Database Query Results : , , eff

eff, efficacy: Click to Expand ⟱
Source:
Type:
Power to enhance an anti cancer effect


Scientific Papers found: Click to Expand⟱
4384-   Silver nanoparticles: synthesis, properties, and therapeutic applications
- Review, Var, NA
AntiCan↑, RadioS↑, CellMemb↑, ROS↑, DNAdam↑, PhotoS↑, eff↑,
2327- 2DG,    2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents
- Review, Var, NA
Glycolysis↓, HK2↓, mt-ROS↑, AMPK↑, PPP↓, NADPH↓, GSH↓, Bax:Bcl2↑, Apoptosis↑, RadioS↑, eff↓, Half-Life↓, other↝, eff↓,
2325- 2DG,    Research Progress of Warburg Effect in Hepatocellular Carcinoma
- Review, Var, NA
HK2↓, Glycolysis↓, PKM2↓, LDHA↓, TumCD↑, ChemoSen↑, eff↑,
1341- 3BP,    The HK2 Dependent “Warburg Effect” and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate
- Review, NA, NA
Glycolysis↓, OXPHOS↓, *toxicity↓, ROS↑, GSH↓, eff↑,
1340- 3BP,    Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study
- Review, NA, NA
Glycolysis↓, HK2↓, LDH↓, OXPHOS↓, angioG↓, H2O2↑, eff↑,
3452- 5-ALA,    5-ALA Is a Potent Lactate Dehydrogenase Inhibitor but Not a Substrate: Implications for Cell Glycolysis and New Avenues in 5-ALA-Mediated Anticancer Action
- in-vitro, GBM, T98G - in-vitro, GBM, LN-18 - in-vitro, GBM, U87MG
Glycolysis↓, LDH↓, eff↝, ECAR↓,
4774- 5-FU,  TQ,  CoQ10,    Exploring potential additive effects of 5-fluorouracil, thymoquinone, and coenzyme Q10 triple therapy on colon cancer cells in relation to glycolysis and redox status modulation
- in-vitro, CRC, NA
AntiCan↑, TumCCA↑, Apoptosis↑, eff↑, Bcl-2↓, survivin↓, P21↑, p27↑, BAX↑, Cyt‑c↑, Casp3↑, PI3K↓, Akt↓, mTOR↓, Hif1a↓, PTEN↑, AMPKα↑, PDH↑, LDHA↓, antiOx↓, ROS↑, AntiCan↑,
3941- 5HT,  dietMed,  VitB12,  FA,  VitC  Nutrition strategies that improve cognitive function
- Review, AD, NA
*other↑, *other↓, *cognitive↑, *eff↑, *eff↑,
3973- ACNs,    Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries
- Analysis, AD, NA
eff↑,
3972- ACNs,    Recent Research on the Health Benefits of Blueberries and Their Anthocyanins
- Review, AD, NA - Review, Park, NA
*cardioP↑, *neuroP↑, *Inflam↓, *antiOx↓, *GutMicro↑, *Half-Life↑, *LDL↓, *adiP↓, *HDL↑, *CRP↓, *IL1β↓, *Risk↓, *Risk↓, *cognitive↑, *memory↑, *other↑, *BOLD↑, *NO↓, *MDA↓, *GSH↑, *VitC↑, *SOD↑, *GPx↑, *eff↓, *eff↓, *eff↓, *eff↝, *Risk↓,
3968- ACNs,    Enhanced Neuronal Activation with Blueberry Supplementation in Mild Cognitive Impairment
- Human, AD, NA
*BOLD↑, *cognitive?, *eff↑,
234- AL,    Allicin Induces Anti-human Liver Cancer Cells through the p53 Gene Modulating Apoptosis and Autophagy
- in-vitro, HCC, Hep3B
ROS↑, *toxicity∅, MMP↓, BAX↑, Bcl-2↓, AIF↑, Casp3↑, Casp8↑, Casp9↑, eff↓, γH2AX↑, selectivity↑, DNA-PK↑,
235- AL,    Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway
- in-vitro, GBM, U87MG
Apoptosis↑, Bcl-2↓, BAX↑, MAPK↑, p‑ERK↑, ROS↑, eff↓,
1916- AL,    Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods
- Review, Nor, NA
*BioAv↝, *eff↓, *BioAv↝, *BioAv↝, *eff↑, *Half-Life∅, *eff↑, *eff↑, *Dose∅, *eff↑,
2646- AL,    Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress
- in-vitro, Pca, DU145 - in-vitro, Melanoma, RPMI-8226
AntiCan↑, eff↓, ChemoSen↑, ER Stress↑, tumCV↓, DNAdam↑, GSH∅, HSP70/HSPA5↓, UPR↑, β-catenin/ZEB1↓, ROS↑, HO-2↑, SIRT1↑, GlucoseCon∅, lactateProd∅, chemoP↑,
2660- AL,    Allicin: A review of its important pharmacological activities
- Review, AD, NA - Review, Var, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, AntiCan↑, *antiOx↑, *cardioP↑, *hepatoP↑, *BBB↑, *Half-Life↝, *H2S↑, *BP↓, *neuroP↑, *cognitive↑, *neuroP↑, *ROS↓, *GutMicro↑, *LDH↓, *ROS↓, *lipid-P↓, *antiOx↑, *other↑, *PI3K↓, *Akt↓, *NF-kB↓, *NO↓, *iNOS↓, *PGE2↓, *COX2↓, *IL6↓, *TNF-α↓, *MPO↓, *eff↑, *NRF2↑, *Keap1↓, *TBARS↓, *creat↓, *LDH↓, *AST↓, *ALAT↓, *MDA↓, *SOD↑, *GSH↑, *GSTs↑, *memory↑, chemoP↑, IL8↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, Casp12↑, p38↑, Fas↑, P53↑, P21↑, CHK1↓, CycB/CCNB1↓, GSH↓, ROS↑, TumCCA↑, Hif1a↓, Bcl-2↓, VEGF↓, TumCMig↓, STAT3↓, VEGFR2↓, p‑FAK↓,
281- ALA,    Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation
- in-vitro, Lung, H460
mt-ROS↑, Apoptosis↑, Casp9↑, Bcl-2↓, eff↓, eff↑, H2O2↑, Dose↑,
278- ALA,    The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment
- Review, NA, NA
ROS↑, NRF2↑, Inflam↓, frataxin↑, *BioAv↓, ChemoSen↑, Hif1a↓, eff↑, FAK↓, ITGB1↓, MMP2↓, MMP9↓, EMT↓, Snail↓, Vim↓, Zeb1↓, P53↑, MGMT↓, Mcl-1↓, Bcl-xL↓, Bcl-2↓, survivin↓, Casp3↑, Casp9↑, BAX↑, p‑Akt↓, GSK‐3β↓, *antiOx↑, *ROS↓, selectivity↑, angioG↓, MMPs↓, NF-kB↓, ITGB3↓, NADPH↓,
3439- ALA,    The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles
- in-vitro, NA, NA
*ROS↓, *TAC↑, *eff↑, *SOD↑, *GPx↑, *Catalase↑, *GlucoseCon↑, *antiOx↑,
3443- ALA,    Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *IronCh↑, *cognitive↑, *cardioP↓, AntiCan↑, *neuroP↑, *Inflam↓, *BioAv↓, *AntiAge↑, *Half-Life↓, *BioAv↝, other↝, EGFR↓, Akt↓, ROS↓, TumCCA↑, p27↑, PDH↑, Glycolysis↓, ROS↑, *eff↑, *memory↑, *motorD↑, *GutMicro↑,
3454- ALA,    Lipoic acid blocks autophagic flux and impairs cellular bioenergetics in breast cancer and reduces stemness
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TumCG↑, Glycolysis↓, ROS↑, CSCs↓, selectivity↑, LC3B-II↑, MMP↓, mitResp↓, ATP↓, OCR↓, NAD↓, p‑AMPK↑, GlucoseCon↓, lactateProd↓, HK2↓, PFK↓, LDHA↓, eff↓, mTOR↓, ECAR↓, ALDH↓, CD44↓, CD24↓,
3456- ALA,    Renal-Protective Roles of Lipoic Acid in Kidney Disease
- Review, NA, NA
*RenoP↑, *ROS↓, *antiOx↑, *Inflam↓, *Sepsis↓, *IronCh↑, *BUN↓, *creat↓, *TNF-α↓, *IL6↓, *IL1β↓, *MDA↓, *NRF2↑, *HO-1↑, *NQO1↑, *chemoP↑, *eff↑, *NF-kB↓,
3539- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*ROS↓, *IronCh↑, *GSH↑, *antiOx↑, *NRF2↑, *MMP9↓, *VCAM-1↓, *NF-kB↓, *cognitive↑, *Inflam↓, *BioAv↝, *BioAv↝, *BBB↑, *H2O2∅, *neuroP↑, *PKCδ↑, *ERK↑, *MAPK↑, *PI3K↑, *Akt↑, *PTEN↓, *AMPK↑, *GLUT4↑, *GlucoseCon↑, *BP↝, *eff↑, *ICAM-1↓, *VCAM-1↓, *Dose↝,
3272- ALA,    Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential
- Review, AD, NA
*antiOx↑, *glucose↑, *eNOS↑, *NRF2↑, *MMP9↓, *VCAM-1↓, *NF-kB↓, *cardioP↑, *cognitive↑, *eff↓, *BBB↑, *IronCh↑, *GSH↑, *PKCδ↑, *ERK↑, *p38↑, *MAPK↑, *PI3K↑, *Akt↑, *PTEN↓, *AMPK↑, *GLUT4↑, *GLUT1↑, *Inflam↓,
3550- ALA,    Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease?
- Review, AD, NA
*antiOx↑, *Inflam↓, *PGE2↓, *COX2↓, *iNOS↓, *TNF-α↓, *IL1β↓, *IL6↓, *BioAv↓, *Ach↑, *ROS↓, *cognitive↑, *neuroP↑, *BBB↑, *Half-Life↓, *BioAv↑, *Casp3↓, *Casp9↓, *ChAT↑, *cognitive↑, *eff↑, *cAMP↑, *IL2↓, *INF-γ↓, *TNF-α↓, *SIRT1↑, *SOD↑, *GPx↑, *MDA↓, *NRF2↑,
1440- AMQ,    Lysosomotropism depends on glucose: a chloroquine resistance mechanism
- in-vitro, BC, 4T1
eff↑, Apoptosis↓, Necroptosis↑, eff↓, ChemoSen↑, eff↓,
1158- And,  GEM,    Andrographolide causes apoptosis via inactivation of STAT3 and Akt and potentiates antitumor activity of gemcitabine in pancreatic cancer
TumCP↓, TumCCA↑, Apoptosis↑, STAT3↓, Akt↓, P21↑, BAX↑, cycD1/CCND1↓, cycE/CCNE↓, survivin↓, XIAP↓, Bcl-2↓, eff↑,
1351- And,  MEL,    Impact of Andrographolide and Melatonin Combinatorial Drug Therapy on Metastatic Colon Cancer Cells and Organoids
- in-vitro, CRC, T84 - in-vitro, CRC, COLO205 - in-vitro, CRC, HT-29 - in-vitro, CRC, DLD1
eff↑, Ki-67↓, Casp3↑, ER Stress↑, ROS↑, BAX↑, XBP-1↑, CHOP↑, eff↑,
1348- And,    Andrographolide Inhibits ER-Positive Breast Cancer Growth and Enhances Fulvestrant Efficacy via ROS-FOXM1-ER-α Axis
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vivo, NA, NA
ERα/ESR1↓, TumCG↓, ROS↑, FOXM1↓, eff↑,
1354- And,    Andrographolide induces protective autophagy and targeting DJ-1 triggers reactive oxygen species-induced cell death in pancreatic cancer
- in-vitro, PC, NA - in-vivo, PC, NA
Apoptosis↑, DJ-1↓, ROS↑, TumAuto↑, TumCCA↑, TumCP↓, TumW↓, eff↓,
4759- antiOx,  Chemo,    Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization
- Review, Var, NA
TumCD↑, TumCG↓, ROS⇅, eff↑, RadioS↑, TumCG↓, OS↑, toxicity∅, toxicity↑,
4765- antiOx,  Chemo,    Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity – Exploring the armoury of obscurity
- Review, Var, NA
chemoP↑, ChemoSen↑, OS↑, Dose↑, Risk↓, eff↓,
4746- antiOx,  Chemo,  VitA,RetA,  VitC,  Se  Using Supplements During Chemo: Yes or No?
- Review, Var, NA
eff↓, ChemoSen↓, RadioS↓, other↝,
1152- Api,    Does Oral Apigenin Have Real Potential for a Therapeutic Effect in the Context of Human Gastrointestinal and Other Cancers?
- Analysis, Nor, NA
*BioAv↓, Half-Life∅, *BioAv↓, Dose∅, eff↑, CYP1A2↓, CYP2C9↓, CYP3A4↓,
1536- Api,    Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells
- in-vitro, MM, MSTO-211H - in-vitro, MM, H2452
tumCV↓, ROS↑, MMP↓, ATP↓, Apoptosis↑, Necroptosis↑, DNAdam↑, TumCCA↑, Casp3↑, cl‑PARP↑, MLKL↑, p‑RIP3↑, Bax:Bcl2↑, eff↓, eff↓,
1564- Api,    Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation
- in-vitro, Pca, 22Rv1 - in-vivo, NA, NA
MDM2↓, NF-kB↓, p65↓, P21↑, ROS↑, GSH↓, MMP↓, Cyt‑c↑, Apoptosis↑, P53↑, eff↓, Bcl-xL↓, Bcl-2↓, BAX↑, Casp↑, TumCG↓, TumVol↓, TumW↓,
1539- Api,  LT,    Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells
- in-vitro, Liver, HepG2
SREBP2↓, eff↑, p‑MEK↓, p‑ERK↓,
1547- Api,    Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading
- Review, NA, NA
angioG↓, EMT↓, CSCs↓, TumCCA↑, Dose∅, ROS↑, MMP↓, Catalase↓, GSH↓, PI3K↓, Akt↓, NF-kB↓, OCT4↓, Nanog↓, SIRT3↓, SIRT6↓, eff↑, eff↑, Cyt‑c↑, Bax:Bcl2↑, p‑GSK‐3β↓, FOXO3↑, p‑STAT3↓, MMP2↓, MMP9↓, COX2↓, MMPs↓, NRF2↓, HDAC↓, Telomerase↓, eff↑, eff↑, eff↑, eff↑, eff↑, XIAP↓, survivin↓, CK2↓, HSP90↓, Hif1a↓, FAK↓, EMT↓,
1549- Api,  Chemo,    Chemoprotective and chemosensitizing effects of apigenin on cancer therapy
- Review, NA, NA
ChemoSideEff↓, *toxicity∅, ChemoSen↑, eff↑, eff↑, eff↑,
1554- Api,    A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota
- Review, NA, NA
*BioAv↑, *BioAv↑, *BioAv↑, *BioAv↓, *eff↑,
1558- Api,    Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique
- in-vitro, Liver, HepG2
BioAv↑, *toxicity∅, eff↑,
1563- Api,  MET,    Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells
- in-vitro, Nor, HDFa - in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, Pca, DU145 - in-vitro, Pca, LNCaP - in-vivo, NA, NA
selectivity↑, selectivity↑, selectivity↓, ROS↑, eff↑, tumCV↓, MMP↓, Dose∅, eff↓, DNAdam↑, Apoptosis↑, TumAuto↑, Necroptosis↑, p‑P53↑, BIM↑, BAX↑, p‑PARP↑, Casp3↑, Casp8↑, Casp9↑, Cyt‑c↑, Bcl-2↓, AIF↑, p62↑, LC3B↑, MLKL↑, p‑MLKL↓, RIP3↑, p‑RIP3↑, TumCG↑, TumW↓,
2584- Api,  Chemo,    The versatility of apigenin: Especially as a chemopreventive agent for cancer
- Review, Var, NA
ChemoSen↑, RadioS↑, eff↝, DR5↑, selectivity↑, angioG↓, selectivity↑, chemoP↑, MAPK↓, PI3K↓, Akt↓, mTOR↓, Wnt↓, β-catenin/ZEB1↓, GLUT1↓, radioP↑, BioAv↓, chemoPv↑,
2632- Api,    Apigenin inhibits migration and induces apoptosis of human endometrial carcinoma Ishikawa cells via PI3K-AKT-GSK-3β pathway and endoplasmic reticulum stress
- in-vitro, EC, NA
TumCP↓, TumCCA↑, Apoptosis↑, Bcl-2↓, BAX↑, Bak↑, Casp↑, ER Stress↑, Ca+2↑, ATF4↑, CHOP↑, ROS↑, MMP↓, TumCMig↓, TumCI↓, eff↑, P53↑, P21↑, Cyt‑c↑, Casp9↑, Casp3↑, Bcl-xL↓,
2640- Api,    Apigenin: A Promising Molecule for Cancer Prevention
- Review, Var, NA
chemoPv↑, ITGB4↓, TumCI↓, TumMeta↓, Akt↓, ERK↓, p‑JNK↓, *Inflam↓, *PKCδ↓, *MAPK↓, EGFR↓, CK2↓, TumCCA↑, CDK1↓, P53↓, P21↑, Bax:Bcl2↑, Cyt‑c↑, APAF1↑, Casp↑, cl‑PARP↑, VEGF↓, Hif1a↓, IGF-1↓, IGFBP3↑, E-cadherin↑, β-catenin/ZEB1↓, HSPs↓, Telomerase↓, FASN↓, MMPs↓, HER2/EBBR2↓, CK2↓, eff↑, AntiAg↑, eff↑, FAK↓, ROS↑, Bcl-2↓, Cyt‑c↑, cl‑Casp3↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑, cl‑IAP2↑, AR↓, PSA↓, p‑pRB↓, p‑GSK‐3β↓, CDK4↓, ChemoSen↑, Ca+2↑, cal2↑,
2639- Api,    Plant flavone apigenin: An emerging anticancer agent
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, ChemoSen↑, BioEnh↑, chemoPv↑, IL6↓, STAT3↓, NF-kB↓, IL8↓, eff↝, Akt↓, PI3K↓, HER2/EBBR2↓, cycD1/CCND1↓, CycD3↓, p27↑, FOXO3↑, STAT3↓, MMP2↓, MMP9↓, VEGF↓, Twist↓, MMP↓, ROS↑, NADPH↑, NRF2↓, SOD↓, COX2↓, p38↑, Telomerase↓, HDAC↓, HDAC1↓, HDAC3↓, Hif1a↓, angioG↓, uPA↓, Ca+2↑, Bax:Bcl2↑, Cyt‑c↑, Casp9↑, Casp12↑, Casp3↑, cl‑PARP↑, E-cadherin↑, β-catenin/ZEB1↓, cMyc↓, CDK4↓, CDK2↓, CDK6↓, IGF-1↓, CK2↓, CSCs↓, FAK↓, Gli↓, GLUT1↓,
2635- Api,  CUR,    Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells
- in-vitro, Cerv, HeLa
TumCD↑, eff↑, TumAuto↑, ER Stress↑, Paraptosis↑, GRP78/BiP↓, Dose↝,
3817- Aroma,    Therapeutic potential of aromatic plant extracts in Alzheimer's disease: Comprehensive review of their underlying mechanisms
- Review, AD, NA
*BChE↓, *AChE↓, *other↓, *other?, *Ach?, *eff↑, *antiOx↑, *ROS↓, *cognitive↑, *Mood↑, *Sleep↑,
3824- Aroma,    Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties
- Human, AD, NA
*cognitive↑, *memory↑, *AChE∅, *Mood↑, *eff↝,
3345- ART/DHA,    Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells
- in-vitro, GBM, NA
ROS↑, Ferroptosis↑, lipid-P↑, HSP70/HSPA5↑, ER Stress↑, ATF4↑, GRP78/BiP↑, MDA↑, GSH↓, eff↑, GPx4↑,
3382- ART/DHA,    Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge?
