCI↓, TumAuto↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp3↑, cl‑Casp8↑, cl‑PARP↑, AMPK↑, mTOR↑, TumVol↓, OS↑, LC3I↑,
2221- SK,    Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression
- in-vitro, Lung, A549
Apoptosis↑, TumCP↓, tumCV↓, Necroptosis↑, P53↑, ROS↑, NF-kB↓,
2418- SK,    Experimental Study of Hepatocellular Carcinoma Treatment by Shikonin Through Regulating PKM2
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
tumCV↓, GlucoseCon↓, lactateProd↓, ChemoSen↑, PKM2↓, Glycolysis↓,
3048- SK,    Shikonin inhibits triple-negative breast cancer-cell metastasis by reversing the epithelial-to-mesenchymal transition via glycogen synthase kinase 3β-regulated suppression of β-catenin signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, 4T1 - in-vitro, Nor, MCF12A - in-vivo, NA, NA
tumCV↓, selectivity↑, EMT↓, TumCMig↓, TumCI↓, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, β-catenin/ZEB1↓, GSK‐3β↑,
2007- SK,    Shikonin Directly Targets Mitochondria and Causes Mitochondrial Dysfunction in Cancer Cells
- in-vitro, lymphoma, U937 - in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, CRC, HCT116 - in-vitro, OS, U2OS - NA, Nor, RPE-1
tumCV↓, selectivity↑, Dose↝, other↑, MMP↓, ROS↑, DNAdam↑, Ca+2↑, Casp9↑, Cyt‑c↑, *toxicity↓,
2182- SK,  Cisplatin,    Shikonin inhibited glycolysis and sensitized cisplatin treatment in non-small cell lung cancer cells via the exosomal pyruvate kinase M2 pathway
- in-vitro, Lung, A549 - in-vitro, Lung, PC9 - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCI↓, TumCMig↓, Apoptosis↑, PKM2↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, ChemoSen↑, TumVol↓, TumW↓, GLUT1↓,
2194- SK,    Efficacy of Shikonin against Esophageal Cancer Cells and its possible mechanisms in vitro and in vivo
- in-vitro, ESCC, Eca109 - in-vitro, ESCC, EC9706 - in-vivo, NA, NA
tumCV↓, TumCCA↑, Apoptosis↑, EGFR↓, PI3K↓, Hif1a↓, PKM2↓, cycD1/CCND1↓, AntiTum↑,
346- SNP,  RSQ,    Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma Treatment
- in-vivo, Melanoma, SK-MEL-28 - in-vivo, Melanoma, WM35
ROS↑, Ca+2↝, Casp3↑, Casp8↑, Casp9↑, CD4+↑, CD8+↑, tumCV↓, eff↓, *toxicity↓,
2539- SNP,  SDT,    Combined effect of silver nanoparticles and therapeutical ultrasound on ovarian carcinoma cells A2780
- in-vitro, Melanoma, A2780S
tumCV↓, sonoP↑, BioEnh↑,
4555- SNP,    Silver nanoparticles from Dendropanax morbifera Léveille inhibit cell migration, induce apoptosis, and increase generation of reactive oxygen species in A549 lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Liver, HepG2
*Bacteria↓, tumCV↓, selectivity↑, ROS↑, Apoptosis↑, TumCMig↓, AntiCan↑,
4549- SNP,    Silver nanoparticles: Synthesis, medical applications and biosafety
- Review, Var, NA - Review, Diabetic, NA
ROS↑, eff↑, other↝, DNAdam↑, EPR↑, eff↑, eff↑, TumMeta↓, angioG↓, *Bacteria↓, *eff↑, *AntiViral↑, *AntiFungal↑, eff↑, eff↑, TumCP↓, tumCV↓, P53↝, HIF-1↓, TumCCA↑, lipid-P↑, ATP↓, Cyt‑c↑, MMPs↓, PI3K↓, Akt↓, *Wound Healing↑, *Inflam↓, *Bone Healing↑, *glucose↓, *AntiDiabetic↑, *BBB↑,
4427- SNP,    Silver nanoparticles induce apoptosis and G2/M arrest via PKCζ-dependent signaling in A549 lung cells
- in-vitro, Lung, A549
tumCV↓, LDH↑, TumCCA↑, BAX↑, BID↑, Bcl-2↓, PKCδ↓,
4428- SNP,    p38 MAPK Activation, DNA Damage, Cell Cycle Arrest and Apoptosis As Mechanisms of Toxicity of Silver Nanoparticles in Jurkat T Cells
- in-vitro, AML, Jurkat
toxicity↝, tumCV↓, ROS↑, p38↑, NRF2↓, NF-kB↝, DNAdam↑, Apoptosis↑,
4380- SNP,    Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways
- in-vitro, Lung, A549
ROS↑, tumCV↓, MMP↓, TumCCA↑, PCNA↓, eff↓,
4370- SNP,    Effect of silver nanoparticles in the induction of apoptosis on human hepatocellular carcinoma (HepG2) cell line
- in-vitro, Liver, HepG2
tumCV↓, ROS↑, Apoptosis↑,
4396- SNP,    Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cells
- in-vitro, OS, MG63
AntiCan↑, tumCV↓,
4403- SNP,    Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vitro, GBM, GL26 - in-vitro, Cerv, HeLa - in-vitro, CRC, RKO
AntiCan↑, eff↑, EPR↑, selectivity↑, ROS↑, Casp↑, Apoptosis↑, DNAdam↑, tumCV↓, eff↑,
4397- SNP,    Synthesis and Characterization of Silver Nanoparticles from Rhizophora apiculata and Studies on Their Wound Healing, Antioxidant, Anti-Inflammatory, and Cytotoxic Activity
- NA, Wounds, NA
selectivity↑, tumCV↓, antiOx↑, Inflam↓,
4389- SNP,    Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy
- in-vitro, Ovarian, NA
tumCV↓, ROS↑, LDH↓, MMP↑, CSCs↓, AntiCan↑,
4388- SNP,    Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells
- in-vitro, Cerv, NA
tumCV↓, CSCs↓, selectivity↑, Apoptosis↑, ROS↑, LDH↓, Casp3↑, BAX↑, Bak↑, cMyc↑, MMP↓,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
4414- SNP,    Silver nanoparticles: Forging a new frontline in lung cancer therapy
- Review, Lung, NA
tumCV↑, ROS↑, MMP↓, TumCCA↑, Apoptosis↑, angioG↓,
4411- SNP,    Eco-friendly synthesis of silver nanoparticles using Anemone coronaria bulb extract and their potent anticancer and antibacterial activities
- in-vitro, Lung, A549 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
AntiCan↑, selectivity↑, Apoptosis↑, TumCCA↑, Bacteria↓, tumCV↓, selectivity↑, Apoptosis↑, TumCCA↑,
4410- SNP,    Green-synthesized silver nanoparticles: a sustainable nanoplatform for targeted colon cancer therapy
- Review, Colon, NA
AntiCan↑, ROS↑, mtDam↑, tumCV↓, selectivity↑,
4409- SNP,    Plant-based synthesis of gold and silver nanoparticles using Artocarpus heterophyllus aqueous leaf extract and its anticancer activities
- in-vitro, BC, MCF-7
tumCV↓, TumCCA↑, cycD1/CCND1↓, COX2↓, HER2/EBBR2↓,
4408- SNP,    Chitosan-coated silver nanoparticles synthesized using Moringa oleifera flower extract: A potential therapeutic approach against triple-negative breast cancer
- in-vitro, BC, MDA-MB-231
tumCV↓,
