Database Query Results : , , Necroptosis

Necroptosis, Necroptosis: Click to Expand ⟱
Source:
Type: type of cell death
Necroptosis, is a form of programmed cell death that is regulated by the cell's own mechanisms. It is a form of cell death that is mediated by specific signaling pathways, including the RIP1-RIP3-MLKL pathway. Necroptosis is characterized by the activation of specific enzymes, such as RIP1 and RIP3, which lead to the formation of a necroptotic complex that ultimately causes cell death.

Necroptosis expression can be elevated in certain types of cancer, it can also be reduced in other types of cancer.


Scientific Papers found: Click to Expand⟱
1440- AMQ,    Lysosomotropism depends on glucose: a chloroquine resistance mechanism
- in-vitro, BC, 4T1
eff↑, Apoptosis↓, Necroptosis↑, eff↓, ChemoSen↑, eff↓,
1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓, ROS↑, MMP↓, ATP↓, Apoptosis↑, Necroptosis↑, DNAdam↑, TumCCA↑, Casp3↑, cl‑PARP↑, MLKL↑, p‑RIP3↑, Bax:Bcl2↑, eff↓, eff↓,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
988- EMD,    Emodin Induced Necroptosis and Inhibited Glycolysis in the Renal Cancer Cells by Enhancing ROS
- in-vitro, RCC, NA
Necroptosis↑, p‑RIP1↑, MLKL↑, ROS↑, Glycolysis↓, GLUT1↓, PI3K↓, Akt↓,
3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, *VEGF↑, *angioG↑, Ca+2↑, ROS↑, Necroptosis↑, TumCCA↑, Apoptosis↑, *ATP↑, *FAK↑, *Wnt↑, *β-catenin/ZEB1↑, *ROS↑, p38↑, MAPK↑, β-catenin/ZEB1↓, CSCs↓, TumCP↓, ROS↑, RadioS↑, Ca+2↑, eff↓, NO↑,
1992- Part,    Parthenolide induces ROS-dependent cell death in human gastric cancer cell
- in-vitro, BC, MGC803
TumCCA↑, Casp↑, Apoptosis↑, Necroptosis↑, RIP1↓, RIP3↑, MLKL↑, ROS↑, eff↓,
1256- PI,    Hypoxia potentiates the cytotoxic effect of piperlongumine in pheochromocytoma models
- in-vitro, adrenal, PHEO - in-vivo, NA, NA
Apoptosis↑, ROS↑, TumCMig↓, TumCI↓, EMT↓, angioG↓, Necroptosis↑, MAPK↑, ERK↑,
2355- SK,    Pharmacological properties and derivatives of shikonin-A review in recent years
- Review, Var, NA
AntiCan↑, TumCP↓, TumCMig↓, Apoptosis↑, TumAuto↑, Necroptosis↑, ROS↑, TrxR1↓, PKM2↓, RIP1↓, RIP3↓, Src↓, FAK↓, PI3K↓, Akt↓, mTOR↓, GRP58↓, MMPs↓, ATF2↓, cl‑PARP↑, Casp3↑, p‑p38↑, p‑JNK↑, p‑ERK↓,
2222- SK,    The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis
- in-vitro, OS, U2OS - in-vitro, OS, 143B - in-vivo, NA, NA
Necroptosis↑, RIP1↑, RIP3↑, OS↑, P53↑,
2221- SK,    Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression
- in-vitro, Lung, A549
Apoptosis↑, TumCP↓, tumCV↓, Necroptosis↑, P53↑, ROS↑, NF-kB↓,
3040- SK,    Pharmacological Properties of Shikonin – A Review of Literature since 2002
- Review, Var, NA - Review, IBD, NA - Review, Stroke, NA
*Half-Life↝, *BioAv↓, *BioAv↑, *BioAv↑, *Inflam↓, *TNF-α↓, *other↑, *MPO↓, *COX2↓, *NF-kB↑, *STAT3↑, *antiOx↑, *ROS↓, *neuroP↑, *SOD↑, *Catalase↑, *GPx↑, *Bcl-2↑, *BAX↓, cardioP↑, AntiCan↑, NF-kB↓, ROS↑, PKM2↓, TumCCA↑, Necroptosis↑, Apoptosis↑, DNAdam↑, MMP↓, Cyt‑c↑, LDH↝,
2009- SK,    Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer
- in-vitro, Bladder, NA
TumCG↓, selectivity↑, *toxicity∅, Necroptosis↑, ROS↑, p62↑, Keap1↑, *NRF2↑, eff↑,
2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, EGFR↓, PI3K↓, Akt↓, angioG↓, Apoptosis↑, Necroptosis↑, GSH↓, Ca+2↓, MMP↓, ERK↓, p38↑, proCasp3↑, eff↓, VEGF↓, FOXO3↑, EGR1↑, SIRT1↑, RIP1↑, RIP3↑, BioAv↓, NF-kB↓, Half-Life↓,
2184- SK,  Cisplatin,    PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis
- in-vitro, CRC, T24
PKM2↓, ChemoSen↑, Necroptosis↑,
4439- SNP,    Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA)
- in-vitro, Cerv, HeLa
ROS↑, lipid-P↑, MMP↓, GSH↓, TumCCA↑, Apoptosis↑, Necroptosis↑, TumCD↑, Dose↝,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 15