- Review, Var, NA
AntiCan↑, toxicity↑, Ferroptosis↑, ROS↑, TumCCA↑, BioAv↝, eff↝, Half-Life↓, Ferritin↓, GPx4↓, NADPH↓, GSH↓, BAX↑, Cyt‑c↑, cl‑Casp3↑, VEGF↓, IL8↓, COX2↓, MMP9↓, E-cadherin↑, MMP2↓, NF-kB↓, p16↑, CDK4↓, cycD1/CCND1↓, p62↓, LC3II↑, EMT↓, CSCs↓, Wnt↓, β-catenin/ZEB1↓, uPA↓, TumAuto↑, angioG↓, ChemoSen↑,
3383- ART/DHA,    Dihydroartemisinin: A Potential Natural Anticancer Drug
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, angioG↓, TumAuto↑, ER Stress↑, ROS↑, Ca+2↑, p38↑, HSP70/HSPA5↓, PPARγ↑, GLUT1↓, Glycolysis↓, PI3K↓, Akt↓, Hif1a↓, PKM2↓, lactateProd↓, GlucoseCon↓, EMT↓, Slug↓, Zeb1↓, ZEB2↓, Twist↓, Snail?, CAFs/TAFs↓, TGF-β↓, p‑STAT3↓, M2 MC↓, uPA↓, HH↓, AXL↓, VEGFR2↓, JNK↑, Beclin-1↑, GRP78/BiP↑, eff↑, eff↑, eff↑, eff↑, eff↑, eff↑, IL4↓, DR5↑, Cyt‑c↑, Fas↑, FADD↑, cl‑PARP↑, cycE/CCNE↓, CDK2↓, CDK4↓, Mcl-1↓, Ki-67↓, Bcl-2↓, CDK6↓, VEGF↓, COX2↓, MMP9↓,
3391- ART/DHA,    Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug
- Review, Var, NA
TumCP↓, TumMeta↓, angioG↓, TumVol↓, BioAv↓, Half-Life↓, BioAv↑, eff↑, eff↓, ROS↑, selectivity↑, TumCCA↑, survivin↓, BAX↑, Casp3↓, Casp8↑, Casp9↑, CDC25↓, CycB/CCNB1↓, NF-kB↓, cycD1/CCND1↓, cycE/CCNE↓, E2Fs↓, P21↑, p27↑, ADP:ATP↑, MDM2↓, VEGF↓, IL8↓, COX2↓, MMP9↓, ER Stress↓, cMyc↓, GRP78/BiP↑, DNAdam↑, AP-1↓, MMP2↓, PKCδ↓, Raf↓, ERK↓, JNK↓, PCNA↓, CDK2↓, CDK4↓, TOP2↓, uPA↓, MMP7↓, TIMP2↑, Cdc42↑, E-cadherin↑,
3389- ART/DHA,    Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers
- Review, Var, NA
GSH↓, ROS↑, NRF2↑, eff↑,
2582- ART/DHA,  5-ALA,    Mechanistic Investigation of the Specific Anticancer Property of Artemisinin and Its Combination with Aminolevulinic Acid for Enhanced Anticolorectal Cancer Activity
- in-vivo, CRC, HCT116 - in-vitro, CRC, HCT116
eff↑, ROS↑, selectivity↑, TumCG↓, toxicity↓,
2581- ART/DHA,  PB,    Synergistic cytotoxicity of artemisinin and sodium butyrate on human cancer cells
- in-vitro, AML, NA
eff↑, selectivity↑,
2580- ART/DHA,  VitC,    Effects of Antioxidants and Pro-oxidants on Cytotoxicity of Dihydroartemisinin to Molt-4 Human Leukemia Cells
- in-vitro, AML, NA
eff↓, other↝, ROS↑, eff↓, eff↓,
2578- ART/DHA,  RES,    Synergic effects of artemisinin and resveratrol in cancer cells
- in-vitro, Liver, HepG2 - in-vitro, Cerv, HeLa
Dose↝, TumCMig↓, Apoptosis↑, necrosis↑, ROS↑, eff↑,
2577- ART/DHA,    Artemisinin and its derivatives in cancer therapy: status of progress, mechanism of action, and future perspectives
- Review, Var, NA
eff↑, TumCCA↑, BioAv↑, eff↑, ChemoSen↑,
2576- ART/DHA,  AL,    The Synergistic Anticancer Effect of Artesunate Combined with Allicin in Osteosarcoma Cell Line in Vitro and in Vivo
- in-vitro, OS, MG63 - in-vivo, NA, NA
eff↑, tumCV↓, Casp3↑, Casp9↑, Apoptosis↑, TumCG↓,
2575- ART/DHA,  docx,    Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of STAT3/Survivin-Signaling Pathways in NSCLC
- in-vitro, Lung, H23
ChemoSen↑, GPx4↓, ROS↑, Ferroptosis↑, eff↑,
2573- ART/DHA,    effects_of_halofuginone_and_artemisinin_in_colorectal_cancer_cells">Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells
- in-vitro, CRC, HCT116
eff↑,
2574- ART/DHA,    Artemisinin: A Promising Adjunct for Cancer Therapy
- Review, Var, NA
selectivity↑, eff↑,
1028- ASA,    Aspirin Suppressed PD-L1 Expression through Suppressing KAT5 and Subsequently Inhibited PD-1 and PD-L1 Signaling to Attenuate OC Development
- vitro+vivo, Ovarian, NA
TumCP↓, TumW↓, PD-L1↓, Ki-67↓, H3K27ac∅, eff↑,
2461- ASA,    Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis
- Review, NA, NA
AntiAg↑, COX1↓, eff↑,
1370- Ash,    Withaferin A induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species
- in-vitro, Lung, A549
ROS↑, eff↓,
1365- Ash,    Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells
- in-vitro, Oral, Ca9-22 - in-vitro, Oral, CAL27
ROS↑, *toxicity↓, Apoptosis↑, TumCCA↑, MMP↓, p‑γH2AX↑, DNAdam↑, eff↓,
1364- Ash,    Withaferin a Triggers Apoptosis and DNA Damage in Bladder Cancer J82 Cells through Oxidative Stress
- in-vitro, Bladder, J82
cl‑Casp3↑, cl‑Casp8↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, MMP↓, DNAdam↑, eff↓,
1361- Ash,  SRF,    Withaferin A, a natural thioredoxin reductase 1 (TrxR1) inhibitor, synergistically enhances the antitumor efficacy of sorafenib through ROS-mediated ER stress and DNA damage in hepatocellular carcinoma cells
- in-vitro, Liver, HUH7 - in-vivo, Liver, HUH7
TrxR↓, ROS↑, DNA-PK↑, ER Stress↑, Apoptosis↑, eff↓,
1360- Ash,  immuno,    Withaferin A Increases the Effectiveness of Immune Checkpoint Blocker for the Treatment of Non-Small Cell Lung Cancer
- in-vitro, Lung, H1650 - in-vitro, Lung, A549 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
PD-L1↑, eff↓, ROS↑, ER Stress↑, Apoptosis↑, BAX↑, Bak↑, BAD↑, Bcl-2↓, XIAP↓, survivin↓, cl‑PARP↑, CHOP↑, p‑eIF2α↑, ICD↑, eff↑,
1358- Ash,    Withaferin A: A Dietary Supplement with Promising Potential as an Anti-Tumor Therapeutic for Cancer Treatment - Pharmacology and Mechanisms
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, Ferroptosis↑, TumCP↓, CSCs↓, TumMeta↓, EMT↓, angioG↓, Vim↓, HSP90↓, annexin II↓, m-FAM72A↓, BCR-ABL↓, Mortalin↓, NRF2↓, cMYB↓, ROS↑, ChemoSen↑, eff↑, ChemoSen↑, ChemoSen↑, eff↑, *BioAv↓, ROCK1↓, TumCI↓, Sp1/3/4↓, VEGF↓, Hif1a↓, EGFR↓,
1369- Ash,    Withaferin A inhibits cell proliferation of U266B1 and IM-9 human myeloma cells by inducing intrinsic apoptosis
- in-vitro, Melanoma, U266
tumCV↓, Apoptosis↑, BAX↑, Cyt‑c↑, Bcl-2↓, cl‑PARP↑, cl‑Casp3↑, cl‑Casp9↑, ROS↑, eff↓,
1357- Ash,    Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vitro, GBM, GL26
TumCP↓, TumCCA↑, Akt↓, mTOR↓, p70S6↓, p85S6K↓, AMPKα↑, TSC2↑, HSP70/HSPA5↑, HO-1↑, HSF1↓, Apoptosis↑, ROS↑, eff↓,
1355- Ash,    Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, HMEC
eff↑, mt-ROS↑, mitResp↓, OXPHOS↓, compIII↑, BAX↑, Bak↑, other↓, ATP∅, *ROS∅,
1373- Ash,    Endoplasmic reticulum stress mediates withaferin A-induced apoptosis in human renal carcinoma cells
- in-vitro, Kidney, Caki-1
ER Stress↑, p‑eIF2α↑, XBP-1↑, GRP78/BiP↑, CHOP↑, eff↓,
1433- Ash,  SFN,    A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, Bcl-2↓, BAX↑, tumCV↓, DNMT1↓, DNMT3A↓, HDAC↓,
1371- Ash,    Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine
- in-vitro, AML, HL-60
ROS↑, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, eff↓,
2001- Ash,    Withania somnifera: from prevention to treatment of cancer
- Review, Var, NA
toxicity↓, TumW↓, Dose?, eff↝, Ki-67↓, survivin↓, XIAP↓, PERK↑, p‑RSK↑, CHOP↑, DR5↑, Dose↝, BG↓, DNMTs↓,
1142- Ash,    Ashwagandha-Induced Programmed Cell Death in the Treatment of Breast Cancer
- Review, BC, MCF-7 - NA, BC, MDA-MB-231 - NA, Nor, HMEC
Apoptosis↑, ROS↑, DNAdam↑, OXPHOS↓, *ROS∅, Bcl-2↓, XIAP↓, survivin↓, DR5↑, IKKα↓, NF-kB↓, selectivity↑, *ROS∅, eff↓, Paraptosis↑,
3155- Ash,    Overview of the anticancer activity of withaferin A, an active constituent of the Indian ginseng Withania somnifera
- Review, Var, NA
Half-Life↝, Inflam↓, antiOx↓, angioG↓, ROS↑, BAX↑, Bak↑, E6↓, E7↓, P53↑, Casp3↑, cl‑PARP↑, STAT3↓, eff↑, HSP90↓, TGF-β↓, TNF-α↓, EMT↑, mTOR↓, NOTCH1↓, p‑Akt↓, NF-kB↓, Dose↝,
3160- Ash,    Withaferin A: A Pleiotropic Anticancer Agent from the Indian Medicinal Plant Withania somnifera (L.) Dunal
- Review, Var, NA
TumCCA↑, H3↑, P21↑, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDC2↓, CHK1↓, Chk2↓, p38↑, MAPK↑, E6↓, E7↓, P53↑, Akt↓, FOXO3↑, ROS↑, γH2AX↑, MMP↓, mitResp↓, eff↑, TumCD↑, Mcl-1↓, ER Stress↑, ATF4↑, ATF3↑, CHOP↑, NOTCH↓, NF-kB↓, Bcl-2↓, STAT3↓, CDK1↓, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, Cyt‑c↑, eff↑, CDK4↓, p‑RB1↓, PARP↑, cl‑Casp3↑, cl‑Casp9↑, NRF2↑, ER-α36↓, LDHA↓, lipid-P↑, AP-1↓, COX2↓, RenoP↑, PDGFR-BB↓, SIRT3↑, MMP2↓, MMP9↓, NADPH↑, NQO1↑, GSR↑, HO-1↑, *SOD2↑, *Prx↑, *Casp3?, eff↑, Snail↓, Slug↓, Vim↓, CSCs↓, HEY1↓, MMPs↓, VEGF↓, uPA↓, *toxicity↓, CDK2↓, CDK4↓, HSP90↓,
3175- Ash,  SFN,    Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑,
3166- Ash,    Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives
- Review, Var, NA
*p‑PPARγ↓, *cardioP↑, *AMPK↑, *BioAv↝, *Half-Life↝, *Half-Life↝, *Dose↑, *chemoPv↑, IL6↓, STAT3↓, ROS↓, OXPHOS↓, PCNA↓, LDH↓, AMPK↑, TumCCA↑, NOTCH3↓, Akt↓, Bcl-2↓, Casp3↑, Apoptosis↑, eff↑, NF-kB↓, CSCs↓, HSP90↓, PI3K↓, FOXO3↑, β-catenin/ZEB1↓, N-cadherin↓, EMT↓, FASN↓, ACLY↓, ROS↑, NRF2↑, HO-1↑, NQO1↑, JNK↑, mTOR↓, neuroP↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL18↓, RadioS↑, eff↑,
4804- ASTX,    Astaxanthin in cancer therapy and prevention (Review)
- Review, Var, NA - Review, AD, NA
*antiOx↑, *Inflam↓, ChemoSen⇅, chemoP↑, BioAv↑, TumCP↑, ROS⇅, Apoptosis↑, PI3K↑, Akt↑, GSK‐3β↑, NRF2↑, AntiCan↑, *neuroP↑, eff↑, AntiTum↑,
4818- ASTX,  MEL,    Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
TumCD↑, DNAdam↑, *antiOx↑, *AntiTum↑, Inflam↓, tumCV↓, Bcl-2↓, Apoptosis↓, selectivity↑, eff↑, Dose↓,
4981- ATV,    Crosstalk between Statins and Cancer Prevention and Therapy: An Update
Apoptosis↑, selectivity↑, eff↑, HMG-CoA↓, *cardioP↑, OS↑, IL1β↓, IL6↓, IL8↓, TNF-α↓, TumAuto↑, Histones↝, ac‑H3↑, ac‑H4↑, HDAC↓,
4986- ATV,  Dipy,    The combination of statins and dipyridamole is effective preclinically in AML, MM, and breast cancer
- Review, Var, NA
HMG-CoA↓, AntiAg↑, eff↑, Apoptosis↑, selectivity↑, *toxicity↓, TumCG↓, PDE4↓, other↑,
4985- ATV,  Dipy,    Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin-Dipyridamole Combination Treatment in Melanoma Cell Lines
- in-vivo, Melanoma, SK-MEL-28 - in-vitro, BC, MDA-MB-435
HMG-CoA↓, SREBP2↓, eff↑, HMGCR⇅, ChemoSen↑,
1900- Aur,    Potential Anticancer Activity of Auranofin
- Review, Var, NA
TrxR↓, ROS↑, Apoptosis↓, TumCP↓, eff↑,
1533- Ba,    Baicalein, as a Prooxidant, Triggers Mitochondrial Apoptosis in MCF-7 Human Breast Cancer Cells Through Mobilization of Intracellular Copper and Reactive Oxygen Species Generation
- in-vitro, BrCC, MCF-7 - in-vitro, Nor, MCF10
tumCV↓, i-ROS↑, MMP↓, Bcl-2↓, BAX↑, Cyt‑c↑, Casp9↑, Casp3↑, eff↓, selectivity↑, *toxicity∅, Apoptosis↑, Fenton↑,
1520- Ba,    Baicalein Induces G2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, TOV-21G
TumCG↓, TumCCA↑, ROS↑, DNAdam↑, Chk2↑, Dose∅, p‑γH2AX↑, CDC25↓, CHK1↓, cycD1/CCND1↓, eff↓, 12LOX↓,
1521- Ba,    Baicalein induces apoptosis via ROS-dependent activation of caspases in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
TumCG↓, Apoptosis↑, IAP1↓, IAP2↓, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, MMP↓, Casp8↑, BID↑, ROS?, eff↓, DR4↑, DR5↑, FasL↑, TRAIL↑,
1523- Ba,    Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
TumCD↑, Apoptosis↑, ROS↑, eff↓, Casp3↑, Bcl-2↓, selectivity↑, Cyt‑c↑, LDH?, BNIP3?, BAX↑,
1524- Ba,    Baicalein Induces Caspase‐dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
DR5↑, FADD↑, FasL↑, Casp8↑, cFLIP↓, Casp3↑, Casp9↑, cl‑PARP↑, MMP↓, BID↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑, Apoptosis↑, TumCCA↑, DR5↑, FasL↑, DR4∅, cFLIP↓, FADD↑, MMPs↓,
1525- Ba,  almon,    Synergistic antitumor activity of baicalein combined with almonertinib in almonertinib-resistant non-small cell lung cancer cells through the reactive oxygen species-mediated PI3K/Akt pathway
- in-vitro, Lung, H1975 - in-vivo, Lung, NA
eff↑, TumCP↓, Apoptosis↑, cl‑Casp3↑, cl‑PARP↑, cl‑Casp9↑, p‑PI3K↓, p‑Akt↓, ROS↑, eff↓,
1528- Ba,    Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma
- in-vitro, OS, CAL27
Apoptosis↑, ROS↑, eff↓, TumAuto↑, cl‑PARP↑, Bax:Bcl2↑, Beclin-1↑, p62↓,
1529- Ba,    Studies on the Inhibitory Mechanisms of Baicalein in B16F10 Melanoma Cell Proliferation
- in-vitro, Melanoma, B16-F10
ROS↑, eff↓, tumCV↓, Casp3↑, necrosis↑,
1530- Ba,    Baicalein Decreases Hydrogen Peroxide‐Induced Damage to NG108‐15 Cells via Upregulation of Nrf2
- in-vitro, Nor, NG108-15
*12LOX↓, *ROS↓, *NRF2↑, *eff↑,
1531- Ba,    Proteomic analysis of the effects of baicalein on colorectal cancer cells
- in-vitro, CRC, DLD1 - in-vitro, CRC, SW48
TumCP↓, ROS↓, Prx6↑, eff↓, TumCCA↑, ROS↝, *ROS∅,
1532- Ba,    Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives
- Review, NA, NA
ROS↑, ER Stress↑, Ca+2↑, MMPs↓, Cyt‑c↑, Casp3↑, ROS↑, DR5↑, ROS↑, BAX↑, Bcl-2↓, MMP↓, Casp3↑, Casp9↑, P53↑, p16↑, P21↑, p27↑, HDAC10↑, MDM2↓, Apoptosis↑, PI3K↓, Akt↓, p‑Akt↓, p‑mTOR↓, NF-kB↓, p‑IκB↓, IκB↑, BAX↑, Bcl-2↓, ROS⇅, BNIP3↑, p38↑, 12LOX↓, Mcl-1↓, Wnt?, GLI2↓, AR↓, eff↑,