4406- SNP,    Silver nanoparticles achieve cytotoxicity against breast cancer by regulating long-chain noncoding RNA XLOC_006390-mediated pathway
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, BC, MDA-MB-231
TumCD↑, other↓, P53↑, TumCCA↑, Apoptosis↑, ChemoSen↑, tumCV↓, γH2AX↑, SOX4↓,
3402- TQ,    Enhanced Apoptosis in Pancreatic Cancer Cells through Thymoquinone-rich Nigella sativa L. Methanol Extract: Targeting NRF2/HO-1 and TNF-α Pathways
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2
tumCV↓, NRF2↑, HO-1↑, TNF-α↓,
3403- TQ,    A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cells
- in-vitro, RCC, 786-O
tumCV↓, ROS↑, TumCCA↑, eff↓, TumCI↓,
3415- TQ,    The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations
- in-vitro, Lung, H446
tumCV↓, TumCCA↑, ROS↓, CycB/CCNB1↑, CycD3↑, cycA1/CCNA1↓, cycE/CCNE↓, cDC2↓, antiOx↑, PARP↓, NRF2↓, ARE/EpRE↑, eff↑,
3413- TQ,    Thymoquinone induces apoptosis in human colon cancer HCT116 cells through inactivation of STAT3 by blocking JAK2- and Src‑mediated phosphorylation of EGF receptor tyrosine kinase
- in-vitro, CRC, HCT116
tumCV↓, Apoptosis↓, BAX↑, Bcl-2↓, Casp9↑, Casp7↑, Casp3↑, cl‑PARP↑, STAT3↓, survivin↓, cMyc↓, cycD1/CCND1↓, p27↑, P21↑, EGFR↓, ROS↑,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1/CCND1↓, ROS↑, eff↓,
1308- TQ,    Thymoquinone induces apoptosis via targeting the Bax/BAD and Bcl-2 pathway in breast cancer cells
- in-vitro, BC, MCF-7
tumCV↓, TumCP↓, BAX↑, P53⇅, Apoptosis↑,
2135- TQ,    Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets
- in-vitro, Nor, HaCaT
*HO-1↑, *NRF2↑, *e-ERK↑, *e-Akt↑, *AMPKα↑, *ROS⇅, *eff↓, *tumCV∅,
2099- TQ,  Cisplatin,    Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo
- in-vitro, Lung, H460 - in-vitro, Lung, H146 - in-vivo, NA, NA
ChemoSen↑, TumCP↓, tumCV↓, Apoptosis↑, NF-kB↓,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,
2107- TQ,    Cytotoxicity of Nigella sativa seed oil and extract against human lung cancer cell line
- in-vitro, Lung, A549
tumCV↑,
2110- TQ,    Nigella sativa seed oil suppresses cell proliferation and induces ROS dependent mitochondrial apoptosis through p53 pathway in hepatocellular carcinoma cells
- in-vitro, HCC, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HEK293
P53↑, lipid-P↑, GSH↓, ROS↑, MMP↓, BAX↑, Casp3↑, Casp9↑, Bcl-2↓, tumCV↓, selectivity↑,
1929- TQ,    Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells
- in-vitro, Bladder, 5637 - in-vitro, Bladder, T24
tumCV↓, TumCP↓, TumCI↓, Casp↑, ROS↑, PD-L1↓, EMT↓, MMP↓, eff↓,
1931- TQ,  doxoR,    Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms
- in-vivo, AML, NA
eff↑, tumCV↓, TumCCA↑, ROS↑, MMP↓, eff↑, TumVol↓, eff↑, Ki-67↓,
5021- UA,    Anticancer effect of ursolic acid via mitochondria-dependent pathways
- Review, Var, NA
Inflam↓, TNF-α↓, IL6↓, IL17↓, NF-kB↓, COX2↓, *AntiDiabetic↑, *hepatoP↑, ALAT↓, AST↓, TumCP↓, Apoptosis↑, TumCCA↑, TumAuto↑, tumCV↓, TumCMig↓, Glycolysis↓, ATP↓, lactateProd↓, HK2↓, PKA↓, COX2↓, mtDam↑, Casp3↑, Casp8↑, Casp9↑, Akt↓, ROS↑, MMP↓, P53↑,
5020- UA,    Anticancer activity of ursolic acid on human ovarian cancer cells via ROS and MMP mediated apoptosis, cell cycle arrest and downregulation of PI3K/AKT pathway
- in-vitro, Ovarian, NA
tumCV↓, selectivity↑, BAX↑, Bcl-2↓, Apoptosis↑, ROS↑, TumCCA↑, Akt↓, PI3K↓,
4857- Uro,    Evaluation and comparison of the anti-proliferative and anti-metastatic effects of urolithin A and urolithin B against esophageal cancer cells: an in vitro and in silico study
- in-vitro, ESCC, KYSE-30
tumCV↓, selectivity↑, TumCCA↑, ROS↑, Bcl-2↓, BAX↑, P21↑, MMP2↓, MMP9↓,
4840- Uro,    Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancer
- vitro+vivo, BC, NA
MMP↓, TumCP↓, Apoptosis↑, tumCV↓, ER-α36↝, *toxicity↓,
4839- Uro,    Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP
tumCV↓, Apoptosis↓, P53↑, P21↑, PUMA↑, NOXA↑, MDM2↓, XIAP↓,
1836- VitC,  VitK3,  Chemo,    Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib
- in-vitro, AML, NA
tumCV↓, selectivity↑, Apoptosis↑, eff↑, ChemoSen↑,
1216- VitC,    Ascorbic acid induces ferroptosis via STAT3/GPX4 signaling in oropharyngeal cancer
- in-vitro, Laryn, FaDu - in-vitro, SCC, SCC-154
Iron↝, ROS↑, tumCV↓, Ki-67↓, TumCCA↑, Ferroptosis↑, GSH↓, ROS↑, MDA↑, STAT3↓, GPx4↓, p‑STAT3↓,
3119- VitC,    Ascorbic acid–induced TET activation mitigates adverse hydroxymethylcytosine loss in renal cell carcinoma
- in-vitro, RCC, NA
TET2↑, TumCG↓, tumCV↓,
3141- VitC,    High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer
- in-vitro, CRC, HCT116
Glycolysis↓, eff↑, PD-L1↓, AMPK↑, HK2↓, NF-kB↓, Warburg↓, tumCV↓, GLUT1↓, PKM2↓, LDHA↓, CD4+↑, CD8+↑,
2366- VitD3,    Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells
- in-vitro, BC, MCF-7
Glycolysis↓, tumCV↓, Apoptosis↑, mTOR↓, AMPK↑, EMT↓, E-cadherin↑, F-actin↑, Vim↓,
2279- VitK2,    Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82 - in-vitro, Nor, HEK293 - in-vitro, Nor, L02 - in-vivo, NA, NA
MMP↓, Cyt‑c↑, Casp3↑, p‑JNK↑, p‑p38↑, ROS↑, eff↓, tumCV↓, selectivity↑, *toxicity↓, TumVol↓,
1838- VitK3,  PDT,    Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways
- in-vitro, Cerv, NA
eff↑, ROS↑, tumCV↓, TumCG↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bcl-xL↑, Cyt‑c↑, Bcl-2↓,
1755- WBV,    Reduction of breast cancer extravasation via vibration activated osteocyte regulation
Dose∅, TumMeta↑, eff∅, Piezo1↑, COX2↑, RANKL↓, TumCG∅, tumCV∅, TumCI↓,
4887- ZER,  Rad,  Cisplatin,    Zerumbone acts as a radiosensitizer in head and neck squamous cell carcinoma
- in-vitro, HNSCC, CAL27
Apoptosis↑, ChemoSen↑, RadioS↑, tumCV↓,
4888- ZER,  5-FU,    Modulation of the tumor microenvironment by zerumbone and 5-fluorouracil in colorectal cancer by target in cancer-associated fibroblasts
- in-vitro, CRC, CT26
TumVol↓, *tumCV↓, survivin↓, β-catenin/ZEB1↓, Vim↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 253