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

GSH↓, 2,   Keap1↑, 1,   lipid-P↑, 1,   ROS↑, 13,   TrxR1↓, 1,  

Mitochondria & Bioenergetics

AIF↑, 1,   ATP↓, 1,   MMP↓, 5,  

Core Metabolism/Glycolysis

Glycolysis↓, 1,   LDH↝, 1,   PKM2↓, 3,   SIRT1↑, 1,  

Cell Death

Akt↓, 3,   Apoptosis↓, 1,   Apoptosis↑, 10,   ATF2↓, 1,   BAX↑, 1,   Bax:Bcl2↑, 1,   Bcl-2↓, 1,   BIM↑, 1,   Casp↑, 1,   Casp3↑, 3,   proCasp3↑, 1,   Casp8↑, 1,   Casp9↑, 1,   Cyt‑c↑, 2,   GRP58↓, 1,   p‑JNK↑, 1,   MAPK↑, 2,   MLKL↑, 4,   p‑MLKL↓, 1,   Necroptosis↑, 15,   p38↑, 2,   p‑p38↑, 1,   RIP1↓, 2,   RIP1↑, 2,   p‑RIP1↑, 1,   TumCD↑, 1,  

Transcription & Epigenetics

tumCV↓, 3,  

Autophagy & Lysosomes

LC3B↑, 1,   p62↑, 2,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↑, 3,   P53↑, 2,   p‑P53↑, 1,   p‑PARP↑, 1,   cl‑PARP↑, 2,  

Cell Cycle & Senescence

TumCCA↑, 5,  

Proliferation, Differentiation & Cell State

CSCs↓, 1,   EMT↓, 1,   ERK↓, 1,   ERK↑, 1,   p‑ERK↓, 1,   FOXO3↑, 1,   mTOR↓, 1,   PI3K↓, 3,   Src↓, 1,   TumCG↓, 1,   TumCG↑, 1,  

Migration

Ca+2↓, 1,   Ca+2↑, 2,   FAK↓, 1,   MMPs↓, 1,   RIP3↓, 1,   RIP3↑, 4,   p‑RIP3↑, 2,   TumCI↓, 1,   TumCMig↓, 2,   TumCP↓, 3,   β-catenin/ZEB1↓, 1,  

Angiogenesis & Vasculature

angioG↓, 2,   EGFR↓, 1,   EGR1↑, 1,   NO↑, 1,   VEGF↓, 1,  

Barriers & Transport

GLUT1↓, 1,  

Immune & Inflammatory Signaling

NF-kB↓, 3,  

Drug Metabolism & Resistance

BioAv↓, 1,   ChemoSen↑, 2,   Dose↝, 1,   Dose∅, 1,   eff↓, 8,   eff↑, 3,   Half-Life↓, 1,   RadioS↑, 1,   selectivity↓, 1,   selectivity↑, 3,  

Clinical Biomarkers

EGFR↓, 1,   LDH↝, 1,  

Functional Outcomes

AntiCan↑, 2,   cardioP↑, 1,   OS↑, 1,   TumW↓, 1,  
Total Targets: 93

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 1,   GPx↑, 1,   MPO↓, 1,   NRF2↑, 1,   ROS↓, 1,   ROS↑, 1,   SOD↑, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,  

Cell Death

BAX↓, 1,   Bcl-2↑, 1,  

Transcription & Epigenetics

other↑, 1,  

Proliferation, Differentiation & Cell State

STAT3↑, 1,   Wnt↑, 1,  

Migration

Ca+2↑, 1,   FAK↑, 1,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↑, 1,   VEGF↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   Inflam↓, 1,   NF-kB↑, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 2,   Half-Life↝, 1,  

Functional Outcomes

neuroP↑, 1,   toxicity∅, 1,  
Total Targets: 28

Scientific Paper Hit Count for: Necroptosis, Necroptosis
7 Shikonin
2 Apigenin (mainly Parsley)
1 Amodiaquine
1 Metformin
1 Emodin
1 Magnetic Fields
1 Parthenolide
1 Piperine
1 Cisplatin
1 Silver-NanoParticles
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:944  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page