2047- BA,    Sodium butyrate inhibits migration and induces AMPK-mTOR pathway-dependent autophagy and ROS-mediated apoptosis via the miR-139-5p/Bmi-1 axis in human bladder cancer cells
- in-vitro, CRC, T24 - in-vitro, Nor, SV-HUC-1 - in-vitro, Bladder, 5637 - in-vivo, NA, NA
HDAC↓, AntiTum↑, TumCMig↓, AMPK↑, mTOR↑, TumAuto↑, ROS↑, miR-139-5p↑, BMI1↓, TumCI?, E-cadherin↑, N-cadherin↓, Vim↓, Snail↓, cl‑PARP↑, cl‑Casp3↑, BAX↑, Bcl-2↓, Bcl-xL↓, MMP↓, PINK1↑, PARK2↑, TumMeta↓, TumCG↓, LC3II↑, p62↓, eff↓,
2050- BA,    The Role of Sodium Phenylbutyrate in Modifying the Methylome of Breast Cancer Cells
- in-vitro, BC, MCF-7
eff↑, HDAC↓, TumCG↓,
2597- Ba,    Baicalein – An Intriguing Therapeutic Phytochemical in Pancreatic Cancer
- Review, PC, NA
chemoP↑, ChemoSen↑, 12LOX?, Bcl-2↓, BAX↑, Mcl-1↓, ERK↓, Prx6↑, Dose↝, BioAv↓, eff↑,
2605- Ba,  BA,    Potential therapeutic effects of baicalin and baicalein
- Review, Var, NA - Review, Stroke, NA - Review, IBD, NA - Review, Arthritis, NA - Review, AD, NA - Review, Park, NA
cardioP↑, Inflam↓, cognitive↑, *hepatoP↑, *ROS?, *SOD↑, *GSH↑, *MMP↑, *GutMicro↑, ChemoSen↑, *TNF-α↓, *IL10↑, *IL6↓, *eff↑, *ROS↓, *COX2↓, *NF-kB↓, *STAT3↓, *PGE2↓, *MPO↓, *IL1β↓, *MMP2↓, *MMP9↓, *β-Amyloid↓, *neuroP↑, *Dose↝, *BioAv↝, *BioAv↝, *BBB↑, *BDNF↑,
2612- Ba,  MF,    effect_of_a_static_magnetic_field_and_baicalin_or_baicalein_interactions_on_amelanotic_melanoma_cell_cultures_C32">The effect of a static magnetic field and baicalin or baicalein interactions on amelanotic melanoma cell cultures (C32)
- in-vitro, Melanoma, NA
SOD1↑, SOD2↑, GPx1↑, Dose?, eff↝, SOD1↓, SOD2↓, GPx1↓,
2624- Ba,    Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression
- in-vitro, Nor, RAW264.7
*HO-1↑, *ERK↑, *ROS↓, *eff↑, *MMP↑, *Cyt‑c∅,
2625- Ba,  LT,    Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocyte
- in-vivo, Stroke, NA
*lipid-P↓, *ACSL4∅, *NRF2∅, *GPx4∅, *Ferroptosis↓, *ROS↓, *MDA↓, *eff↑, *HO-1∅,
2290- Ba,    Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer
- Review, GI, NA
p‑mTOR↓, p‑Akt↓, p‑IKKα↓, NF-kB↓, PI3K↓, Akt↓, ROCK1↓, GSK‐3β↓, CycB/CCNB1↓, cycD1/CCND1↓, cycA1/CCNA1↑, CDK4↓, P53↑, P21↑, TumCCA↑, MMP2↓, MMP9↓, EMT↓, Hif1a↓, Shh↓, PD-L1↓, STAT3↓, IL1β↓, IL2↓, IL6↓, PKM2↓, HDAC10↓, P-gp↓, Bcl-xL↓, eff↓, BioAv↓, BioAv↑,
2474- Ba,    Anticancer properties of baicalein: a review
- Review, Var, NA - in-vitro, Nor, BV2
ROS⇅, ROS↑, ER Stress↑, Ca+2↑, Apoptosis↑, eff↑, DR5↑, 12LOX↓, Cyt‑c↑, Casp7↑, Casp9↑, Casp3↑, cl‑PARP↑, TumCCA↑, cycE/CCNE↑, CDK4↓, cycD1/CCND1↓, VEGF↓, cMyc↓, Hif1a↓, NF-kB↓, BioEnh↑, BioEnh↑, P450↓, *Hif1a↓, *iNOS↓, *COX2↓, *VEGF↓, *ROS↓, *PI3K↓, *Akt↓,
2482- Ba,    Modulation of Neuroinflammation in Poststroke Rehabilitation: The Role of 12/15-Lipoxygenase Inhibition and Baicalein
- Review, Stroke, NA
*12LOX↓, *neuroP↑, *eff↑,
2476- Ba,    Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells
- in-vitro, Lung, A549
TumCG↓, Apoptosis↑, DR5↑, FasL↑, FADD↑, Casp8↑, cFLIP↓, Casp9↑, Casp3↑, cl‑PARP↑, MMP↓, BID↑, BAX↑, Cyt‑c↑, ROS↑, eff↓, AMPK↑,
2022- BBR,  GoldNP,  Rad,    Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition
- in-vitro, Liver, SMMC-7721 cell - in-vitro, Nor, HL7702
*toxicity↓, radioP↑, BioAv↑, AntiTum↑, selectivity↑, eff↑, chemoP↑,
2021- BBR,    Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways
- Review, NA, NA
*antiOx?, *Inflam↓, Apoptosis↑, TumCCA↑, BAX↑, eff↑, VEGF↓, PI3K↓, Akt↓, mTOR↓, Telomerase↓, β-catenin/ZEB1↓, Wnt↓, EGFR↓, AP-1↓, NF-kB↓, COX2↑, NRF2↓, RadioS↑, STAT3↓, ERK↓, AR↓, ROS↑, eff↑, selectivity↑, selectivity↑, BioAv↓, DNMT1↓, cMyc↓,
1390- BBR,  Rad,    Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells
- in-vitro, Pca, PC3
RadioS↑, Apoptosis↑, ROS↑, eff↑, BAX↑, Casp3↑, P53↑, p38↑, JNK↑, Bcl-2↓, ERK↓, HO-1↓,
1394- BBR,  DL,    Synergistic Inhibitory Effect of Berberine and d-Limonene on Human Gastric Carcinoma Cell Line MGC803
- in-vitro, GC, MGC803
eff↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, TumCCA↑,
1402- BBR,    Berberine-induced apoptosis in human glioblastoma T98G cells is mediated by endoplasmic reticulum stress accompanying reactive oxygen species and mitochondrial dysfunction
- in-vitro, GBM, T98G
tumCV↓, ROS↑, Ca+2↑, ER Stress↑, eff↓, Bax:Bcl2↑, MMP↓, Casp9↑, Casp3↑, cl‑PARP↑,
1404- BBR,    Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation
- in-vitro, Pca, PC3
Apoptosis↑, *Apoptosis∅, MMP↓, cl‑Casp3↑, cl‑Casp9↑, cl‑PARP↑, ROS↑, eff↓, Cyt‑c↑,
1374- BBR,  PDT,    Berberine associated photodynamic therapy promotes autophagy and apoptosis via ROS generation in renal carcinoma cells
- in-vitro, RCC, 786-O - in-vitro, RCC, HK-2
ROS↑, TumAuto↑, Apoptosis↑, Casp3↑, eff↑,
1385- BBR,  5-FU,    Low-Dose Berberine Attenuates the Anti-Breast Cancer Activity of Chemotherapeutic Agents via Induction of Autophagy and Antioxidation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↓, ROS↑, TumCP↑, NRF2↑, ChemoSen↓,
1379- BBR,    Berberine derivative DCZ0358 induce oxidative damage by ROS-mediated JNK signaling in DLBCL cells
- in-vitro, lymphoma, NA
TumCP↓, CDK4↓, CDK6↓, cycD1/CCND1↓, TumCCA↑, MMP↓, Ca+2↑, ATP↓, mtDam↑, Apoptosis↑, ROS↑, JNK↑, eff↓,
1378- BBR,    Berberine induces non-small cell lung cancer apoptosis via the activation of the ROS/ASK1/JNK pathway
- in-vitro, Lung, NA
Apoptosis↑, Casp3↑, Cyt‑c↑, MMP↓, p‑JNK↑, eff↓,
2702- BBR,    The enhancement of combination of berberine and metformin in inhibition of DNMT1 gene expression through interplay of SP1 and PDPK1
- in-vitro, Lung, A549 - in-vitro, Lung, H1975
TumCG↓, MAPK↓, FOXO3↑, TumCCA↑, TumCMig↓, TumCI↓, Sp1/3/4↓, PDK1↓, DNMT1↓, eff↑,
2674- BBR,    Berberine: A novel therapeutic strategy for cancer
- Review, Var, NA - Review, IBD, NA
Inflam↓, AntiCan↑, Apoptosis↑, TumAuto↑, TumCCA↑, TumMeta↓, TumCI↓, eff↑, eff↑, CD4+↓, TNF-α↓, IL1↓, BioAv↓, BioAv↓, other↓, AMPK↑, MAPK↓, NF-kB↓, IL6↓, MCP1↓, PGE2↓, COX2↓, *ROS↓, *antiOx↑, *GPx↑, *Catalase↑, AntiTum↑, TumCP↓, angioG↓, Fas↑, FasL↑, ROS↑, ATM↑, P53↑, RB1↑, Casp9↑, Casp8↑, Casp3↓, BAX↑, Bcl-2↓, Bcl-xL↓, IAP1↓, XIAP↓, survivin↓, MMP2↓, MMP9↓, CycB/CCNB1↓, CDC25↓, CDC25↓, Cyt‑c↑, MMP↓, RenoP↑, mTOR↓, MDM2↓, LC3II↑, ERK↓, COX2↓, MMP3↓, TGF-β↓, EMT↑, ROCK1↓, FAK↓, RAS↓, Rho↓, NF-kB↓, uPA↓, MMP1↓, MMP13↓, ChemoSen↑,
2678- BBR,    Berberine as a Potential Agent for the Treatment of Colorectal Cancer
- Review, CRC, NA
*Inflam↓, *antiOx↑, *cardioP↑, *neuroP↑, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDC2↓, AMPK↝, mTOR↝, Casp8↑, Casp9↑, Cyt‑c↑, TumCMig↓, TumCI↓, EMT↓, MMPs↓, E-cadherin↓, Telomerase↓, *toxicity↓, GRP78/BiP↓, EGFR↓, CDK4↓, COX2↓, PGE2↓, p‑JAK2↓, p‑STAT3↓, MMP2↓, MMP9↓, GutMicro↑, eff↝, *BioAv↓, BioAv↑,
2686- BBR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Nor, NA
Inflam↓, IL6↓, MCP1↓, COX2↓, PGE2↓, MMP2↓, MMP9↓, DNAdam↑, eff↝, Telomerase↓, Bcl-2↓, AMPK↑, ROS↑, MMP↓, ATP↓, p‑mTORC1↓, p‑S6K↓, ERK↓, PI3K↓, PTEN↑, Akt↓, Raf↓, MEK↓, Dose↓, Dose↑, selectivity↑, TumCCA↑, eff↑, EGFR↓, Glycolysis↓, Dose?, p27↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycE/CCNE↓, Bax:Bcl2↑, Casp3↑, Casp9↑, VEGFR2↓, ChemoSen↑, eff↑, eff↑, PGE2↓, JAK2↓, STAT3↓, CXCR4↓, CCR7↓, uPA↓, CSCs↓, EMT↓, Diff↓, CD133↓, Nestin↓, n-MYC↓, NOTCH↓, SOX2↓, Hif1a↓, VEGF↓, RadioS↑,
2689- BBR,    Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells
- in-vitro, Nor, PC12 - in-vitro, AD, NA - in-vitro, Stroke, NA
*ROS↓, *lipid-P↓, *DNAdam↓, *GSH↑, *SOD↑, *eff↑, *cl‑Casp3↓, *BAX↓, *neuroP↑, *Dose↝, *Ca+2↓,
4275- BBR,    Pharmacological effects of berberine on mood disorders
- Review, NA, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *eff↑, *5HT↑, *Mood↑, *BDNF↑,
3754- BBR,  CUR,  EGCG,  Hup,    Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review
*AChE↓, *Aβ↓, *LDL↓, *RenoP↑, *BChE↓, *eff↑, *BACE↓, *AChE↓, *eff↑,
1473- BCA,  SFN,    An Insight on Synergistic Anti-cancer Efficacy of Biochanin A and Sulforaphane Combination Against Breast Cancer
- in-vitro, BC, MCF-7
eff↑, ROS↑, other↑, ERK↓, Apoptosis↑,
2753- BetA,    Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells
- in-vitro, Cerv, HeLa
PI3K↓, p‑Akt↓, ROS↑, TumCCA↑, p27↑, P21↑, mt-Apoptosis↑, BAD↑, Casp9↑, MMP↓, eff↓,
2755- BetA,    Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines
- in-vitro, Colon, HT29 - in-vitro, BC, MCF-7 - in-vitro, Lung, H460
eff↑, Casp3↑, Casp7↑, NF-kB↓,
2771- BetA,    Cardioprotective Effect of Betulinic Acid on Myocardial Ischemia Reperfusion Injury in Rats
- in-vivo, Nor, NA - in-vivo, Stroke, NA
*cardioP↑, *LDH↓, eff↑,
2717- BetA,    Betulinic Acid Induces ROS-Dependent Apoptosis and S-Phase Arrest by Inhibiting the NF-κB Pathway in Human Multiple Myeloma
- in-vitro, Melanoma, U266 - in-vivo, Melanoma, NA - in-vitro, Melanoma, RPMI-8226
Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, NF-kB↓, Cyt‑c↑, Casp3↑, Casp8↑, Casp9↑, cl‑PARP1↑, MDA↑, SOD↓, SOD2↓, GCLM↓, GSTA1↓, FTH1↓, GSTs↓, TumVol↓,
2718- BetA,    The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis
- in-vitro, AML, U937
TumCCA↑, Apoptosis↑, i-ROS↑, cycA1/CCNA1↓, CycB/CCNB1↓, P21↑, Cyt‑c↑, MMP↓, Bax:Bcl2↑, Casp9↑, Casp3↑, PARP↓, eff↓, *antiOx↑, *Inflam↓, *hepatoP↑, selectivity↑, NF-kB↓, *ROS↓,
2729- BetA,    Betulinic acid in the treatment of tumour diseases: Application and research progress
- Review, Var, NA
ChemoSen↑, mt-ROS↑, STAT3↓, NF-kB↓, selectivity↑, *toxicity↓, eff↑, GRP78/BiP↑, MMP2↓, P90RSK↓, TumCI↓, EMT↓, MALAT1↓, Glycolysis↓, AMPK↑, Sp1/3/4↓, Hif1a↓, angioG↓, NF-kB↑, NF-kB↓, MMP↓, Cyt‑c↑, Casp9↑, Casp3↑, RadioS↑, PERK↑, CHOP↑, *toxicity↓,
2737- BetA,    Multiple molecular targets in breast cancer therapy by betulinic acid
- Review, Var, NA
TumCP↓, Cyc↓, TOP1↓, TumCCA↑, angioG↓, NF-kB↓, Sp1/3/4↓, VEGF↓, MMPs↓, ChemoSen↑, eff↑, MMP↓, ROS↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, lipid-P↑, RadioS↑, eff↑,
2733- BetA,    Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling
- in-vitro, Oral, KB - in-vivo, NA, NA
TumCP↓, TumVol↓, mt-Apoptosis↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↑, OCR↓, TumCCA↑, ROS↑, eff↓, P53↑, STAT3↓, cycD1/CCND1↑,
2730- BetA,    Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells
- in-vitro, Bladder, T24
tumCV↓, TumCP↓, TumCMig↓, Casp↑, TumAuto↑, LC3B-II↑, p‑AMPK↑, mTOR↓, BMI1↓, ROS↑, eff↓,
2728- BetA,    Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy
- in-vitro, Var, NA
NF-kB↑, IKKα↑, eff↓,
3987- betaCar,  Lyco,    Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection
- Trial, AD, NA
*eff↑,
3988- betaCar,  Lut,  Zeax,    Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables
- Trial, AD, NA
*eff↑, *eff↑, *eff↑,
3508- Bor,    The Effect of Boron on the UPR in Prostate Cancer Cells is Biphasic
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
ER Stress↑, GRP78/BiP↑, p‑eIF2α↑, UPR↑, eff↓,
4624- Bor,  VitD3,    Boron as a Medicinal Ingredient in Oral Natural Health Products
- Review, Pca, NA
*Half-Life↝, *eff↑, PSA↓, TumVol↓, IGF-1↓, *memory↓, *motorD↓,
4620- Bor,  BTZ,    Boron Compounds in the Breast Cancer Cells Chemoprevention and Chemotherapy
- Review, Var, NA - Review, Arthritis, NA - Review, Pca, NA
Risk↓, *memory↑, *Dose↑, Risk↓, other↝, *testos↑, other↝, Risk↓, TumCP↓, Apoptosis↑, eff↑,
4625- Bor,    Boron and Inflammation
- Review, Arthritis, NA - Review, ostP, NA
*Risk↓, *eff↑, *SOD↑, *NF-kB↓, *Risk↓, *CRP↓, *TNF-α↓, *Wound Healing↑,
732- Bor,    Boron's neurophysiological effects and tumoricidal activity on glioblastoma cells with implications for clinical treatment
eff↑, IGF-1↝, Glycolysis↝,
757- Bor,    Phenylboronic acid is a more potent inhibitor than boric acid of key signaling networks involved in cancer cell migration
- in-vitro, Pca, DU145 - in-vitro, Nor, RWPE-1
Rho↓, Rac1↓, Cdc42↓, *eff↑,
744- Bor,    Borax affects cellular viability by inducing ER stress in hepatocellular carcinoma cells by targeting SLC12A5
- in-vitro, HCC, HepG2 - in-vitro, Nor, HL7702
TumCCA↑, SLC12A5↓, ATF6↑, CHOP↑, GRP78/BiP↑, Casp3↑, ER Stress↝, *toxicity↓, *eff↓,
746- Bor,    Organoboronic acids/esters as effective drug and prodrug candidates in cancer treatments: challenge and hope
- Review, NA, NA
eff↑, *toxicity↓, ROS↑, LAT↓, AntiCan↑, AR↓, PSMB5↓, IGF-1↓, PSA↓, TumVol↓, eff↑, Rho↓, Cdc42↓, Ca+2↓, eff↑,