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 6,   ARE/EpRE↑, 1,   Catalase↓, 1,   Catalase↑, 1,   CYP1A1↓, 1,   CYP1A1↑, 1,   Fenton↑, 1,   Ferroptosis↑, 9,   GPx↓, 2,   GPx4↓, 6,   GPx4∅, 1,   GSH↓, 11,   GSH↑, 1,   GSH∅, 1,   GSH/GSSG↓, 1,   GSR↓, 1,   GSS↑, 1,   H2O2↑, 1,   e-H2O2↓, 1,   i-H2O2∅, 1,   HO-1↓, 3,   HO-1↑, 7,   HO-2↓, 1,   HO-2↑, 1,   Iron↑, 2,   Iron↝, 1,   i-Iron↑, 1,   Keap1↓, 1,   lipid-P↓, 2,   lipid-P↑, 5,   MDA↑, 5,   NQO1?, 1,   NQO1↑, 1,   NRF2↓, 4,   NRF2↑, 6,   p‑NRF2↑, 2,   OXPHOS↓, 1,   OXPHOS↑, 1,   p66Shc↓, 1,   p66Shc↑, 1,   Prx↓, 1,   ROS?, 2,   ROS↓, 16,   ROS↑, 109,   ROS∅, 1,   i-ROS↑, 1,   mt-ROS↑, 3,   SIRT3↑, 1,   SOD↓, 3,   SOD↑, 2,   SOD1↑, 1,   SOD2↓, 1,   SOD2↑, 1,   TKT↓, 1,   TrxR↓, 1,   xCT↓, 1,  