696- Bor,    Nothing Boring About Boron
- Review, Var, NA
*hs-CRP↓, *TNF-α↓, *SOD↑, *Catalase↑, *GPx↑, *cognitive↑, *memory↑, *Risk↓, *SAM-e↑, *NAD↝, *ATP↝, *Ca+2↝, HDAC↓, TumVol↓, IGF-1↓, PSA↓, Cyc↓, TumCMig↓, *serineP↓, HIF-1↓, *ChemoSideEff↓, *VitD↑, *Mag↑, *eff↑, Risk↓, *Inflam↓, *neuroP↑, *Calcium↑, *BMD↑, *chemoP↑, AntiCan↑, *Dose↑, *Dose↝, *BMPs↑, *testos↑, angioG↓, Apoptosis↑, *selectivity↑, *chemoPv↑,
1451- Bos,    Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro
- in-vitro, CRC, HepG2 - in-vitro, CRC, HCT116
eff↑,
3868- Bos,    Enhanced absorption of boswellic acids by a lecithin delivery form (Phytosome(®)) of Boswellia extract
*Inflam↓, *BioAv↓, *BioAv↑, *eff↑,
3867- Bos,    Effect of food intake on the bioavailability of boswellic acids from a herbal preparation in healthy volunteers
- Human, Nor, NA
*eff↑, BioAv↝,
2767- Bos,    The potential role of boswellic acids in cancer prevention and treatment
- Review, Var, NA
*Inflam↓, AntiCan↑, *MAPK↑, *Ca+2↝, p‑ERK↓, TumCI↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, p‑RB1↓, *NF-kB↓, *TNF-α↓, NF-kB↓, IKKα↓, MCP1↓, IL1α↓, MIP2↓, VEGF↓, Tf↓, COX2↓, MMP9↓, CXCR4↓, VEGF↓, eff↑, PPARα↓, lipid-P?, STAT3↓, TOP1↓, TOP2↑, 5HT↓, p‑PDGFR-BB↓, PDGF↓, AR↓, DR5↑, angioG↓, DR4↑, Casp3↑, Casp8↑, cl‑PARP↑, eff↑, chemoPv↑, Wnt↓, β-catenin/ZEB1↓, ascitic↓, Let-7↑, miR-200b↑, eff↑, MMP1↓, MMP2↓, eff↑, BioAv↓, BioAv↑, Half-Life↓, toxicity↓, Dose↑, BioAv↑, ChemoSen↑,
2775- Bos,    The journey of boswellic acids from synthesis to pharmacological activities
- Review, Var, NA - Review, AD, NA - Review, PSA, NA
ROS↑, ER Stress↑, TumCG↓, Apoptosis↑, Inflam↓, ChemoSen↑, Casp↑, ERK↓, cl‑PARP↑, AR↓, cycD1/CCND1↓, VEGFR2↓, CXCR4↓, radioP↑, NF-kB↓, VEGF↓, P21↑, Wnt↓, β-catenin/ZEB1↓, Cyt‑c↑, MMP2↓, MMP1↓, MMP9↓, PI3K↓, MAPK↓, JNK↑, *5LO↓, *NRF2↑, *HO-1↑, *MDA↓, *SOD↑, *hepatoP↑, *ALAT↓, *AST↓, *LDH↑, *CRP↓, *COX2↓, *GSH↑, *ROS↓, *Imm↑, *Dose↝, *eff↑, *neuroP↑, *cognitive↑, *IL6↓, *TNF-α↓,
2399- CA,  EA,    Polyphenol-rich diet mediates interplay between macrophage-neutrophil and gut microbiota to alleviate intestinal inflammation
- Review, Col, NA
eff↝, eff↑, Weight↑,
1650- CA,    Adjuvant Properties of Caffeic Acid in Cancer Treatment
- Review, Var, NA
ROS↑, antiOx↑, Inflam↓, AntiCan↑, NF-kB↓, STAT3↓, ERK↓, ChemoSen↑, RadioS↑, AMPK↑, eff↑, selectivity↑, COX2↓, Dose∅, PHDs↓, MMP9↓, MMP2↓, Dose∅, Dose∅, Ca+2↑, Dose?, MMP↓, RadioS↑,
1651- CA,  PBG,    Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer
- Review, Var, NA
Apoptosis↑, TumCCA↓, TumCMig↓, TumMeta↓, ChemoSen↑, eff↑, eff↑, eff↓, eff↝, Dose∅, AMPK↑, p62↓, LC3II↑, Ca+2↑, Bax:Bcl2↑, CDK4↑, CDK6↑, RB1↑, EMT↓, E-cadherin↑, Vim↓, β-catenin/ZEB1↓, NF-kB↓, angioG↑, VEGF↓, TSP-1↑, MMP9↓, MMP2↓, ChemoSen↑, eff↑, ROS↑, CSCs↓, Fas↑, P53↑, BAX↑, Casp↑, β-catenin/ZEB1↓, NDRG1↑, STAT3↓, MAPK↑, ERK↑, eff↑, eff↑, eff↑,
1640- CA,  MET,    Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines
- in-vitro, Cerv, SiHa
GLS↓, NADPH↓, ROS↑, TumCD↑, AMPK↑, Hif1a↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDH↓, cMyc↓, BAX↓, cycD1/CCND1↓, PDH↓, ROS↑, Apoptosis↑, eff↑, ACLY↓, FASN↓, Bcl-2↓, Glycolysis↓,
3758- CA,  RT,  CGA,    Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymes
- Analysis, AD, NA
*AChE↓, *eff↑,
3784- CA,  CGA,    Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-oxidant Induced Oxidative Stress in Rats’ Brain-In Vitro
- Study, AD, NA
*AChE↓, *BChE↓, *eff↑, *ROS↓, *neuroP↑,
1653- Caff,    Higher Caffeinated Coffee Intake Is Associated with Reduced Malignant Melanoma Risk: A Meta-Analysis Study
- Review, Melanoma, NA
AntiCan↑, eff↓,
2013- CAP,    Capsaicin, a component of red peppers, inhibits the growth of androgen-independent, p53 mutant prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vivo, NA, NA
TumCP↓, P53↑, P21↑, BAX↑, PSA↓, AR↓, NF-kB↓, Proteasome↓, TumVol↓, eff∅,
2014- CAP,    Role of Mitochondrial Electron Transport Chain Complexes in Capsaicin Mediated Oxidative Stress Leading to Apoptosis in Pancreatic Cancer Cells
- in-vitro, PC, Bxpc-3 - in-vitro, Nor, HPDE-6 - in-vivo, PC, AsPC-1
ROS↑, *ROS∅, selectivity↑, compI↓, compIII↓, eff↑, selectivity↑, ATP↓, Cyt‑c↑, Casp9↑, Casp3↑, MMP↓, SOD↓, GSH/GSSG↓, Apoptosis↑, *toxicity∅, GSH↓, Catalase↓, GPx↓, Dose↝,
2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
AntiCan↑, TumCG↓, angioG↓, TumMeta↓, BioAv↓, BioAv↓, BioAv↑, selectivity↑, EPR↑, eff↓, ChemoSen↑, Dose∅, Half-Life∅, eff↑,
2016- CAP,    Capsaicin binds the N-terminus of Hsp90, induces lysosomal degradation of Hsp70, and enhances the anti-tumor effects of 17-AAG (Tanespimycin)
HSP90↓, ATPase↓, eff↑, HSP70/HSPA5↓, other↝, NF-kB↓, EGFR↓, CDK4↓, Src↓, VEGF↓, PI3K↓, Akt↓,
2018- CAP,  MF,    Capsaicin: Effects on the Pathogenesis of Hepatocellular Carcinoma
- Review, HCC, NA
TRPV1↑, eff↑, Akt↓, mTOR↓, p‑STAT3↑, MMP2↑, ER Stress↑, Ca+2↑, ROS↑, selectivity↑, MMP↓, eff↑,
2019- CAP,    Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer
- Review, Var, NA
chemoPv↑, Ca+2↑, antiOx↑, *ROS↓, *MMP∅, *Cyt‑c∅, *Casp3∅, *eff↑, *Inflam↓, *NF-kB↓, *COX2↓, iNOS↓, TRPV1↑, i-Ca+2?, MMP↓, Cyt‑c↑, Bax:Bcl2↑, P53↑, JNK↑, PI3K↓, Akt↓, mTOR↓, LC3II↑, ATG5↑, p62↑, Fap1↓, Casp3↑, Apoptosis↑, ROS↑, MMP9↓, eff↑, eff↓, eff↑, selectivity↑, eff↑, ChemoSen↑,
1518- CAP,    Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo
- in-vitro, CRC, HCT116
ENOX2↑, TumCP↑, TumCMig↑, Dose?, eff↑,
3869- Carno,    Carnosine, Small but Mighty—Prospect of Use as Functional Ingredient for Functional Food Formulation
- Review, AD, NA - Review, Stroke, NA
*ROS↓, *IronCh↑, *AntiAge↑, *antiOx↑, *Inflam↓, *neuroP↑, *lipid-P↓, *toxicity↓, *NOX4↓, *SOD↑, *HNE↓, *IL6↓, *TNF-α↓, *IL1β↓, *Sepsis↓, *eff↑, *GABA↝, *Aβ↓, Glycolysis↓, AntiTum↑, p‑Akt↓, TumCCA↑, angioG↓, VEGFR2↓, NF-kB↓,
1244- CGA,  immuno,    Cancer Differentiation Inducer Chlorogenic Acid Suppresses PD-L1 Expression and Boosts Antitumor Immunity of PD-1 Antibody
- in-vivo, NA, NA
PD-L1↓, T-Cell↑, eff↑,
2175- Chemo,  VitB12,  FA,    Systemic Chemotherapy Interferes in Homocysteine Metabolism in Breast Cancer Patients
- Study, BC, NA
other↓, other↝, homoC↓, eff↝, other↝,
4490- Chit,  FA,    Chitosan Nanoparticle-Based Drug Delivery Systems: Advances, Challenges, and Future Perspectives
- Review, NA, NA
EPR↑, *BioAv↑, *eff↑, *other↝, *Insulin↑, *Bacteria↓, eff↑, ChemoSen↑,
4489- Chit,  Se,    Inhibiting Metastasis and Improving Chemosensitivity via Chitosan-Coated Selenium Nanoparticles for Brain Cancer Therapy
- in-vitro, GBM, U87MG
TumCG↓, TumCMig↓, TumCI↓, ChemoSen↑, *BBB↑, eff↑, eff↑, eff↑, selectivity↑, MMP2↓, MMP9↓, EPR↑,
4479- Chit,    Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells
- in-vitro, Cerv, HeLa - in-vitro, HCC, SMMC-7721 cell
TumAuto↑, ROS↑, eff↓,
4477- Chit,    Recent Advances in Chitosan and its Derivatives in Cancer Treatment
- Review, NA, NA
*BioAv↑, AntiTum↑, eff↑, TumCG↓, angioG↓, TumMeta↓, eff↑, *toxicity↓, other↝,
3701- Chol,    Lifelong choline supplementation ameliorates Alzheimer's disease pathology and associated cognitive deficits by attenuating microglia activation
- in-vivo, AD, NA
*Ach↑, *Aβ↓, *memory↑, *APP↓, *eff↑, *neuroP↑, *Dose↑,
3704- Chol,    Acetylcholine, aging, and Alzheimer's disease
- Review, AD, NA
*memory↑, *eff↑, *eff↑,
2803- CHr,  5-FU,    Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells
- in-vitro, GC, AGS
ChemoSen↑, TumCCA↑, eff↑, MDR1↓,
2781- CHr,  PBG,    Chrysin a promising anticancer agent: recent perspectives
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, MMP9↑, uPA↓, VEGF↓, AR↓, Casp↑, TumMeta↓, TumCCA↑, angioG↓, BioAv↓, *hepatoP↑, *neuroP↑, *SOD↑, *GPx↑, *ROS↓, *Inflam↓, *Catalase↑, *MDA↓, ROS↓, BBB↑, Half-Life↓, BioAv↑, ROS↑, eff↑, ROS↑, ROS↑, lipid-P↑, ER Stress↑, NOTCH1↑, NRF2↓, p‑FAK↓, Rho↓, PCNA↓, COX2↓, NF-kB↓, PDK1↓, PDK3↑, GLUT1↓, Glycolysis↓, mt-ATP↓, Ki-67↓, cMyc↓, ROCK1↓, TOP1↓, TNF-α↓, IL1β↓, CycB/CCNB1↓, CDK2↓, EMT↓, STAT3↓, PD-L1↓, IL2↑,
2806- CHr,  Se,    Selenium-containing chrysin and quercetin derivatives: attractive scaffolds for cancer therapy
- in-vitro, Var, NA
eff↑, selectivity↑, Dose↝, TrxR↓, GSH↓, MMP↓, ROS↑, H2O2↑,
2782- CHr,    Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives
- Review, Var, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *Inflam↓, *hepatoP↑, *neuroP↑, *BioAv↓, *cardioP↑, *lipidLev↓, *RenoP↑, *TNF-α↓, *IL2↓, *PI3K↓, *Akt↓, *ROS↓, *cognitive↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, VEGF↓, p‑STAT3↓, TumMeta↓, TumCP↓, eff↑, eff↑, IL1β↓, IL6↓, NF-kB↓, ROS↑, MMP↓, Cyt‑c↑, Apoptosis↑, ER Stress↑, Ca+2↑, TET1↑, Let-7↑, Twist↓, EMT↓, TumCCA↑, Casp3↑, Casp9↑, BAX↑, HK2↓, GlucoseCon↓, lactateProd↓, Glycolysis↓, SHP1↑, N-cadherin↓, E-cadherin↑, UPR↑, PERK↑, ATF4↑, eIF2α↑, RadioS↑, NOTCH1↑, NRF2↓, BioAv↑, eff↑,
2784- CHr,    Chrysin targets aberrant molecular signatures and pathways in carcinogenesis (Review)
- Review, Var, NA
Apoptosis↑, TumCMig↓, *toxicity↝, ChemoSen↑, *BioAv↓, Dose↝, neuroP↑, *P450↓, *ROS↓, *HDL↑, *GSTs↑, *SOD↑, *Catalase↑, *MAPK↓, *NF-kB↓, *PTEN↑, *VEGF↑, ROS↑, MMP↓, Ca+2↑, selectivity↑, PCNA↓, Twist↓, EMT↓, CDKN1C↑, p‑STAT3↑, MMP2↓, MMP9↓, eff↑, cycD1/CCND1↓, hTERT/TERT↓, CLDN1↓, TumVol↓, OS↑, COX2↓, eff↑, CDK2↓, CDK4↓, selectivity↑, TumCCA↑, E-cadherin↑, HK2↓, HDAC↓,
2785- CHr,    Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin
- Review, Var, NA
*NF-kB↓, *COX2↓, *iNOS↓, angioG↓, TOP1↓, HDAC↓, TNF-α↓, IL1β↓, cardioP↑, RenoP↑, neuroP↑, LDL↓, BioAv↑, eff↑, cycD1/CCND1↓, hTERT/TERT↓, MMP-10↓, Akt↓, STAT3↓, VEGF↓, EGFR↓, Snail↓, Slug↓, Vim↓, E-cadherin↑, eff↑, TET1↑, ROS↑, mTOR↓, PPARα↓, ER Stress↑, Ca+2↑, ERK↓, MMP↑, Cyt‑c↑, Casp3↑, HK2↓, NRF2↓, HO-1↓, MMP2↓, MMP9↓, Fibronectin↓, GRP78/BiP↑, XBP-1↓, p‑eIF2α↑, *AST↓, ALAT↓, ALP↓, LDH↓, COX2↑, Bcl-xL↓, IL6↓, PGE2↓, iNOS↓, DNAdam↑, UPR↑, Hif1a↓, EMT↓, Twist↓, lipid-P↑, CLDN1↓, PDK1↓, IL10↓, TLR4↓, NOTCH1↑, PARP↑, Mcl-1↓, XIAP↓,
2789- CHr,    Anticancer Activity of Ether Derivatives of Chrysin
- Review, Var, NA
eff↑, COX2↓, PGE2↓, eff↑,
2790- CHr,    Chrysin: Pharmacological and therapeutic properties
- Review, Var, NA
*hepatoP↑, *neuroP↓, *ROS↓, *cardioP↑, *Inflam↓, eff↑, hTERT/TERT↓, cycD1/CCND1↓, MMP9↓, MMP2↓, TIMP1↑, TIMP2↑, BioAv↑, HK2↓, ROS↑, MMP↓, Casp3↑, ADP:ATP↑, Apoptosis↑, ER Stress↑, UPR↑, GRP78/BiP↝, eff↑, Ca+2↑,
3891- Cin,    Identification of potential targets of cinnamon for treatment against Alzheimer's disease-related GABAergic synaptic dysfunction using network pharmacology
- Analysis, AD, NA
*BBB↑, *GABA↑, *eff↑, *antiOx↑, *Inflam↑, *Mood↑,
2315- Citrate,    Why and how citrate may sensitize malignant tumors to immunotherapy
- Review, Var, NA
Bcl-2↓, Mcl-1↓, survivin↓, Casp3↑, Casp9↑, Ferroptosis↑, lipid-P↑, Ca+2↓, Akt↓, mTOR↓, Hif1a↓, MCU↓, ATP↓, ROS↑, eff↑,
1576- Citrate,    Targeting citrate as a novel therapeutic strategy in cancer treatment
- Review, Var, NA
TCA↓, T-Cell↝, Glycolysis↓, PKM2↓, PFK2?, SDH↓, PDH↓, β-oxidation↓, CPT1A↓, FASN↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, cl‑PARP↑, Hif1a↓, GLUT1↓, angioG↓, Ca+2↓, ROS↓, eff↓, Dose↓, eff↑, Mcl-1↓, HK2↓, IGF-1R↓, PTEN↑, citrate↓, Dose∅, eff↑, eff↑, eff↑, eff↑,
1574- Citrate,    Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway
- in-vitro, Lung, A549 - in-vitro, Melanoma, WM983B - in-vivo, NA, NA
TumCG↓, eff↑, T-Cell↑, p‑IGF-1R↓, p‑Akt↓, PTEN↑, p‑eIF2α↑, OCR↓, ROS↓, ECAR∅, IL1↑, TNF-α↑, IL10↑, IGF-1R↓, eIF2α↑, PTEN↑, TCA↓, Glycolysis↓, selectivity↑, *toxicity∅, Dose∅,
1577- Citrate,    Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet
- in-vivo, PC, NA - in-vitro, PC, PANC1 - in-vitro, PC, PATU-8988 - in-vitro, PC, MIA PaCa-2
Apoptosis↑, TumCP↓, TumCG↑, SPARC↑, Glycolysis↓, OCR↓, pol-M1↑, pol-M2 MC↓, Weight∅, ATP↓, ECAR↓, mitResp↓, i-ATP↑, p65↓, i-Ca+2↑, eff↓,
1578- Citrate,    Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update
- Review, Var, NA
TCA↑, FASN↑, Glycolysis↓, glucoNG↑, PFK1↓, PFK2↓, FBPase↑, TumCP↓, eff↑, ACLY↓, Dose↑, Casp3↑, Casp2↑, Casp8↑, Casp9↑, Bcl-xL↓, Mcl-1↓, IGF-1R↓, PI3K↓, Akt↓, mTOR↓, PTEN↑, ChemoSen↑, Dose?,
1581- Citrate,    Hypothesis proved. . .citric acid (citrate) does improve cancer:A case of a patient suffering from medullary thyroid cancer
- Case Report, Thyroid, NA
OS↑, Weight↑, Dose∅, eff↑,
1583- Citrate,    Extracellular citrate and metabolic adaptations of cancer cells
- Review, NA, NA
Warburg↓, OXPHOS↓, Dose∅, TumCP↓, ATP↓, eff↑, Apoptosis↑, TumCG↓, PFK1↓,
1584- Citrate,    Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, i-Ca+2↓, TumCMig↓, CD133↓, pH↑, eff↑, Ki-67↓, eff↑,
1585- Citrate,    Sodium citrate targeting Ca2+/CAMKK2 pathway exhibits anti-tumor activity through inducing apoptosis and ferroptosis in ovarian cancer
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S - in-vitro, Nor, HEK293
Apoptosis↑, Ferroptosis↑, Ca+2↓, CaMKII ↓, Akt↓, mTOR↓, Hif1a↓, ROS↑, ChemoSen↑, Casp3↑, Casp9↑, BAX↑, Bcl-2↓, Cyt‑c↑, GlucoseCon↓, lactateProd↓, Pyruv↓, GLUT1↓, HK2↓, PFKP↓, Glycolysis↓, Hif1a↓, p‑Akt↓, p‑mTOR↓, Iron↑, lipid-P↑, MDA↑, ROS↑, H2O2↑, mtDam↑, GSH↓, GPx↓, GPx4↓, NADPH/NADP+↓, eff↓, FTH1↓, LC3‑Ⅱ/LC3‑Ⅰ↑, NCOA4↑, eff↓, TumCG↓,
1592- Citrate,    Inhibition of Mcl-1 expression by citrate enhances the effect of Bcl-xL inhibitors on human ovarian carcinoma cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, IGROV1
eff↑, tumCV↓, Mcl-1↓, eff↑,
3994- CoQ10,  Se,    Coenzyme Q10 Supplementation in Aging and Disease
- Review, AD, NA - Review, Park, NA
*AntiAge↑, *cardioP↑, *Inflam↓, *antiOx↑, *lipid-P↓, *QoL↑, *neuroP↑, *Dose↝, *BP↓, *IGF-1↑, *IGFBP1↑, *eff↑, *LDL↓, *HDL↑, *eff↑, *other↑, *RenoP↑, *ROS↓, *TNF-α↓, *IL6↓, *other↝, *other∅,
4776- CoQ10,    Antitumor properties of Coenzyme Q0 against human ovarian carcinoma cells via induction of ROS-mediated apoptosis and cytoprotective autophagy
- vitro+vivo, Ovarian, SKOV3
ROS↑, eff↓, AntiCan↑, Apoptosis↑, tumCV↓, TumCG↓, TumCCA↑, LC3s↑, ERStress↑, Beclin-1↑, Bax:Bcl2↑, HER2/EBBR2↓, Akt↓, mTOR↓,
4772- CoQ10,    The anti-tumor activities of coenzyme Q0 through ROS-mediated autophagic cell death in human triple-negative breast cells
- in-vitro, BC, MDA-MB-468 - in-vitro, BC, MDA-MB-231
TumCP↓, Apoptosis↑, Casp3↑, cl‑PARP↑, LC3II↑, eff↓, TumCG↓, Bax:Bcl2↑, Beclin-1↑, TumAuto↑, ROS↑,
4770- CoQ10,  VitK2,    Cancer cell stiffening via CoQ10 and UBIAD1 regulates ECM signaling and ferroptosis in breast cancer
- in-vitro, BC, MDA-MB-231
other↑, *antiOx↑, Risk↓, other↑, TumMeta↓, ECM/TCF↓, Akt2↓, Ferroptosis↑, eff↑,
4767- CoQ10,    Efficacy of Coenzyme Q10 for Improved Tolerability of Cancer Treatments: A Systematic Review
- Review, Var, NA
chemoP↑, cardioP↑, hepatoP↑, eff↝,
1595- Cu,    The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy
- Review, NA, NA
eff↑, ROS↑, eff↓,
1596- Cu,  CDT,    Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review
- Review, NA, NA
TumCD↑, Apoptosis↓, ROS↑, angioG↑, Cupro↑, Paraptosis↑, eff↑, eff↓, selectivity↑, DNAdam↑, eff↑, eff↑, eff↑, eff↑, Fenton↑, H2O2↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑, *toxicity↝, other↑, eff↑,
1597- Cu,    Anticancer potency of copper(II) complexes of thiosemicarbazones
- Review, NA, NA
eff↑, ROS↑,
1598- Cu,    Targeting copper in cancer therapy: 'Copper That Cancer'
- Review, NA, NA
eff↓, eff↑, Dose∅, eff↑, angioG↑, ROS↑,
1600- Cu,    Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis
- Review, NA, NA
ER Stress↑, ROS↑, AntiTum↑, GSH↓, Ferroptosis↑, selectivity↑, GSH/GSSG↓, *ROS∅, eff↑,
1602- Cu,    A simultaneously GSH-depleted bimetallic Cu(ii) complex for enhanced chemodynamic cancer therapy†
- in-vitro, BC, MCF-7 - in-vitro, BC, 4T1 - in-vitro, Lung, A549 - in-vitro, Liver, HepG2
eff↑, GSH↓, H2O2↑, ROS↑, *BioAv↑, selectivity↑, TumCCA↑, Apoptosis↑, Fenton↑, *toxicity?,
1603- Cu,  BP,  SDT,    Glutathione Depletion-Induced ROS/NO Generation for Cascade Breast Cancer Therapy and Enhanced Anti-Tumor Immune Response
- in-vitro, BC, 4T1 - in-vivo, NA, NA
GSH↓, Fenton↑, ROS↑, NO↑, sonoS↑, eff↑, NO↑, *toxicity∅, eff?,
1604- Cu,    Targeting copper metabolism: a promising strategy for cancer treatment
- Review, NA, NA
eff↓, eff↓, ROS↑, eff↑,
1572- Cu,    Recent Advances in Cancer Therapeutic Copper-Based Nanomaterials for Antitumor Therapy
- Review, NA, NA
eff↑, Fenton↑, ROS↑, eff↑, mtDam↑, BAX↑, Bcl-2↓, MMP↓, Cyt‑c↑, Casp3↑, ER Stress↑, CHOP↑, Apoptosis↑, selectivity↑, eff↑, Pyro↑, Paraptosis↑, Cupro↑, ChemoSen↑, eff↑,
1570- Cu,    Development of copper nanoparticles and their prospective uses as antioxidants, antimicrobials, anticancer agents in the pharmaceutical sector
- Review, NA, NA
selectivity↑, antiOx↑, ROS↑, eff↑, GSH↓, lipid-P↑, Catalase↓, SOD↓, other↑,
1609- CUR,  EA,    Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells
- in-vitro, Cerv, NA
eff↑, Dose∅, ROS↑, DNAdam↑, P53↑, P21↑, BAX↑, Dose∅,
1510- CUR,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
*NRF2↑, *GSH↑, *ROS↓, ChemoSideEff↓, eff↑, OS↓, chemoP↑,
1409- CUR,    Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma
- in-vivo, CCA, Walker256
TumCG↓, ROS↑, MMP↓, STAT3↓, TumCCA↑, eff↓,
1977- CUR,    Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
TrxR↓, Dose↝, eff↑,
1982- CUR,    Inhibition of thioredoxin reductase by curcumin analogs
- in-vitro, NA, NA
eff↑, TrxR↓,
1978- CUR,    Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells
- in-vitro, Cerv, HeLa
TrxR1↓, ROS↑, DNA-PK↑, eff↑, Trx↓, Trx1↓,
1979- CUR,  Rad,    Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase
- in-vitro, Lung, A549
eff↑, ROS↑, GSH/GSSG↓, TrxR↓, selectivity↑,
1981- CUR,    Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity
- in-vitro, Lung, NA
eff↑, ROS↑, mt-GSH↓, Bax:Bcl2↑, Cyt‑c↑, MMP↓, Casp3↑, Trx2↓, TrxR↓, mt-DNAdam↑,
3574- CUR,    The effect of curcumin (turmeric) on Alzheimer's disease: An overview
- Review, AD, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *cognitive↑, *memory↑, *Aβ↓, *COX2↓, *ROS↓, *AP-1↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *SOD↑, *GSH↑, *HO-1↑, *IronCh↑, *BioAv↓, *Half-Life↝, *Dose↝, *BBB↑, *BioAv↑, *toxicity∅, *eff↑,
3578- CUR,  SIL,    Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferation
- in-vitro, CRC, DLD1
eff↑, BioAv↓, TumCG↓,
3579- CUR,  SNP,    Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin
- Review, NA, NA
*IronCh↑, *BioAv↑, *antiOx↑, *Inflam↓, *BioAv↑, ROS↑, *neuroP↑, *eff↑,
3582- CUR,  PI,    Therapeutic and Preventive Effects of Piperine and its Combination with Curcumin as a Bioenhancer Against Aluminum-Induced Damage in the Astrocyte Cells
*eff↑, *IL6↓, *TGF-β↓, *BioAv↑,
3583- CUR,    Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers
- Review, Arthritis, NA
*TNF-α↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMPs↓, *eff↑,
3588- CUR,    The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies
- Review, AD, NA
*cognitive↝, *BioAv↑, *Inflam↓, *COX2↓, *iNOS↓, *NF-kB↓, *TNF-α↓, *IL1↓, *IL2↓, *IL6↓, *IL8↓, *IL12↓, *ROS↓, *RNS↓, *antiOx↑, *BBB↑, *BioAv↓, *cognitive↑, *memory↑, *tau↓, *eff↑,
2978- CUR,    N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells
- in-vitro, Lung, A549
ROS↑, hTERT/TERT↓, Sp1/3/4↓, eff↓,
2812- CUR,    Curcumin Induces High Levels of Topoisomerase I− and II−DNA Complexes in K562 Leukemia Cells
- in-vitro, AML, K562
TOP1↑, TOP2↑, eff↓,
2808- CUR,    Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation
- in-vitro, Liver, HUH7
Ferritin↓, IronCh↑, TumAuto↑, Apoptosis↑, eff↝, Dose↝,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1/CCND1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
4826- CUR,    The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management
- Review, Var, NA
*antiOx↑, *Inflam↑, *ROS↓, Apoptosis↑, TumCP↓, BioAv↓, Half-Life↓, eff↑, TumCCA↑, BAX↑, Bak↑, PUMA↑, BIM↑, NOXA↑, TRAIL↑, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, cMyc↓, Casp↑, NF-kB↓, STAT3↓, AP-1↓, angioG↓, TumMeta↑, VEGF↓, MMPs↓, DNMTs↓, HDAC↓, ROS↑,
4830- CUR,    Curcumin and Its Derivatives Induce Apoptosis in Human Cancer Cells by Mobilizing and Redox Cycling Genomic Copper Ions
- in-vitro, Var, NA
eff↑, ROS↑, DNAdam↑, TumCG↓, Apoptosis↑, eff↓, Fenton↑, eff↑,
130- CUR,    Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
BAD↝, BAX↝, eff↑,
1871- DAP,    Targeting PDK1 with dichloroacetophenone to inhibit acute myeloid leukemia (AML) cell growth
- in-vitro, AML, U937 - in-vivo, AML, NA
TumCP↓, Apoptosis↑, TumCG↓, PDK1↓, cl‑PARP↑, Bcl-xL↓, Bcl-2↓, Beclin-1↓, ATG3↓, PI3K↓, Akt↓, eff↑,
1876- DCA,  Chemo,    In vitro cytotoxicity of novel platinum-based drugs and dichloroacetate against lung carcinoid cell lines
- in-vivo, Lung, H727
eff↑, TumCG↓, Glycolysis↓, mitResp↑,
1887- DCA,    GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetate
- in-vitro, Var, NA
GSTZ1∅, eff↓, PDKs↓, Chl∅, eff↓,
1885- DCA,    Role of SLC5A8, a plasma membrane transporter and a tumor suppressor, in the antitumor activity of dichloroacetate
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
SMCT1∅, eff↓, eff↑, eff↑, PDKs↓, MMP↓, Glycolysis↓, mitResp↑, ROS↑, eff↑,
1881- DCA,  Chemo,    Co-treatment of dichloroacetate, omeprazole and tamoxifen exhibited synergistically antiproliferative effect on malignant tumors: in vivo experiments and a case report
- in-vitro, NA, HT1080 - in-vitro, NA, WI38 - Case Report, Var, NA
eff↑, selectivity↑, OS↑,
1878- DCA,  5-FU,    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer
- in-vitro, CRC, LS174T - in-vitro, CRC, LoVo - in-vitro, CRC, SW-620 - in-vitro, CRC, HT-29
tumCV↓, eff↑, PDKs↓, lactateProd↓, Glycolysis↓, mitResp↑, TumCCA↑, Bcl-2↓, BAX↑, Casp3↑,
1884- DCA,  Sal,    Dichloroacetate and Salinomycin Exert a Synergistic Cytotoxic Effect in Colorectal Cancer Cell Lines
- in-vitro, CRC, DLD1 - in-vitro, CRC, HCT116
eff↑, pH↓, PDKs↓, Warburg↓,
1875- DCA,    Dichloroacetate inhibits neuroblastoma growth by specifically acting against malignant undifferentiated cells
- in-vitro, neuroblastoma, NA - in-vivo, NA, NA
selectivity↑, AntiCan↑, TumVol↓, PDKs↓, mt-OXPHOS↑, MMP↓, Glycolysis↓, toxicity↓, Warburg↓, ROS↑, eff↑,
1873- DCA,    Dual-targeting of aberrant glucose metabolism in glioblastoma
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
PDKs↓, eff↑, selectivity↑, MMP↓, ROS↑, Apoptosis↑, Warburg↓, eff↑, Dose∅, toxicity∅,
1870- DCA,  Rad,    Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation
- in-vitro, Pca, PC3
TumCCA↑, Apoptosis↑, MMP↓, eff↑, RadioS↑,
1864- DCA,  MET,    Dichloroacetate Enhances Apoptotic Cell Death via Oxidative Damage and Attenuates Lactate Production in Metformin-Treated Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, T47D - in-vitro, Nor, MCF10
PDKs↓, eff↑, ROS↑, PDK1↓, lactateProd↓, p‑PDH↑, Dose∅, OCR↑, DNA-PK↑, γH2AX↑, cl‑PARP↑, selectivity↑, *toxicity∅,
1866- DCA,  MET,  BTZ,    Targeting metabolic pathways alleviates bortezomib-induced neuropathic pain without compromising anticancer efficacy in a sex-specific manner
- in-vivo, NA, NA
eff↑, TumCG↓, Hif1a↓, PDH↑, lactateProd↓, TumVol↓, TumW↓, Glycolysis↑, neuroP↑,
1867- DCA,  Chemo,    Sensitization of breast cancer cells to paclitaxel by dichloroacetate through inhibiting autophagy
- in-vivo, BC, NA - in-vitro, BC, NA
TumCG↓, eff↑, OS↑, PDKs↓, PDH↑,
1868- DCA,  MET,    Long-term stabilization of stage 4 colon cancer using sodium dichloroacetate therapy
- Case Report, NA, NA
eff↑, toxicity∅, MMP↓, Apoptosis↑, selectivity↑, pH↝, Dose↝, Dose↝, eff↑,
4901- DCA,  Sal,    Dichloroacetate and Salinomycin as Therapeutic Agents in Cancer
- Review, NSCLC, NA
Glycolysis↓, OXPHOS↑, PDKs↓, ROS↑, Apoptosis↑, GlucoseCon↓, lactateProd↓, RadioS↑, TumAuto↑, mTOR↓, LC3s↓, p62↑, TumCG↓, OS↑, toxicity↝, ChemoSen↑, eff↑, eff↑, Ferritin↓, CSCs↓, EMT↓, ROS↑, Cyt‑c↑, Casp3↑, ER Stress↑, selectivity↑, eff↑, TumCG↓,
4455- DFE,    Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest
- in-vitro, BC, MCF-7 - in-vitro, Nor, 3T3
TumCCA↑, P53↑, BAX↑, Casp3↑, MMP↓, Fas↑, FasL↑, Bcl-2↓, Apoptosis↑, TumCP↓, TUNEL↑, eff↑, selectivity↑,
2169- dietF,    Prolonged stabilization of platinum-resistant ovarian cancer in a single patient consuming a fermented soy therapy
- Case Report, Ovarian, NA
OS↑, CA125↓, eff↑,
2152- dietFMD,    Prolonged Nightly Fasting and Breast Cancer Prognosis
- Analysis, BC, NA
eff↑, Dose↓, Risk↓,
1848- dietFMD,  Chemo,    Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial
- Trial, BC, NA
ChemoSideEff↓, ChemoSen↑, eff↑,
1854- dietFMD,    How Far Are We from Prescribing Fasting as Anticancer Medicine?