Metal & Cofactor Biology

Tf↑, 1,  

Mitochondria & Bioenergetics

AIF↑, 6,   AIF↝, 1,   ATP↓, 9,   BOK↑, 1,   CDC2↓, 1,   CDC25↓, 4,   EGF↓, 1,   KIF2C↓, 1,   mitResp↓, 2,   mitResp↑, 1,   MMP↓, 44,   MMP↑, 1,   MMP∅, 1,   mtDam↑, 10,   OCR↓, 3,   e-Raf↓, 1,   XIAP↓, 3,  

Core Metabolism/Glycolysis

ACC↓, 1,   ACLY↓, 1,   AKT1↓, 1,   ALAT↓, 2,   AMP↑, 1,   AMPK↑, 8,   p‑AMPK↑, 2,   ATG7↑, 1,   cMyc↓, 6,   cMyc↑, 2,   ECAR↓, 1,   ECAR↝, 1,   FASN↓, 2,   FASN↑, 1,   i-FASN↓, 1,   FBPase↑, 1,   GLO-I↓, 1,   GLS↑, 1,   glucoNG↑, 1,   GlucoseCon↓, 7,   GlucoseCon∅, 1,   GlutMet↓, 1,   GlutMet↑, 1,   Glycolysis↓, 16,   HK2↓, 5,   IDH1↑, 1,   lactateProd↓, 10,   lactateProd∅, 1,   LDH↓, 4,   LDH↑, 3,   LDHA↓, 4,   lipoGen↓, 2,   NADPH↓, 1,   PDH↓, 1,   PDHB↓, 1,   PDK1?, 2,   PDK1↓, 1,   PDKs↓, 1,   PFK↓, 2,   PI3k/Akt/mTOR↓, 1,   PKM2↓, 11,   POLD1↓, 1,   SIRT1↓, 1,   SIRT1↑, 2,   TCA↓, 1,   Warburg↓, 1,   β-oxidation↓, 1,  