- Review, Var, NA
ChemoSideEff↓, ChemoSen↑, IGF-1↓, IGFBP1↑, adiP↑, glyC↓, E-cadherin↑, MMPs↓, Casp3↑, ROS↑, ATP↓, AMPK↑, mTOR↓, ROS↑, Glycolysis↓, NADPH↓, OXPHOS↝, eff↑, eff↑, *RAS↓, *MAPK↓, *PI3K↓, *Akt↓, eff↑, ROS↑, Akt↑, Casp3↑,
1853- dietFMD,    Impact of Fasting on Patients With Cancer: An Integrative Review
- Review, Var, NA
*toxicity∅, QoL∅, eff↑, eff↝, ChemoSideEff↓, TumCG↓, Dose↑, toxicity↝, eff↑, IGF-1↑, *OXPHOS↑, BG↓, Insulin↓, RadioS↑,
1850- dietFMD,    Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression
- in-vivo, CRC, NA
TumCP↑, angioG↓, CD8+↑, GutMicro↑, eff↑,
1849- dietFMD,    The emerging role of fasting-mimicking diets in cancer treatment
- Review, Var, NA
TumCG↓, toxicity∅, BG↓, IGF-1↓, mTOR↓, M2 MC↓, eff↑, ChemoSen↑, QoL↑, RadioS↑, selectivity↑,
1847- dietFMD,  VitC,    Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers
- in-vitro, PC, PANC1
TumCG↓, ChemoSen↑, eff↑, HO-1↓, Ferritin↓, Iron↑, ROS↑, TumCD↑, IGF-1↓, eff↓, eff↓,
1846- dietFMD,  VitC,    A fasting-mimicking diet and vitamin C: turning anti-aging strategies against cancer
- Study, Var, NA
TumCG↓, ChemoSen↑, ChemoSideEff↓, ROS↑, Fenton↑, H2O2↑, eff↑, HO-1↓, DNAdam↑, eff↑,
1845- dietFMD,    Fasting and fasting mimicking diets in cancer prevention and therapy
- Review, Var, NA
eff↑, selectivity↑, ChemoSen↑,
1841- dietFMD,    Fasting-Mimicking Diet Is Safe and Reshapes Metabolism and Antitumor Immunity in Patients with Cancer
- Trial, Var, NA
BG↓, AntiCan↑, IFN-γ↑, eff↑, Dose↝, CD14↓, IGF-1↓, IGFR↓, CD8+↑, NK cell↑,
1842- dietFMD,    Safety and Feasibility of Fasting-Mimicking Diet and Effects on Nutritional Status and Circulating Metabolic and Inflammatory Factors in Cancer Patients Undergoing Active Treatment
- Trial, Var, NA
Strength∅, Weight∅, IGF-1↓, IGFBP3↑, IGFBP1↑, eff↑,
1843- dietFMD,  BTZ,    Cyclic Fasting–Mimicking Diet Plus Bortezomib and Rituximab Is an Effective Treatment for Chronic Lymphocytic Leukemia
- in-vivo, CLL, NA
AntiTum↓, Apoptosis↑, IGF-1↓, eff↑, OS↑, eff↑,
1844- dietFMD,    Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment
- Review, NA, NA
Risk↓, AMPK↑, Akt↓, mTOR↓, SIRT1↑, Hif1a↓, NRF2↓, SOD↑, ROS↑, IGF-1↓, p‑Akt↓, PI3K↑, GutMicro↑, OS↑, eff↝, ROS↑, TumCCA↑, *DNArepair↑, DNAdam↑,
1860- dietFMD,  Chemo,    Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape
- in-vitro, BC, SUM159 - in-vitro, BC, 4T1
PI3K↑, Akt↑, mTOR↑, CDK4↑, CDK6↑, hyperG↓, TumCG↓, TumVol↓, Casp3↑, BG↓, eff↑, eff∅, PKA↓, KLF5↓, p‑GSK‐3β↑, Nanog↓, OCT4↓, KLF2↓, eff↑, ROS↑, BIM↑, ASK1↑, PI3K↑, Akt↑, mTOR↑, CDK1↓, CDK4↑, CDK6↑, eff↑,
1863- dietFMD,  Chemo,    Effect of fasting on cancer: A narrative review of scientific evidence
- Review, Var, NA
eff↑, ChemoSideEff↓, ChemoSen↑, Insulin↓, HDAC↓, IGF-1↓, STAT5↓, BG↓, MAPK↓, HO-1↓, ATG3↑, Beclin-1↑, p62↑, SIRT1↑, LAMP2↑, OXPHOS↑, ROS↑, P53↑, DNAdam↑, TumCD↑, ATP↑, Treg lymp↓, M2 MC↓, CD8+↑, Glycolysis↓, GutMicro↑, GutMicro↑, Warburg↓, Dose↝,
1810- dietKeto,  Oxy,    The Ketogenic Diet and Hyperbaric Oxygen Therapy Prolong Survival in Mice with Systemic Metastatic Cancer
- in-vivo, Var, NA
BG↓, TumCG↓, OS↑, eff↑, Dose∅, KeyT↑, eff↑, cachexia↓, ChemoSen↑, *ROS↓, ROS↑, lipid-P↑, selectivity↑, toxicity∅,
2264- dietMet,    Methionine restriction for cancer therapy: From preclinical studies to clinical trials
- Review, Var, NA
TumCP↓, *ROS?, ChemoSen↑, RadioS↑, eff↑, ROS↑, selectivity↑, TS↓, eff↑,
2265- dietMet,    Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase
- in-vivo, Nor, NA
*SCD1↓, *Weight↓, *Insulin↓, *IGF-1↓, *adiP↑, *eff↓,
2266- dietMet,    Cysteine dietary supplementation reverses the decrease in mitochondrial ROS production at complex I induced by methionine restriction
- in-vivo, Nor, NA
*ROS↓, eff↓,
2268- dietMet,    Methionine dependency and cancer treatment
- Review, Var, NA
ChemoSen↑, *eff↑, selectivity↑, eff↑,
2271- dietMet,    A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension
- Review, Nor, NA
*eff↑, *OS↓, *ROS↓, *Weight↓,
2263- dietMet,    Methionine Restriction and Cancer Biology
- Review, Var, NA
AntiCan↑, TumCP↓, TumCG↓, selectivity↑, ChemoSen↓, RadioS↑, Insulin↓, *GlucoseCon↑, *ROS↓, *antiOx↑, *GSH↑, GSH↑, eff↑, polyA↓, TS↓, Raf↓, Akt↓, Casp9↑, Bak↑, P21↑, p27↑, Insulin↓, IGF-1↓,
1896- dietMet,    Dietary methionine links nutrition and metabolism to the efficacy of cancer therapies
- in-vivo, CRC, NA
TumCG↓, *GSH↓, RadioS↑, eff↑,
2170- dietMet,    Low Protein Intake is Associated with a Major Reduction in IGF-1, Cancer, and Overall Mortality in the 65 and Younger but Not Older Population
- Study, Var, NA
OS↑, eff↝, other↝,
2155- dietP,    Transepithelial Anti-Neuroblastoma Response to Kale among Four Vegetable Juices Using In Vitro Model Co-Culture System
- in-vivo, neuroblastoma, Caco-2 - NA, NA, SH-SY5Y
AntiCan↑, ROS↑, eff↑, eff↑, eff↑,
2156- dietP,    Phytochemical-rich vegetable and fruit juice alleviates oral mucositis during concurrent chemoradiotherapy in patients with locally advanced head and neck cancer
- Human, HNSCC, NA
chemoP↑, radioP↑, eff↑,
2157- dietP,    Plant-Based Diets and Disease Progression in Men With Prostate Cancer
- Study, Pca, NA
TumCG↓, Risk↓, eff↑,
2161- dietP,    Plant-Based Diets and Cancer Prognosis: a Review of Recent Research
- Review, NA, NA
OS↑, eff↑, eff↑,
2165- dietP,  SFN,    Broccoli sprout supplementation in patients with advanced pancreatic cancer is difficult despite positive effects—results from the POUDER pilot study
- Trial, PC, NA
Dose↝, OS↑, eff↝,
1626- dietSTF,  dietFMD,    When less may be more: calorie restriction and response to cancer therapy
- Review, Var, NA
CRM↑, ChemoSen↑, RadioS↑, eff↑, eff↑, IGF-1↓, TumCG↓, AMPK↑, eff↑, ChemoSen↑, RadioS↑, ROS↑, DNAdam↑, eff↑, HO-1↓,
4159- dietSTF,  2DG,  CRMs,    Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms
- Review, AD, NA
*BDNF↑, *HSPs↑, *eff↑,
3708- dietSTF,    Fasting as a Therapy in Neurological Disease
*PGC-1α↑, *AMPK↑, *adiP↑, *glucose↓, *Insulin↓, *mTOR↓, *IL6↓, *TNF-α↓, *cognitive↑, *Inflam↓, *eff↑, *neuroP↑, ChemoSen↑, eff↓, chemoP↑, *eff↑,
4983- Dipy,  ATV,    Targeting tumor cell metabolism via the mevalonate pathway: Two hits are better than one
- Review, Var, NA
HMG-CoA↓, AntiTum↓, eff↑,
4984- Dipy,  ATV,    Immediate Utility of Two Approved Agents to Target Both the Metabolic Mevalonate Pathway and Its Restorative Feedback Loop
- in-vitro, AML, NA
eff↑, Apoptosis↑, selectivity↑, TumCG↓, HMG-CoA↓, HMGCR↑,
5006- DSF,  Cu,    Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition
- vitro+vivo, lymphoma, NA
TumCD↑, TumCP↑, Apoptosis↑, NRF2↓, ROS↑, p‑JNK↑, p65↓, eff↓, NF-kB↓,
5012- DSF,  Cu,    Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems
ROS↑, ALDH↓, TumCP↓, CSCs↓, angioG↓, TumMeta↓, DNAdam↑, Proteasome↓, SOD1↓, GSR↓, ox-GSSG↑, GSH/GSSG↓, MMP↓, Akt↓, cycD1/CCND1↓, NF-kB↓, CSCs↓, MAPK↓, angioG↓, DrugR↓, EMT↓, Vim↓, BioAv↑, eff↑,
5011- DSF,  Cu,    Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens
- Review, Var, NA
BioAv↓, eff↓, ChemoSen↑, RadioS↑,
5009- DSF,  Cu,    Activation of Oxidative Stress and Down-Regulation of Nuclear Factor Erythroid 2-Related Factor May Be Responsible for Disulfiram/Copper Complex Induced Apoptosis in Lymphoid Malignancy Cell Lines
- vitro+vivo, lymphoma, NA
AntiTum↑, ROS↑, JNK↑, NRF2↓, eff↓, TumCD↑,
5008- DSF,  Cu,    Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis
- in-vitro, HCC, NA
selectivity↑, TumCD↑, TumCMig↓, TumCI↓, angioG↓, mtDam↑, Iron↑, lipid-P↑, Ferroptosis↑, NF-kB↑, p‑p62↑, Keap1↓, eff↑, eff↓, ChemoSen↑,
4914- DSF,  immuno,    Disulfiram and cancer immunotherapy: Advanced nano-delivery systems and potential therapeutic strategies
- Review, Var, NA
AntiTum↑, eff↑, ALDH↓, Dose↝, RadioS↑, angioG↓, TumMeta↓, BioAv↝, ROS↑, DNAdam↑, P-gp↓, CSCs↓, EMT↓, Imm↑, SOD↓, MAPK↓, NF-kB↓, ChemoSen↑, eff↑, toxicity↝, BioAv↑, *Inflam↓, Sepsis↓,
4913- DSF,    Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies
- Review, Var, NA
Apoptosis↑, tumCV↑, eff↑, toxicity↓, antiNeop↑, ChemoSen↑, RadioS↑, OS↑, ROS↑, SOD↓, MMP1↓, eff↑, Half-Life↓,
4915- DSF,  Cu,    Disulfiram: A novel repurposed drug for cancer therapy
- Review, Var, NA
ROS↑, TumCD↑, NF-kB↓, CSCs↓, ChemoSen↑, RadioS↑, eff↑, selectivity↑, Proteasome?,
4916- DSF,  Cu,    The immunomodulatory function and antitumor effect of disulfiram: paving the way for novel cancer therapeutics
- Review, Var, NA
TumCP↓, TumCMig↓, TumCI↓, eff↑, Imm↑, ROS↑, NF-kB↓, chemoP↑, JNK↑, FOXO↑, Myc↑, TumCCA↑, Apoptosis↑, RadioS↑, PD-L1↑, eff↑, CSCs↓, Dose↝, Half-Life↑,
4832- EA,    Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid
*antiOx↑, *AntiCan↑, TumCMig↓, angioG↓, ChemoSen↑, RadioS↑, *chemoP↑, *BioAv↓, eff↓, selectivity↑, MMP2↓, MMP9↓, VEGF↓, TumCCA↑, Apoptosis↑, ROS↑, BioAv↑,
1608- EA,    Ellagic Acid from Hull Blackberries: Extraction, Purification, and Potential Anticancer Activity
- in-vitro, Cerv, HeLa - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7 - in-vitro, Lung, A549 - in-vitro, Nor, HUVECs
eff↑, Dose∅, *BioAv↑, selectivity↑, TumCP↓, Casp↑, PTEN↑, TSC1↑, mTOR⇅, Akt↓, PDK1↓, E6↓, E7↓, DNAdam↑, ROS↑, *BioAv↓, *BioEnh↑, *Half-Life∅,
1611- EA,    Targeting Myeloperoxidase Activity and Neutrophil ROS Production to Modulate Redox Process: Effect of Ellagic Acid and Analogues
- in-vitro, Mal, NA
*BioAv↓, eff↑, *BioAv↓, ROS↑,
1613- EA,    Ellagitannins in Cancer Chemoprevention and Therapy
- Review, Var, NA
ROS↑, angioG↓, ChemoSen↑, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, CDK2↓, CDK4↓, CDK6↓, cycD1/CCND1↓, cycE1↓, TumCG↓, VEGF↓, Hif1a↓, eff↑, COX2↓, TumCCA↑, selectivity↑, Wnt/(β-catenin)↓, *toxicity∅,
1618- EA,    A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action
- Review, BC, NA
TumCCA↑, TumCMig↓, TumCI↓, TumMeta↓, Apoptosis↑, TGF-β↓, SMAD3↓, CDK6↓, PI3K↓, Akt↓, angioG↓, VEGFR2↓, MAPK↓, NEDD9↓, NF-kB↓, eff↑, eff↑, RadioS↑, ChemoSen↑, DNAdam↑, eff↑, *toxicity∅, *toxicity∅,
1619- EA,  CUR,    effect-of-the-ellagic-acid-and-curcumin-combinations-2161-0525-1000296.pdf">Antimutagenic Effect of the Ellagic Acid and Curcumin Combinations
- in-vitro, Nor, NA
eff↑,
1605- EA,    Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence
- Review, Var, NA
*BioAv↓, antiOx↓, Inflam↓, TumCP↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, P53↑, P21↑, COX2↓, NF-kB↓, Akt↑, NOTCH↓, CDK2↓, CDK6↓, JAK↓, STAT3↓, EGFR↓, p‑ERK↓, p‑Akt↓, p‑STAT3↓, TGF-β↓, SMAD3↓, CDK6↓, Wnt/(β-catenin)↓, Myc↓, survivin↓, CDK8↓, PKCδ↓, tumCV↓, RadioS↑, eff↑, MDM2↓, XIAP↓, p‑RB1↓, PTEN↑, p‑FAK↓, Bax:Bcl2↑, Bcl-xL↓, Mcl-1↓, PUMA↑, NOXA↑, MMP↓, Cyt‑c↑, ROS↑, Ca+2↝, Endoglin↑, Diablo↑, AIF↑, iNOS↓, Casp9↑, Casp3↑, cl‑PARP↑, RadioS↑, Hif1a↓, HO-1↓, HO-2↓, SIRT1↓, selectivity↑, Dose∅, NHE1↓, Glycolysis↓, GlucoseCon↓, lactateProd↓, PDK1?, PDK1?, ECAR↝, COX1↓, Snail↓, Twist↓, cMyc↓, Telomerase↓, angioG↓, MMP2↓, MMP9↓, VEGF↓, Dose↝, PD-L1↓, eff↑, SIRT6↑, DNAdam↓,
660- EGCG,  FA,    Epigallocatechin-3-gallate Delivered in Nanoparticles Increases Cytotoxicity in Three Breast Carcinoma Cell Lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
Apoptosis↑, *toxicity↓, *eff↓,
645- EGCG,    The Effect of Ultrasound, Oxygen and Sunlight on the Stability of (−)-Epigallocatechin Gallate
- Analysis, NA, NA
eff↑, pH↓,
684- EGCG,    effect_of_EGCG_in_colorectal_cancer_cells_by_blocking_EGCG-induced_YAP_activation">Improving the anti-tumor effect of EGCG in colorectal cancer cells by blocking EGCG-induced YAP activation
- in-vitro, CRC, NA
eff↑, Akt↓, VEGFR2↓, STAT3↓, P53↓, Hippo↓, YAP/TEAD↑,
2501- EGCG,    A Case of Complete and Durable Molecular Remission of Chronic Lymphocytic Leukemia Following Treatment with Epigallocatechin-3-gallate, an Extract of Green Tea
- Case Report, AML, NA
OS↑, Remission↑, eff↑, Dose↝,
2561- EGCG,  ASA,    Anti-platelet effects of epigallocatechin-3-gallate in addition to the concomitant aspirin, clopidogrel or ticagrelor treatment
- ex-vivo, Nor, NA
AntiAg↑, eff↑, Half-Life↝, other∅,
2563- EGCG,    Cardioprotective effect of epigallocatechin gallate in myocardial ischemia/reperfusion injury and myocardial infarction: a meta-analysis in preclinical animal studies
- Review, NA, NA
cardioP↑, ROS↑, AntiAg↑, eff↑, COX1↓,
3205- EGCG,    The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseas
- Review, Var, NA - Review, AD, NA
Beclin-1↑, ROS↑, Apoptosis↑, ER Stress↑, *Inflam↓, *cardioP↑, *antiOx↑, *LDL↓, *NF-kB↓, *MPO↓, *glucose↓, *ROS↓, ATG5↑, LC3B↑, MMP↑, lactateProd↓, VEGF↓, Zeb1↑, Wnt↑, IGF-1R↑, Fas↑, Bak↑, BAD↑, TP53↓, Myc↓, Casp8↓, LC3II↑, NOTCH3↓, eff↑, p‑Akt↓, PARP↑, *Cyt‑c↓, *BAX↓, *memory↑, *neuroP↑, *Ca+2?, GRP78/BiP↑, CHOP↑, ATF4↑, Casp3↑, Casp8↑, UPR↑,
3202- EGCG,    Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity
- in-vitro, Cerv, HeLa - in-vitro, HCC, QGY-7703
PARP16↓, p‑PERK↓, Apoptosis↑, eIF2α↓, UPR↓, ER Stress↑, eff↑, GRP78/BiP↓,
3212- EGCG,    EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells
- in-vitro, Lung, A549 - in-vivo, Lung, NCIH23
NRF2⇅, eff↑, SOD1↑, SOD1↓, MMP2⇅, MMP9⇅,
3241- EGCG,    Epigallocatechin gallate triggers apoptosis by suppressing de novo lipogenesis in colorectal carcinoma cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, Liver, HepG2 - in-vitro, Liver, HUH7
tumCV↓, mtDam↑, Apoptosis↑, ATP↓, lipoGen↓, eff↑,
3215- EGCG,    Epigallocatechin gallate modulates ferroptosis through downregulation of tsRNA-13502 in non-small cell lung cancer
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H1299
TumCP↓, Ki-67↓, GPx4↓, ACSL4↑, Iron↑, MDA↑, ROS↑, Ferroptosis↑, eff↑, NRF2↑, HO-1↑,
3220- EGCG,    Dual Roles of Nrf2 in Cancer
- in-vitro, Lung, A549
NRF2↑, eff↓,
2309- EGCG,  Chemo,    Targeting Glycolysis with Epigallocatechin-3-Gallate Enhances the Efficacy of Chemotherapeutics in Pancreatic Cancer Cells and Xenografts
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HPNE - in-vitro, PC, PANC1 - in-vivo, NA, NA
TumCG↓, eff↑, ROS↑, ECAR↓, ChemoSen↑, selectivity↑, Glycolysis↓, PFK↓, PKA↓, HK2∅, LDHA∅, PFKP↓, PKM2↓, H2O2↑, TumW↓,
1514- EGCG,    Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10
selectivity↑, *toxicity∅, TumCG↓, NADHdeh?, eff↑, ENOX2↓, Dose?,
1515- EGCG,  Phen,    Reciprocal Relationship Between Cytosolic NADH and ENOX2 Inhibition Triggers Sphingolipid-Induced Apoptosis in HeLa Cells
- in-vitro, Cerv, HeLa - in-vitro, Nor, MCF10 - in-vitro, BC, BT20
selectivity↑, ENOX2↓, NADH↑, SK↓, eff↑, aSmase↑,
1516- EGCG,    Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential
- Review, NA, NA
*Dose∅, Half-Life∅, BioAv∅, BBB↑, toxicity∅, eff↓, Apoptosis↑, Casp3↑, Cyt‑c↑, cl‑PARP↑, DNMTs↓, Telomerase↓, angioG↓, Hif1a↓, NF-kB↓, MMPs↓, BAX↑, Bak↑, Bcl-2↓, Bcl-xL↓, P53↑, PTEN↑, IGF-1↓, H3↓, HDAC1↓, *LDH↓, *ROS↓,
1503- EGCG,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
selectivity↑, DNMT1↓, RECK↑, MMPs↓, TumCI↓, angioG↓, TumMeta↓, HATs↓, IκB↑, NF-kB↓, IL6↓, COX2↓, NOS2↓, ac‑H3↑, ac‑H4↑, eff↑,
1322- EMD,    The versatile emodin: A natural easily acquired anthraquinone possesses promising anticancer properties against a variety of cancers
- Review, Var, NA
Apoptosis↑, TumCP↓, ROS↑, TumAuto↑, EMT↓, TGF-β↓, DNAdam↑, ER Stress↑, TumCCA↑, ATP↓, NF-kB↓, CYP1A1↑, STAC2↓, JAK↓, PI3K↓, Akt↓, MAPK↓, FASN↓, HER2/EBBR2↓, ChemoSen↑, eff↑, ChemoSen↑, angioG↓, VEGF↓, MMP2↓, eNOS↓, FOXD3↑, MMP9↓, TIMP1↑,
1329- EMD,    Aloe-emodin induces cell death through S-phase arrest and caspase-dependent pathways in human tongue squamous cancer SCC-4 cells
- in-vitro, Tong, SCC4
TumCCA↑, eff↓, P53↑, P21↑, p27↑, cycA1/CCNA1↓, cycE/CCNE↓, TS↓, CDC25↓, AIF↑, proCasp9↓, Cyt‑c↑, MMP↓, Bax:Bcl2↑, Casp3↑, Casp9↑,
2204- erastin,    Regulation of ferroptotic cancer cell death by GPX4
- in-vitro, fibroS, HT1080
GSH↓, Ferroptosis↑, ROS↑, GPx↓, GPx4↓, lipid-P↑, eff↓, eff↑,
4143- Ex,    Brain-Derived Neurotrophic Factor: A Connecting Link Between Nutrition, Lifestyle, and Alzheimer’s Disease
- Review, AD, NA
*BDNF↑, *eff↑, *other↓, *eff↑,
4145- Ex,    Effects of different physical activities on brain-derived neurotrophic factor: A systematic review and bayesian network meta-analysis
- Review, AD, NA
*BDNF↑, *eff↑,
4141- Ex,    Effects of exercise on brain-derived neurotrophic factor in Alzheimer's disease models: A systematic review and meta-analysis
- Review, AD, NA
*BDNF↑, *other↑, *eff↑,
4139- Ex,    Impact of physical exercise on the regulation of brain-derived neurotrophic factor in people with neurodegenerative diseases
- Review, AD, NA
*BDNF↑, *eff↑, *eff↑, *cognitive↑, *memory↑, *BrainVol↑, *TrkB↑, *GABA↑,
2144- Ex,    Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies
- Analysis, NA, NA
Risk↓, Dose?, eff↑,
2145- Ex,    Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies
- Analysis, Var, NA
Risk↓, Dose↝, eff↑,
2146- Ex,    A systematic review and meta-analysis of physical activity and endometrial cancer risk
- Review, Endo, NA
Risk↓, eff↑,
2149- Ex,    Physical activity and exercise training in cancer patients
- Analysis, Var, NA
eff↑, Dose↑,
2150- Ex,    Roles and molecular mechanisms of physical exercise in cancer prevention and treatment
- Review, Var, NA
eff↓, Dose↝, TumCP↓, Apoptosis↓, ChemoSen↑, chemoP↑,
2151- Ex,    The effects of physical activity on overall survival among advanced cancer patients: a systematic review and meta-analysis
- Review, Var, NA
eff↑, eff↝,
2153- Ex,    The Impact of Exercise on Cancer Mortality, Recurrence, and Treatment-Related Adverse Effects
- Review, Var, NA
eff↑, BMD↑, cognitive↑, OS↑, Remission↑, eff↑,
2173- FA,  VitB12,    Elevated serum homocysteine levels associated with poor recurrence-free and overall survival in patients with colorectal cancer
- Study, CRC, NA
Risk↓, eff↝, eff↝, homoC↓,
2176- FA,  VitB12,    Hyperhomocysteinemia and Cancer: The Role of Natural Products and Nutritional Interventions
- Review, Var, NA
homoC↓, eff↝,
2174- FA,  VitB12,   
- Analysis, Var, NA
homoC↓, eff↑, eff↑, eff↑, eff↝, homoC↝, other?,
1654- FA,    Molecular mechanism of ferulic acid and its derivatives in tumor progression
- Review, Var, NA
AntiCan↑, Inflam↓, RadioS↑, ROS↑, Apoptosis↑, TumCCA↑, TumCMig↑, TumCI↓, angioG↓, ChemoSen↑, ChemoSideEff↓, P53↑, cycD1/CCND1↓, CDK4↓, CDK6↓, TumW↓, miR-34a↑, Bcl-2↓, Casp3↑, BAX↑, β-catenin/ZEB1↓, cMyc↓, Bax:Bcl2↑, SOD↓, GSH↓, LDH↓, ERK↑, eff↑, JAK2↓, STAT6↓, NF-kB↓, PYCR1↓, PI3K↓, Akt↓, mTOR↓, Ki-67↓, VEGF↓, FGFR1↓, EMT↓, CAIX↓, LC3II↑, p62↑, PKM2↓, Glycolysis↓, *BioAv↓,
1622- FA,    Folate and Its Impact on Cancer Risk
- Review, NA, NA
eff↓,
4069- FA,    Folate, folic acid and 5-methyltetrahydrofolate are not the same thing
- Review, AD, NA
*other↑, *BioAv↝, *other↝, *eff↑,
2496- Fenb,    Impairment of the Ubiquitin-Proteasome Pathway by Methyl N-(6-Phenylsulfanyl-1H-benzimidazol-2-yl)carbamate Leads to a Potent Cytotoxic Effect in Tumor Cells
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H460
TumCG↓, selectivity↑, P53↑, IKKα↑, ER Stress↑, GRP78/BiP↑, CHOP↑, ATF3↑, IRE1↑, NOXA↑, ROS↑, MMP↓, Cyt‑c↑, selectivity↑, eff↝,
2495- Fenb,    Benzimidazoles Downregulate Mdm2 and MdmX and Activate p53 in MdmX Overexpressing Tumor Cells
- in-vitro, Melanoma, A375
P53↑, P21↑, TumCCA↑, MDM2↓, MDMX↓, eff↑,
2494- Fenb,    Oral Fenbendazole for Cancer Therapy in Humans and Animals
- Review, Var, NA
Glycolysis↓, GlucoseCon↓, ROS↑, Apoptosis↑, BioAv↓, eff↑, toxicity↓, BioAv↑, BioAv↑, hepatoP↓, eff↑,
2499- Fenb,  VitE,    Effects of fenbendazole and vitamin E succinate on the growth and survival of prostate cancer cells
- in-vitro, Pca, PC3
TumCP∅, TumCP↓, toxicity↓, eff↑,
2498- Fenb,    Unexpected Antitumorigenic Effect of Fenbendazole when Combined with Supplementary Vitamins
- in-vivo, lymphoma, NA
eff↓, eff↑, TumVol↓, antiOx↑, Hif1a↓,
1915- Fer,    Vascular Imaging With Ferumoxytol as a Contrast Agent
- Analysis, Var, NA
eff↑, toxicity↓, other?,
1914- Fer,  VitC,  TMZ,  Rad,    Pharmacologic Ascorbate and Ferumoxytol Combined with Temozolomide and Radiation Therapy for the Treatment of Newly Diagnosed Glioblastoma
- Trial, GBM, NA
eff↑,
2845- FIS,    Fisetin: A bioactive phytochemical with potential for cancer prevention and pharmacotherapy
- Review, Var, NA
PI3K↓, Akt↓, mTOR↓, p38↓, *antiOx↑, *neuroP↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, DNAdam↑, MMP↓, eff↑, ROS↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, P53↑, p65↓, Myc↓, HSP70/HSPA5↓, HSP27↓, COX2↓, Wnt↓, EGFR↓, NF-kB↓, TumCCA↑, CDK2↓, CDK4↓, cycD1/CCND1↓, cycA1/CCNA1↓, P21↑, MMP2↓, MMP9↓, TumMeta↓, MMP1↓, MMP3↓, MMP7↓, MET↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↑, uPA↓, ChemoSen↑, EMT↓, Twist↓, Zeb1↓, cFos↓, cJun↓, EGF↓, angioG↓, VEGF↓, eNOS↓, *NRF2↑, HO-1↑, NRF2↓, GSTs↓, ATF4↓,
2847- FIS,    Fisetin-induced cell death, apoptosis, and antimigratory effects in cholangiocarcinoma cells
- in-vitro, CCA, NA
tumCV↓, ChemoSen↑, TumCMig↓, ROS↑, TumCI↓, angioG↓, CDK2↓, PI3K↓, Akt↓, mTOR↓, EGFR↓, Casp↑, mTORC1↓, mTORC2↑, cycD1/CCND1↓, cycE/CCNE↓, MMP2↓, MMP9↓, ER Stress↑, Ca+2↑, eff↓,
2849- FIS,    Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells
- in-vitro, Melanoma, U266
TumCD↑, TumCCA↑, Casp3↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, AMPK↑, ACC↑, p‑Akt↓, p‑mTOR↓, ROS↑, eff↓,
2854- FIS,    New Perspectives for Fisetin
- Review, Var, NA - Review, Stroke, NA
Inflam↓, ChemoSen↑, chemoPv↑, eff↑, memory↑, neuroP↑, *Dose↑, BioAv↓, BBB↑,
2855- FIS,    Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells
- in-vitro, RCC, Caki-1
TumCCA↑, cl‑PARP↑, Apoptosis↑, Casp↑, P53↑, DR5↑, CHOP↑, ROS↑, ER Stress↑, ATF4↑, XBP-1↑, eff∅,
2856- FIS,    N -acetyl- L -cysteine enhances fisetin-induced cytotoxicity via induction of ROS-independent apoptosis in human colonic cancer cells
- in-vitro, Colon, COLO205
eff↑, ROS↑, tumCV↓, Casp3↑, Bcl-2↓, MMP↓, eff↑,
2857- FIS,    A review on the chemotherapeutic potential of fisetin: In vitro evidences
- Review, Var, NA
COX2↓, PGE2↓, EGFR↓, Wnt↓, β-catenin/ZEB1↓, TCF↑, Apoptosis↑, Casp3↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, BAX↑, BIM↑, BAD↑, Akt↓, mTOR↓, ACC↑, Cyt‑c↑, Diablo↑, cl‑Casp8↑, Fas↑, DR5↑, TRAIL↑, Securin↓, CDC2↓, CDC25↓, HSP70/HSPA5↓, CDK2↓, CDK4↓, cycD1/CCND1↓, MMP2↓, uPA↓, NF-kB↓, cFos↓, cJun↓, MEK↓, p‑ERK↓, N-cadherin↓, Vim↓, Snail↓, Fibronectin↓, E-cadherin↓, NF-kB↑, ROS↑, DNAdam↑, MMP↓, CHOP↑, eff↑, ChemoSen↑,
2861- FIS,    The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress
- Review, Nor, NA - Review, Stroke, NA - Review, Park, NA
*antiOx↑, *ROS↓, *neuroP↑, *NO↑, BioAv↝, *BBB↑, *toxicity↑, *eff↑, *GSH↑, *SOD↑, *Aβ↓, *12LOX↓, *COX2↓, *Catalase↑, *Inflam↓, *TNF-α↓, *IL6↑, *lipid-P↓, NF-kB↓, IL1β↓, NRF2↑, HO-1↑, GSTs↑, cognitive↑, *BDNF↑,
2842- FIS,    Fisetin inhibits cellular proliferation and induces mitochondria-dependent apoptosis in human gastric cancer cells
- in-vitro, GC, AGS
TumCCA↑, CDK2↓, P53↑, selectivity↑, MMP↓, DNAdam↑, cl‑PARP↑, mt-ROS↑, eff↓, survivin↓,
2825- FIS,    Exploring the molecular targets of dietary flavonoid fisetin in cancer
- Review, Var, NA
*Inflam↓, *antiOx↓, *ERK↑, *p‑cMyc↑, *NRF2↑, *GSH↑, *HO-1↑, mTOR↓, PI3K↓, Akt↓, TumCCA↑, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓, CDK4↓, CDK6↓, P21↑, p27↑, JNK↑, MMP2↓, MMP9↓, uPA↓, NF-kB↓, cFos↓, cJun↓, E-cadherin↑, Vim↓, N-cadherin↓, EMT↓, MMP↓, Cyt‑c↑, Diablo↑, Casp↑, cl‑PARP↑, P53↑, COX2↓, PGE2↓, HSP70/HSPA5↓, HSP27↓, DNAdam↑, Casp3↑, Casp9↑, ROS↑, AMPK↑, NO↑, Ca+2↑, mTORC1↓, p70S6↓, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, eff↑, eff↑, eff↑, RadioS↑, ChemoSen↑, Half-Life↝,
2839- FIS,    Dietary flavonoid fisetin for cancer prevention and treatment
- Review, Var, NA
DNAdam↑, ROS↑, Apoptosis↑, Bcl-2↓, BAX↑, cl‑Casp9↑, cl‑Casp3↑, Cyt‑c↑, lipid-P↓, TumCG↓, TumCA↓, TumCMig↓, TumCI↓, uPA↓, ERK↓, MMP9↓, NF-kB↓, cFos↓, cJun↓, AP-1↓, TumCCA↑, AR↓, mTORC1↓, mTORC2↓, TSC2↑, EGF↓, TGF-β↓, EMT↓, P-gp↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↓, ER Stress↑, IRE1↑, ATF4↑, GRP78/BiP↑, ChemoSen↑, CDK2↓, CDK4↓, cycE/CCNE↓, cycD1/CCND1↓, P21↑, COX2↓, Wnt↓, EGFR↓, β-catenin/ZEB1↓, TCF-4↓, MMP7↓, RadioS↑, eff↑,
2642- Flav,  QC,  Api,  KaempF,  MCT  In Vitro–In Vivo Study of the Impact of Excipient Emulsions on the Bioavailability and Antioxidant Activity of Flavonoids: Influence of the Carrier Oil Type
- in-vitro, Nor, NA - in-vivo, Nor, NA
*BioAv↑, *eff↝, BioEnh↑,
4107- FLS,  Ex,    Combined effects of aerobic exercise and 40-Hz light flicker exposure on early cognitive impairments in Alzheimer's disease of 3×Tg mice
- in-vivo, AD, NA
*Aβ↓, *cognitive↑, *Inflam↓, *eff↑,
1972- GamB,  doxoR,    Gambogic acid sensitizes resistant breast cancer cells to doxorubicin through inhibiting P-glycoprotein and suppressing survivin expression
- in-vitro, BC, NA
eff↑, P-gp↓, ROS↑, survivin↓, p38↑,
1971- GamB,    Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-435 - in-vitro, BC, MDA-MB-468 - in-vivo, NA, NA
Paraptosis↑, ER Stress↑, MMP↓, eff↓, selectivity↑, p‑ERK↑, p‑JNK↑, eff↓,
1970- GamB,    Gambogic acid-induced autophagy in nonsmall cell lung cancer NCI-H441 cells through a reactive oxygen species pathway
- NA, Lung, NCI-H441
TumCG↓, TumAuto↑, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↑, ROS↑, eff↓,
2060- GamB,    Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, TumAuto↑, eff↑, ROS↑, ER Stress↑, JNK↑,
1955- GamB,    Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer
- in-vitro, Pca, NA
ROS↑, Apoptosis↑, Ferroptosis↑, Trx↓, eff↑, TrxR↓, Dose∅, MMP↓, eff↑,
1957- GamB,    Nanoscale Features of Gambogic Acid Induced ROS-Dependent Apoptosis in Esophageal Cancer Cells Imaged by Atomic Force Microscopy
- in-vitro, ESCC, EC9706
AntiCan↑, toxicity↓, TumCP↓, Apoptosis↑, TumCCA↑, MMP↓, ROS↑, eff↓, RadioS↑,
1958- GamB,    Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells
- in-vitro, Pca, NA - in-vivo, NA, NA
AntiCan↑, TumCP↓, TumAuto↑, eff↑, JNK↑, ROS↑, ER Stress↑, eff↓, TumCG↓,
1959- GamB,    Gambogic acid induces GSDME dependent pyroptotic signaling pathway via ROS/P53/Mitochondria/Caspase-3 in ovarian cancer cells
- in-vitro, Ovarian, NA - in-vivo, NA, NA
AntiCan↑, Pyro↑, tumCV?, CellMemb↓, cl‑Casp3↑, GSDME-N↑, ROS?, p‑P53↑, eff↓, MMP↓, Bcl-2↓, BAX↑, mtDam↑, Cyt‑c↑, TumCG↓, CD4+↑, CD8+↑,
1961- GamB,    Effects of gambogic acid on the activation of caspase-3 and downregulation of SIRT1 in RPMI-8226 multiple myeloma cells via the accumulation of ROS
- in-vitro, Melanoma, RPMI-8226
TumCG↓, Apoptosis↑, ROS↑, Casp3↑, cl‑PARP↑, SIRT1↓, eff↓,
1962- GamB,  HCQ,    Gambogic acid induces autophagy and combines synergistically with chloroquine to suppress pancreatic cancer by increasing the accumulation of reactive oxygen species
- in-vitro, PC, NA
LC3II↑, Beclin-1↑, p62↓, MMP↓, ROS↑, TumAuto↑, eff↑,
1965- GamB,  doxoR,    Gambogic acid sensitizes ovarian cancer cells to doxorubicin through ROS-mediated apoptosis
- in-vitro, Ovarian, SKOV3
eff↑, AntiCan↑, ROS↑, ChemoSen↑,
1966- GamB,  Cisplatin,    Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling
- in-vitro, Lung, A549 - in-vitro, Lung, NCIH1299
TumCCA↑, PARP↑, eff↑, ROS↑, ChemoSen↑,
1960- GamB,  Vem,    Calcium channel blocker verapamil accelerates gambogic acid-induced cytotoxicity via enhancing proteasome inhibition and ROS generation
- in-vitro, Liver, HepG2 - in-vitro, AML, K562
Proteasome↓, eff↑, Casp↑, ER Stress↑, ROS↑, eff↑,
823- GAR,    Garcinol Potentiates TRAIL-Induced Apoptosis through Modulation of Death Receptors and Antiapoptotic Proteins
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, CRC, HCT116
Casp3↑, Casp9↑, Casp8↑, DR5↑, survivin↓, Bcl-2↓, XIAP↓, cFLIP↓, BAX↑, Cyt‑c↑, ROS↑, GSH↓, *eff↓,
1435- GEN,  SFN,    The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑, TumCCA↑, HMTs↓, HDAC2↓, HDAC3↓, KLF4↓, hTERT/TERT↓,
4664- GEN,  CUR,  RES,  EGCG,  SFN  Targeting cancer stem cells by nutraceuticals for cancer therapy
- Review, Var, NA
CSCs↓, other↝, eff↑, CD44↓, p‑STAT3↓,
4301- Gins,    Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro
- in-vitro, AD, NA
*p‑tau↓, *eff↑, *Inflam↓,
4302- Gins,    Panax ginseng: A modulator of amyloid, tau pathology, and cognitive function in Alzheimer's disease
- Review, AD, NA
*neuroP↑, *Aβ↓, *p‑tau↓, *cognitive↑, *eff↑, *PKA↑, *CREB↑, *BACE↓, *ADAM10↑, *MAPK↑, *ERK↑, *PI3K↑, *Akt↑, *NRF2↑, *PPARγ↓, *IDE↑, *APP↓, *PP2A↑, *memory↑,
4513- GLA,    Antineoplastic Effects of Gamma Linolenic Acid on Hepatocellular Carcinoma Cell Lines
- in-vitro, Liver, HUH7
TumCP↓, ROS↑, Apoptosis↑, HO-1↑, Trx↑, lipid-P↑, eff↓, MMP↓, DNAdam↑, selectivity↑,
4510- GLA,    Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies
- Review, NA, NA
Apoptosis↑, selectivity↑, eff↓, ROS↑, lipid-P↑, P53↑, radioP↑, chemoP↑,
1904- GoldNP,  SNP,    Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis
- in-vitro, Lung, H157 - in-vitro, BC, MCF-7 - in-vitro, Colon, HCT15 - in-vitro, Melanoma, A375
TrxR↓, selectivity↑, eff↑, eff↝, ROS↑, MMP↓, Apoptosis↑, eff↑,
2504- H2,    Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD-1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer
- Trial, Lung, NA
CD8+↑, OS↑, eff↝, CoQ10↑, PDT+↓, PGC-1α↑, Dose↝, *toxicity∅,
2508- H2,    Molecular hydrogen is a promising therapeutic agent for pulmonary disease