Cell Death

Akt↓, 26,   Akt↑, 1,   p‑Akt↓, 11,   APAF1↑, 2,   Apoptosis↓, 5,   Apoptosis↑, 103,   Apoptosis∅, 1,   mt-Apoptosis↑, 1,   BAD↓, 1,   BAD↑, 2,   Bak↑, 1,   BAX↓, 1,   BAX↑, 46,   Bax:Bcl2↑, 10,   Bcl-2↓, 41,   Bcl-2↑, 1,   Bcl-xL↓, 3,   Bcl-xL↑, 1,   BID↑, 3,   BIM↑, 2,   Casp↑, 10,   Casp12↑, 3,   Casp3↑, 58,   cl‑Casp3↓, 1,   cl‑Casp3↑, 14,   Casp7↑, 9,   Casp8↑, 12,   Casp8∅, 1,   cl‑Casp8↑, 3,   Casp9↓, 1,   Casp9↑, 31,   cl‑Casp9↑, 7,   cFLIP↓, 2,   Chk2↑, 1,   p‑Chk2↑, 1,   CK2↓, 1,   Cyt‑c↑, 31,   Diablo↑, 1,   Endon↑, 1,   FADD↑, 2,   Fas↑, 3,   FasL↑, 4,   Ferroptosis↑, 9,   GSDME-N↑, 1,   iNOS↓, 3,   JNK↓, 1,   JNK↑, 4,   p‑JNK↑, 5,   MAPK↓, 1,   MAPK↑, 4,   MAPK↝, 1,   Mcl-1↓, 9,   MDM2↓, 4,   MKP1↓, 1,   MKP2↓, 1,   MLKL↑, 2,   p‑MLKL↓, 1,   Myc↓, 1,   NAIP↓, 1,   Necroptosis↑, 3,   necrosis↑, 2,   NOXA↑, 2,   p27↓, 1,   p27↑, 6,   p38↓, 3,   p38↑, 3,   p‑p38↓, 1,   p‑p38↑, 6,   proApCas↑, 1,   PUMA↑, 2,   Pyro↑, 1,   survivin↓, 12,   Telomerase↓, 2,   TRAIL↑, 1,   TumCD↑, 2,   TumCD∅, 1,   TUNEL↑, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 2,   p‑HER2/EBBR2↓, 1,   p‑p70S6↓, 1,   Sp1/3/4↓, 4,   TSC2↑, 1,  

Transcription & Epigenetics

p‑cJun↑, 1,   ac‑H3↑, 2,   ac‑H4↑, 2,   other↓, 1,   other↑, 2,   other↝, 3,   p‑pRB↓, 1,   sonoS↑, 1,   TET3↑, 1,   TLE1↓, 1,   tumCV?, 1,   tumCV↓, 238,   tumCV↑, 7,   tumCV∅, 3,  

Protein Folding & ER Stress

ATF6↑, 1,   c-ATF6↑, 1,   CHOP↑, 11,   eIF2α↑, 1,   p‑eIF2α↑, 4,   ER Stress↓, 1,   ER Stress↑, 17,   ERStress↑, 1,   GRP78/BiP↑, 9,   GRP94↑, 2,   HSF1↓, 1,   HSP27↝, 1,   HSP70/HSPA5↓, 3,   HSP70/HSPA5↑, 1,   HSP70/HSPA5⇅, 1,   HSP70/HSPA5↝, 1,   HSP90↓, 2,   IRE1↑, 1,   PERK↑, 1,   p‑PERK↑, 4,   UPR↑, 2,  

Autophagy & Lysosomes

ATG3↑, 1,   ATG5↑, 1,   Beclin-1↓, 1,   Beclin-1↑, 4,   BNIP3↑, 1,   LC3B↑, 2,   LC3B-II↑, 1,   LC3I↑, 2,   LC3II↑, 1,   LC3s↑, 1,   p62↓, 2,   p62↑, 3,   TumAuto↓, 2,   TumAuto↑, 15,  

DNA Damage & Repair

CHK1↓, 1,   DNAdam↓, 1,   DNAdam↑, 21,   DNMT1↓, 2,   DNMT3A↓, 2,   DNMTs↓, 2,   P53?, 1,   P53↓, 1,   P53↑, 21,   P53⇅, 1,   P53↝, 1,   p‑P53↑, 2,   PARP↓, 2,   PARP↑, 2,   p‑PARP↑, 1,   cl‑PARP↓, 2,   cl‑PARP↑, 20,   cl‑PARP1↑, 1,   PCNA↓, 6,   SIRT6↑, 1,   TP53↑, 1,   γH2AX↑, 3,  

Cell Cycle & Senescence

CDK1↓, 4,   p‑CDK1↑, 1,   CDK2↓, 7,   CDK4↓, 8,   cycA1/CCNA1↓, 2,   cycA1/CCNA1↑, 1,   CycB/CCNB1↓, 5,   CycB/CCNB1↑, 3,   cycD1/CCND1↓, 21,   CycD3↑, 1,   cycE/CCNE↓, 9,   cycE1↓, 2,   P21?, 1,   P21↓, 3,   P21↑, 18,   RB1↓, 1,   RB1↑, 1,   p‑RB1↓, 2,   TumCCA?, 1,   TumCCA↑, 57,  

Proliferation, Differentiation & Cell State

p‑4E-BP1↓, 1,   ALDH↓, 1,   BMI1↓, 1,   CD133↓, 3,   CD24↓, 2,   CD44↓, 2,   cDC2↓, 1,   CDK8↓, 1,   CEBPA↑, 1,   cFos↓, 1,   CIP2A↓, 1,   cMET↓, 1,   p‑cMET↑, 1,   CSCs↓, 6,   CTNNB1↓, 1,   EMT?, 1,   EMT↓, 13,   ERK↓, 11,   ERK↑, 2,   ERK↝, 1,   p‑ERK↓, 7,   FOXO1↓, 1,   p‑FOXO3↓, 1,   FOXO4↓, 1,   GSK‐3β↑, 3,   p‑GSK‐3β↓, 1,   HDAC↓, 6,   HDAC1↓, 3,   HDAC2↓, 4,   HDAC3↓, 1,   HH↓, 2,   IGF-1?, 1,   IGF-1↓, 4,   IGF-1R↓, 1,   mTOR↓, 18,   mTOR↑, 2,   p‑mTOR↓, 1,   mTORC1↓, 2,   mTORC2↑, 1,   Nanog↓, 2,   Nestin↓, 2,   NOTCH↓, 1,   NOTCH1↓, 2,   OCT4↓, 3,   p‑P70S6K↓, 1,   PI3K↓, 15,   p‑PI3K↓, 2,   Piezo1↑, 1,   PTEN↑, 3,   RAS↓, 2,   RAS↑, 1,   Shh↓, 1,   SOX2↓, 3,   Src↓, 1,   STAT1↓, 1,   STAT3↓, 11,   STAT3↑, 1,   p‑STAT3↓, 6,   STAT5↓, 1,   TBX15↑, 1,   TOP1↓, 1,   TOP2↓, 2,   TumCG↓, 20,   TumCG↑, 1,   TumCG∅, 1,   Wnt↓, 2,   Wnt/(β-catenin)↓, 3,  

Migration

AntiAg↑, 1,   Brk/PTK6↓, 1,   Ca+2↓, 1,   Ca+2↑, 14,   Ca+2↝, 2,   i-Ca+2↓, 1,   COL1↓, 1,   COL4↓, 1,   E-cadherin↓, 2,   E-cadherin↑, 9,   ER-α36↓, 1,   ER-α36↝, 1,   F-actin↑, 1,   FAK↓, 1,   p‑FAK↓, 1,   Fibronectin↓, 2,   FTO↓, 1,   Ki-67↓, 6,   KRAS↓, 1,   MMP1↓, 3,   MMP2↓, 16,   MMP3↓, 1,   MMP7↓, 1,   MMP7∅, 1,   MMP9↓, 17,   MMP9:TIMP1↓, 1,   MMPs↓, 5,   N-cadherin↓, 4,   N-cadherin↑, 1,   PAK1↓, 1,   PKA↓, 2,   PKCδ↓, 3,   PKCδ↑, 1,   proline↓, 1,   Rac1↓, 1,   RIP3↑, 1,   p‑RIP3↑, 2,   Slug↓, 5,   SMAD2↓, 1,   SMAD3↓, 3,   Snail↓, 5,   Snail↑, 1,   SOX4↓, 1,   TET1↑, 2,   TGF-β↓, 3,   TIMP1↑, 2,   TIMP2↑, 2,   TumCI↓, 29,   TumCMig↓, 33,   TumCMig↑, 1,   TumCP↓, 34,   TumCP↑, 1,   TumMeta↓, 11,   TumMeta↑, 1,   Twist↓, 6,   uPA↓, 1,   VCAM-1↓, 1,   Vim?, 1,   Vim↓, 6,   Vim↑, 2,   Zeb1↓, 1,   α-SMA↓, 1,   α-SMA↑, 2,   β-catenin/ZEB1↓, 5,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 12,   ATF4↑, 2,   EGFR↓, 11,   p‑EGFR↓, 1,   Endoglin↑, 1,   eNOS↓, 1,   EPR↑, 2,   HIF-1↓, 1,   Hif1a↓, 11,   Hif1a↑, 1,   LOX1↓, 1,   NO↓, 1,   VEGF↓, 14,   VEGFR2↓, 1,  

Barriers & Transport

AQPs↓, 1,   BBB↑, 1,   CellMemb↓, 1,   GLUT1↓, 3,   NHE1↓, 1,   P-gp↓, 4,   sonoP↑, 2,  

Immune & Inflammatory Signaling

CD4+↑, 3,   COX1↓, 1,   COX2↓, 13,   COX2↑, 1,   CRP↓, 1,   CXCc↓, 1,   CXCR4↓, 2,   IFN-γ↓, 1,   IKKα↓, 1,   IKKα↑, 1,   IL1↓, 1,   IL10↓, 1,   IL17↓, 1,   IL18↓, 1,   IL1β↓, 4,   IL6↓, 6,   IL8↓, 2,   Inflam↓, 8,   p‑IκB↓, 1,   JAK↓, 1,   JAK1↓, 1,   JAK2↓, 2,   p‑JAK2↓, 1,   NF-kB↓, 18,   NF-kB↑, 1,   NF-kB↝, 1,   p50↓, 1,   p65↓, 2,   PD-1↓, 1,   PD-L1↓, 4,   PD-L1↑, 1,   PGE2↓, 1,   PSA↓, 1,   T-Cell↑, 1,   Th1 response↑, 1,   TNF-α↓, 7,   TNF-α↑, 1,  

Cellular Microenvironment

ADAM17↓, 1,   NOX↓, 1,   pH↑, 1,  

Synaptic & Neurotransmission

5HT↓, 1,  

Protein Aggregation

NLRP3↓, 2,  

Hormonal & Nuclear Receptors

CDK6↓, 7,   RANKL↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 3,   BioAv↑, 6,   BioAv↝, 1,   BioEnh↑, 1,   ChemoSen↑, 28,   Dose↓, 2,   Dose⇅, 1,   Dose↝, 12,   Dose∅, 6,   eff↓, 36,   eff↑, 56,   eff↝, 1,   eff∅, 1,   Half-Life↓, 1,   Half-Life↝, 1,   RadioS↑, 11,   selectivity?, 1,   selectivity↓, 2,   selectivity↑, 45,   selectivity∅, 1,   TET2↓, 1,   TET2↑, 1,  

Clinical Biomarkers

ALAT↓, 2,   ALP↓, 1,   AST↓, 2,   BMPs↑, 1,   CRP↓, 1,   EGFR↓, 11,   p‑EGFR↓, 1,   HER2/EBBR2↓, 2,   p‑HER2/EBBR2↓, 1,   IL6↓, 6,   Ki-67↓, 6,   KRAS↓, 1,   LDH↓, 4,   LDH↑, 3,   Myc↓, 1,   PD-L1↓, 4,   PD-L1↑, 1,   PSA↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↓, 1,   AntiCan↑, 15,   antiNeop↑, 1,   AntiTum↑, 4,   cardioP↑, 2,   chemoP↓, 1,   chemoP↑, 5,   ChemoSideEff↓, 1,   hepatoP↑, 1,   MKI67↑, 1,   neuroP↑, 3,   OS↑, 4,   toxicity↓, 3,   toxicity↝, 2,   toxicity∅, 1,   TumVol↓, 13,   TumW↓, 6,   Weight∅, 1,  

Infection & Microbiome

Bacteria↓, 1,   CD8+↑, 4,  
Total Targets: 554

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 13,   Catalase↑, 2,   GPx↑, 1,   GPx1↑, 1,   GPx4↑, 1,   GSH↑, 5,   HO-1↑, 3,   Keap1↓, 1,   lipid-P↓, 3,   Nrf1↑, 1,   NRF2↑, 5,   OXPHOS↓, 1,   ROS↓, 8,   ROS↑, 3,   ROS⇅, 1,   SOD↑, 2,   SOD1↑, 1,   uricA↓, 1,   VitC↑, 2,   VitE↑, 1,  

Mitochondria & Bioenergetics

mitResp↓, 1,   MMP↓, 1,  

Core Metabolism/Glycolysis

ALAT↓, 1,   glucose↓, 1,   Glycolysis↑, 1,   HK2↑, 1,   NADPH↓, 1,   PFKL↑, 1,   PFKM↑, 1,   PKM2↑, 1,  

Cell Death

e-Akt↑, 1,   Bax:Bcl2↑, 1,   Casp3↓, 1,   Casp3↑, 1,   Casp8↑, 1,   cl‑Casp8↑, 1,   Casp9↑, 1,   Fas↑, 1,   iNOS↓, 1,  

Kinase & Signal Transduction

AMPKα↑, 1,  

Transcription & Epigenetics

other↝, 2,   tumCV↓, 2,   tumCV↑, 1,   tumCV∅, 1,  

DNA Damage & Repair

P53↑, 1,   PARP↑, 1,   cl‑PARP↑, 1,  

Cell Cycle & Senescence

CDK2↓, 1,   cycA1/CCNA1↓, 1,   cycE/CCNE↑, 1,   P21↑, 3,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

e-ERK↑, 1,   GSK‐3β↓, 1,   STAT↓, 1,  

Migration

Cartilage↑, 1,   p‑Rac1↓, 1,   TumCMig↑, 1,  

Angiogenesis & Vasculature

angioG↓, 1,  

Barriers & Transport

BBB↑, 1,   GLUT1↑, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 3,   IKKα↑, 1,   IL1↓, 1,   IL10↓, 2,   IL17↓, 1,   IL1β↓, 2,   IL6↓, 3,   Inflam↓, 9,   MCP1↓, 1,   NF-kB↓, 2,   PGE2↓, 1,   TNF-α↓, 4,  

Cellular Microenvironment

pH↑, 1,  

Synaptic & Neurotransmission

tau↓, 2,  

Protein Aggregation

Aβ↓, 2,   NLRP3↓, 1,  

Hormonal & Nuclear Receptors

GR↑, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   Dose↝, 1,   eff↓, 1,   eff↑, 3,   Half-Life↑, 1,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 1,   ALP↓, 1,   AST↓, 1,   BP↓, 1,   GutMicro↑, 1,   IL6↓, 3,  

Functional Outcomes

AntiDiabetic↑, 2,   AntiTum↑, 1,   Bone Healing↑, 1,   cardioP↑, 6,   hepatoP↑, 5,   memory↑, 1,   neuroP↑, 6,   Pain↓, 2,   RenoP↑, 1,   toxicity↓, 10,   toxicity↝, 1,   toxicity∅, 5,   Wound Healing↑, 1,  

Infection & Microbiome

AntiFungal↑, 1,   AntiViral↑, 1,   Bacteria↓, 3,  
Total Targets: 108

Scientific Paper Hit Count for: tumCV, Cell Viability
20 Silver-NanoParticles
13 Thymoquinone
12 Sulforaphane (mainly Broccoli)
9 Curcumin
9 Honokiol
9 Quercetin
8 Betulinic acid
8 Phenethyl isothiocyanate
7 Cisplatin
7 SonoDynamic Therapy UltraSound
7 Magnetic Fields
7 Shikonin
6 Berberine
6 Fisetin
5 Allicin (mainly Garlic)
5 Selenium
5 Resveratrol
5 Rosmarinic acid
4 Apigenin (mainly Parsley)
4 Metformin
4 Radiotherapy/Radiation
4 Shilajit/Fulvic Acid
4 Graviola
4 Propolis -bee glue
4 Silymarin (Milk Thistle) silibinin
4 Vitamin C (Ascorbic Acid)
3 Ashwagandha(Withaferin A)
3 Astaxanthin
3 Baicalein
3 Gemcitabine (Gemzar)
3 5-fluorouracil
3 chitosan
3 Chrysin
3 Citric Acid
3 Emodin
3 Gallic acid
3 Gambogic Acid
3 Magnolol
3 Lycopene
3 Methylene blue
3 Magnetic Field Rotating
3 Piperlongumine
3 Urolithin
2 Alpha-Lipoic-Acid
2 Boswellia (frankincense)
2 Coenzyme Q10
2 Copper and Cu NanoParticlex
2 Hydroxycinnamic-acid
2 Garcinol
2 Juglone
2 Luteolin
2 doxorubicin
2 Iron
2 Methylsulfonylmethane
2 Naringin
2 Nimbolide
2 Parthenolide
2 Piperine
2 Plumbagin
2 salinomycin
2 Chemotherapy
2 polyethylene glycol
2 Photodynamic Therapy
2 Ursolic acid
2 VitK3,menadione
2 Zerumbone
1 Andrographis
1 Artemisinin
1 Melatonin
1 Boron
1 Carvacrol
1 Catechins
1 Selenate
1 Vitamin E
1 Dichloroacetate
1 Disulfiram
1 Ellagic acid
1 EGCG (Epigallocatechin Gallate)
1 Electrical Pulses
1 Estrogen
1 Fucoidan
1 Ferulic acid
1 Ginkgo biloba
1 γ-linolenic acid (Borage Oil)
1 HydroxyCitric Acid
1 tamoxifen
1 HydroxyTyrosol
1 itraconazole
1 Folic Acid
1 immunotherapy
1 Gold NanoParticles
1 Mushroom Chaga
1 Oleuropein
1 Phenylbutyrate
1 Hyperthermia
1 Pterostilbene
1 Perilla
1 Rutin
1 Scoulerine
1 acetazolamide
1 Resiquimod
1 Vitamin D3
1 Vitamin K2
1 Whole Body Vibration
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:897  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page