- Review, Var, NA - Review, Sepsis, NA
*ROS↓, eff↝, *Inflam↓, *NRF2↑, *HO-1↑, *SOD↑, *Catalase↑, *MPO↑, *ASK1↓, *NADPH↓, *Sepsis↓, *HMGB1↓, ROS↑, NLRP3↑, GSDMD↑, chemoP↑, eff↑,
2517- H2,    Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response
- in-vitro, Var, A549 - in-vitro, NA, HCT116 - in-vitro, NA, HeLa - in-vitro, NA, HepG2 - in-vitro, NA, HT1080 - in-vitro, NA, PC3 - in-vitro, NA, SH-SY5Y
TumCP↓, other↝, eff↝, mt-UPR↑,
2509- H2,    Hydrogen inhibits endometrial cancer growth via a ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway
- in-vitro, Endo, AN3CA - in-vivo, Endo, NA
selectivity↑, mt-ROS↑, ROS↑, TumW↓, GSDMD↑, Pyro↑, Dose↝, eff↓, TumVol↓,
2516- H2,    Hydrogen Gas in Cancer Treatment
- Review, Var, NA
*Half-Life↓, *ROS↓, *selectivity↑, *SOD↑, *HO-1↑, *NRF2↑, *chemoP↑, *radioP↑, ROS↑, *Inflam↓, eff↑, *TNF-α↓, *IL6↓, *cl‑Casp8↑, *Bax:Bcl2↓, *Apoptosis↓, *cardioP↑, *hepatoP↑, *RenoP↑, *chemoP↑, eff↝, chemoP↑, radioP↑, eff↑, TumCG↓, Ki-67↓, VEGF↓, selectivity↑,
3152- H2,  VitC,  Rad,    Hydrogen and Vitamin C Combination Therapy: A Novel Method of Radioprotection
- in-vitro, Nor, HUVECs - in-vivo, NA, NA
AntiTum↑, OS↑, QoL↑, TumVol↓, radioP↑, Dose↑, Dose↝, eff↑,
2528- H2,    Local generation of hydrogen for enhanced photothermal therapy
- in-vitro, Var, NA
eff↑, ROS↓, selectivity↑, ROS↑, other↝, ROS↑,
2529- H2,    Guidelines for the selection of hydrogen gas inhalers based on hydrogen explosion accidents
- Analysis, Nor, NA
other↑, eff↝, eff↝, other↝, other↝, other↝, other↝, other↝,
2530- H2,    Improvement of psoriasis-associated arthritis and skin lesions by treatment with molecular hydrogen: A report of three cases
- Case Report, PSA, NA
eff↑, Dose↝, eff↑, IL6↓, eff↑,
1634- HCA,    Hydroxycitrate: a potential new therapy for calcium urolithiasis
- Human, Nor, NA
*other↑, *eff↑,
1637- HCA,  OLST,    Orlistat and Hydroxycitrate Ameliorate Colon Cancer in Rats: The Impact of Inflammatory Mediators
- in-vivo, Colon, NA
TumVol↓, OS↑, *IL6↓, *NF-kB↓, *eff↑, *Casp3↓, *TNF-α↓, *Catalase↑, *NO↓, *ROS↓, *Inflam↓, *Apoptosis↓,
1589- HCA,    ATP citrate lyase (ACLY) inhibitors: An anti-cancer strategy at the crossroads of glucose and lipid metabolism
- Review, NA, NA
ACLY↓, eff↑,
1627- HCA,    Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance
- Review, Var, NA
ChemoSen↑, eff↑, ACLY↓, LC3‑Ⅱ/LC3‑Ⅰ↑,
1628- HCA,  ALA,    effreydachmd.com/2016/05/alpha-lipoic-acid-anticancer-agent-burt-berkson-md/">Addition of Hydroxy Citrate improves effect of ALA
- Review, Var, NA
ACLY↓, other↓, ROS↑, eff↑, PDKs↓,
1629- HCA,  Tam,    Hydroxycitric acid reverses tamoxifen resistance through inhibition of ATP citrate lyase
- in-vitro, BC, MCF-7
ACLY↓, eff↓, tumCV↓, eff↑, Casp3↑, BAX↑, Bcl-2↓,
1643- HCAs,    Mechanisms involved in the anticancer effects of sinapic acid
- Review, Var, NA
*BioAv↓, *toxicity↓, Dose∅, ROS⇅, ROS↑, Igs↑, TumCCA↑, TumAuto↑, eff↑, angioG↓, TumCI↓, TumMeta↓, EMT↓, Vim↓, MMP9↓, MMP2↓, Snail↓, E-cadherin↑, p‑Akt↓, GSK‐3β↓, TumCP↓, ChemoSen↑,
1439- HCQ,    Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine
- in-vitro, Melanoma, NA - in-vitro, CRC, HCT116
TumAuto↓, eff↓, other↓,
2886- HNK,    Liposomal honokiol inhibits non-small cell lung cancer progression and enhances PD-1 blockade via suppressing M2 macrophages polarization
- in-vitro, Lung, A549 - in-vitro, Lung, H460 - in-vivo, NA, NA
eff↑, BioAv↑, eff↑, PI3K↓, Akt↓,
2895- HNK,    Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity
- in-vitro, Lung, PC9
eff↑, TumCP↓, mt-ROS↑, Prx3↑, mt-STAT3↓, *toxicity∅, selectivity↑, ChemoSen↑,
2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, CDK2↓, EMT↓, MMPs↓, AMPK↑, TumCI↓, TumCMig↓, TumMeta↓, VEGFR2↓, *antiOx↑, *Inflam↓, *BBB↑, *neuroP↑, *ROS↓, Dose↝, selectivity↑, Casp3↑, Casp9↑, NOTCH1↓, cycD1/CCND1↓, cMyc↓, P21?, DR5↑, cl‑PARP↑, P53↑, Mcl-1↑, p65↓, NF-kB↓, ROS↑, JNK↑, NRF2↑, cJun↑, EF-1α↓, MAPK↓, PI3K↓, mTORC1↓, CSCs↓, OCT4↓, Nanog↓, SOX4↓, STAT3↓, CDK4↓, p‑RB1↓, PGE2↓, COX2↓, β-catenin/ZEB1↑, IKKα↓, HDAC↓, HATs↑, H3↑, H4↑, LC3II↑, c-Raf↓, SIRT3↑, Hif1a↓, ER Stress↑, GRP78/BiP↑, cl‑CHOP↑, MMP↓, PCNA↓, Zeb1↓, NOTCH3↓, CD133↓, Nestin↓, ATG5↑, ATG7↑, survivin↓, ChemoSen↑, SOX2↓, OS↑, P-gp↓, Half-Life↓, Half-Life↝, eff↑, BioAv↓,
2865- HNK,    Liposomal Honokiol induces ROS-mediated apoptosis via regulation of ERK/p38-MAPK signaling and autophagic inhibition in human medulloblastoma
- in-vitro, MB, DAOY - vitro+vivo, NA, NA
BioAv↓, BioAv↓, TumCP↓, selectivity↑, P53↑, P21↑, CDK4↓, cycD1/CCND1↓, mtDam↑, ROS↑, eff↓, Casp3↑, BAX↑, LC3II↑, Beclin-1↑, ATG7↑, p62↑, eff↑, ChemoSen↑, *toxicity↓,
2872- HNK,    Honokiol alleviated neurodegeneration by reducing oxidative stress and improving mitochondrial function in mutant SOD1 cellular and mouse models of amyotrophic lateral sclerosis
- in-vivo, ALS, NA - NA, Stroke, NA - NA, AD, NA - NA, Park, NA
*eff↑, *ROS↓, *GSH↑, *NRF2↑, *motorD↑, *OS↑, *neuroP↑, *BBB↑, *cognitive↑, *eff↑, *antiOx↑, *Cyt‑c↑, *PGC-1α↑,
4522- HNK,  MAG,    Honokiol Is More Potent than Magnolol in Reducing Head and Neck Cancer Cell Growth
- in-vitro, HNSCC, FaDu
AntiCan↑, tumCV↓, eff↑, survivin↓, RadioS↑,
4523- HNK,  MAG,  BA,    Honokiol-Magnolol-Baicalin Possesses Synergistic Anticancer Potential and Enhances the Efficacy of Anti-PD-1 Immunotherapy in Colorectal Cancer by Triggering GSDME-Dependent Pyroptosis
- in-vitro, CRC, HCT116 - in-vitro, CRC, LoVo - in-vivo, CRC, HCT116
AntiCan↑, eff↑, TumCP↓, TumCCA↓, cycD1/CCND1↓, Pyro↑, Apoptosis↑, cl‑GSDME↑, Bcl-2↓, Cyt‑c↑, Casp9↑, TumCG↓,
2073- HNK,    Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo
- in-vitro, OS, U2OS - in-vivo, NA, NA
TumCD↑, TumAuto↑, Apoptosis↑, TumCCA↑, GRP78/BiP↑, ROS↑, eff↓, p‑ERK↑, selectivity↑, Ca+2↑, MMP↓, Casp3↑, Casp9↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, survivin↓, LC3B-II↑, ATG5↑, TumVol↓, TumW↓, ER Stress↑,
2072- HNK,    Honokiol Suppresses Cell Proliferation and Tumor Migration through ROS in Human Anaplastic Thyroid Cancer Cells
- in-vitro, Thyroid, NA
ROS↑, eff↓,
4641- HT,    Hydroxytyrosol induced ferroptosis through Nrf2 signaling pathway in colorectal cancer cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
Ferroptosis↑, Iron↑, lipid-P↑, ROS↑, GSH↓, MMP↓, GPx4↓, TLR1↑, eff↓, NRF2↓, ROS↑,
2180- itraC,    Repurposing Drugs in Oncology (ReDO)—itraconazole as an anti-cancer agent
- Review, Var, NA
Dose↝, toxicity↝, BioAv↑, Half-Life↝, BioAv↑, Dose↝, HH↓, TumAuto↑, Akt↓, mTOR↓, angioG↓, MDR1↓, TumCP↓, eff↑,
1925- JG,    Redox regulation of mitochondrial functional activity by quinones
- in-vitro, NA, NA
other↓, ROS↑, MMP↓, eff↝,
1919- JG,    The Anti-Glioma Effect of Juglone Derivatives through ROS Generation
- in-vitro, GBM, U87MG - in-vitro, GBM, U251
ROS↑, Apoptosis↑, eff↓, eff↓,
1922- JG,    Juglone induces apoptosis of tumor stem-like cells through ROS-p38 pathway in glioblastoma
- in-vitro, GBM, U87MG
tumCV↓, TumCP↓, ROS↑, p‑p38↑, eff↓, Apoptosis↑, OS↑,
1924- JG,    Juglone triggers apoptosis of non-small cell lung cancer through the reactive oxygen species -mediated PI3K/Akt pathway
- in-vitro, Lung, A549
TumCMig↓, TumCI↓, TumCCA↑, Apoptosis↑, cl‑Casp3↑, BAX↑, Cyt‑c↑, ROS↑, MDA↑, GPx4↓, SOD↓, PI3K↓, Akt↓, eff↓,
4011- K+,    Sodium and potassium intakes among US adults: NHANES 2003–2008
- Analysis, NA, NA
*Dose↓, *eff↑, *BP↓,
4014- K+,    The effects of boiling and leaching on the content of potassium and other minerals in potatoes
- Analysis, NA, NA
*other↓, *eff↑, *other↓,
2390- KaempF,    Kaempferol Can Reverse the 5-Fu Resistance of Colorectal Cancer Cells by Inhibiting PKM2-Mediated Glycolysis
- in-vitro, CRC, HCT8
eff↑, GlucoseCon↓, lactateProd↓, PKM2↓, Glycolysis↓, glucose↑,
860- Lae,    Amygdalin as a Promising Anticancer Agent: Molecular Mechanisms and Future Perspectives for the Development of New Nanoformulations for Its Delivery
- Review, NA, NA
eff↑, Casp3↑, Bcl-2↓,
2351- lamb,    Anti-Warburg effect via generation of ROS and inhibition of PKM2/β-catenin mediates apoptosis of lambertianic acid in prostate cancer cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
proCasp3↓, proPARP↓, LDHA↓, Glycolysis↓, HK2↓, PKM2↓, lactateProd↓, p‑STAT3↓, cycD1/CCND1↓, cMyc↓, β-catenin/ZEB1↓, p‑GSK‐3β↓, ROS↑, eff↓,
1790- LEC,  DHA,    Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats
- in-vivo, Nor, NA
*eff↑, other↑,
1795- LEC,  Chit,    Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene
- in-vivo, Nor, NA
eff↑, BioAv↑,
1791- LEC,    Vegetable lecithins: A review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention
- Review, Nor, NA
*BioEnh↑, *antiOx↑, *BioEnh↑, *LDL↓, *HDL∅, *Obesity↓, eff↑, GutMicro↝,
1534- LT,  Api,  EGCG,  RES,    Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action
- in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, PC, Bxpc-3
TumCP↓, Apoptosis↑, eff↓, *toxicity↑, Dose?, eff↓, eff↓,
4292- LT,    Luteolin for neurodegenerative diseases: a review
- Review, AD, NA - Review, Park, NA - Review, MS, NA - Review, Stroke, NA
*Inflam↓, *antiOx↑, *neuroP↑, *BioAv↝, *BBB↑, *TNF-α↓, *IL1β↓, *IL6↓, *IL8↓, *IL33↓, *NF-kB↓, *BACE↓, *ROS↓, *SOD↑, *HO-1↑, *NRF2↑, *Casp3↓, *Casp9↑, *Bax:Bcl2↓, *UPR↑, *GRP78/BiP↑, *Aβ↓, *GSK‐3β↓, *tau↓, *CREB↑, *ATP↑, *cognitive↑, *BloodF↑, *BDNF↑, *TrkB↑, *memory↑, *PPARγ↑, *eff↑,
2919- LT,    Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence
- Review, Var, NA
RadioS↑, ChemoSen↑, chemoP↑, *lipid-P↓, *Catalase↑, *SOD↑, *GPx↑, *GSTs↑, *GSH↑, *TNF-α↓, *IL1β↓, *Casp3↓, *IL10↑, NRF2↓, HO-1↓, NQO1↓, GSH↓, MET↓, p‑MET↓, p‑Akt↓, HGF/c-Met↓, NF-kB↓, Bcl-2↓, SOD2↓, Casp8↑, Casp3↑, PARP↑, MAPK↓, NLRP3↓, ASC↓, Casp1↓, IL6↓, IKKα↓, p‑p65↓, p‑p38↑, MMP2↓, ICAM-1↓, EGFR↑, p‑PI3K↓, E-cadherin↓, ZO-1↑, N-cadherin↓, CLDN1↓, β-catenin/ZEB1↓, Snail↓, Vim↑, ITGB1↓, FAK↓, p‑Src↓, Rac1↓, Cdc42↓, Rho↓, PCNA↓, Tyro3↓, AXL↓, CEA↓, NSE↓, SOD↓, Catalase↓, GPx↓, GSR↓, GSTs↓, GSH↓, VitE↓, VitC↓, CYP1A1↓, cFos↑, AR↓, AIF↑, p‑STAT6↓, p‑MDM2↓, NOTCH1↓, VEGF↓, H3↓, H4↓, HDAC↓, SIRT1↓, ROS↑, DR5↑, Cyt‑c↑, p‑JNK↑, PTEN↓, mTOR↓, CD34↓, FasL↑, Fas↑, XIAP↓, p‑eIF2α↑, CHOP↑, LC3II↑, PD-1↓, STAT3↓, IL2↑, EMT↓, cachexia↓, BioAv↑, *Half-Life↝, *eff↑,
2920- LT,    Formulation, characterization, in vitro and in vivo evaluations of self-nanoemulsifying drug delivery system of luteolin
- in-vitro, Nor, NA - in-vivo, Nor, NA
BioAv↑, eff↑,
2903- LT,    Luteolin induces apoptosis by ROS/ER stress and mitochondrial dysfunction in gliomablastoma
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vivo, NA, NA
ER Stress↑, ROS↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, Casp12↑, eff↓, UPR↑, MMP↓, Cyt‑c↑, Bcl-2↓, BAX↑, TumCG↓, Weight∅, ALAT∅, AST∅,
2904- LT,    Luteolin from Purple Perilla mitigates ROS insult particularly in primary neurons
- in-vitro, Park, SK-N-SH - in-vitro, AD, NA
*ROS↓, *neuroP↑, *MMP↑, *Catalase↑, *GSH↑, selectivity↑, *eff↑, *Cyt‑c↓,
2907- LT,    Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems
- in-vitro, Nor, NA
*ROS↓, *Casp9↓, *Casp3↓, *Bcl-2↑, *BAX↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *HO-1↑, *antiOx↑, *lipid-P↓, *p‑γH2AX↓, eff↑,
2910- LT,  FA,    Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment
- in-vitro, BC, 4T1 - in-vivo, NA, NA
BioAv↓, BioAv↑, eff↑, tumCV↓, e-H2O2↓, i-H2O2∅,
3982- Lut,  Zeax,    Nutritional Intervention to Prevent Alzheimer's Disease: Potential Benefits of Xanthophyll Carotenoids and Omega-3 Fatty Acids Combined
- Trial, AD, NA
*memory↑, *eff↑, *Mood↑,
3980- Lut,  Zeax,    Supplementation With Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer's Disease
- Trial, AD, NA
*eff↑, *memory↑, *Mood↑, *QoL↑,
3281- Lyco,  Chemo,    Lycopene Supplementation for Patients Under Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
- Review, Var, NA
eff↑, cardioP↑, eff?, PSA↓, RenoP↑,
3285- Lyco,    Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study
- in-vitro, Nor, NA
*AntiAg↑, *eff↑,
3287- Lyco,    Recent technological strategies for enhancing the stability of lycopene in processing and production
- Review, NA, NA
*eff↑,
3261- Lyco,    Lycopene and Vascular Health
- Review, Stroke, NA
*Inflam↓, *antiOx↑, *AntiAg↑, *cardioP↑, *SOD↑, *Catalase↑, *ROS↓, *mtDam↓, *cardioP↑, *NF-kB↓, *NO↓, *COX2↓, *LDL↓, *eff↑, *ER Stress↓, *BioAv↑, *eff↑, *MMPs↓, *COX2↓, *RAGE↓,
4798- Lyco,    Enhancing Anticancer Treatment Efficacy With Lycopene: A Comprehensive Review of Clinical and Preclinical Evidence
- Review, Var, NA
AntiCan↑, ChemoSen↑, eff↑, eff↑,
4792- Lyco,    A Comprehensive Review on the Molecular Mechanism of Lycopene in Cancer Therapy
- Review, Var, NA
*AntiCan↑, *antiOx↑, Inflam↓, Wnt↓, β-catenin/ZEB1↓, *ROS↓, BioAv↑, ROS↓, Risk↓, PGE2↓, COX2↓, p‑ERK↓, P21↑, MMP7↓, MMP9↓, ChemoSen↑, eff↑,
4791- Lyco,    Investigating into anti-cancer potential of lycopene: Molecular targets
- Review, Var, NA
*antiOx↑, TumCP↓, TumCCA↓, Apoptosis↑, TumCI↓, angioG↓, TumMeta↓, *Risk↓, cycD1/CCND1↓, CycD3↓, cycE/CCNE↓, CDK2↓, CDK4↓, Bcl-2↓, P21↑, p27↑, P53↑, BAX↑, selectivity↑, MMP↓, Cyt‑c↑, Wnt↓, eff↑, PPARγ↑, LDL↓, Akt↓, PI3K↓, mTOR↓, PDGF↓, NF-kB↓, eff↑,
4790- Lyco,    Role of Lycopene in the Control of ROS-Mediated Cell Growth: Implications in Cancer Prevention
- Review, Var, NA
*antiOx↑, *ROS⇅, TumCP↓, AP-1↓, eff↓,
1041- Lyco,  immuno,    Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells
- in-vivo, Lung, NA
TumVol↓, TumW↓, eff↑, IL1↑, IFN-γ↑, IL4↓, IL10↓,
1715- Lyco,    Pro-oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence
- Review, Var, NA
antiOx↑, ROS↑, ChemoSen↑, selectivity↑, eff↓, Casp3↑, Casp7↑, Casp9↑, P53↑, BAX↑, DNAdam↑, mtDam↑, eff↑,
1713- Lyco,    Lycopene: A Potent Antioxidant with Multiple Health Benefits
- Review, Nor, NA
*antiOx↑, *ROS⇅, *Dose↝, *eff↑, *LDL↓, *RenoP↑, *Inflam↓, neuroP↑, Rho↓,
1712- Lyco,    Lycopene Protects against Smoking-Induced Lung Cancer by Inducing Base Excision Repair
- in-vitro, Lung, A549
ROS↓, ROS↑, eff↑,
1710- Lyco,    Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases
- Review, CardioV, NA
antiOx↓, ROS↓, BP↓, LDL↓, *toxicity∅, eff↑, ROS↑, *Half-Life↑, *BioAv↓, *BioAv↑, *antiOx↑,
1708- Lyco,    The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies
- Review, Var, NA
OS↑, ChemoSen↑, QoL↑, PSA∅, eff↑, AntiCan↑, AntiCan↑, angioG↓, VEGF↓, Hif1a↓, SOD↑, Catalase↑, GPx↑, GSH↑, GPx↑, GR↑, MDA↓, NRF2↑, HO-1↑, COX2↓, PGE2↓, NF-kB↓, IL4↑, IL10↑, IL6↓, TNF-α↓, PPARγ↑, TumCCA↑, FOXO3↓, Casp3↑, IGF-1↓, p27↑, STAT3↓, CDK2↓, CDK4↓, P21↑, PCNA↓, MMP7↓, MMP9↓,
2540- M-Blu,    Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots
- Review, Var, NA - Review, AD, NA
*OCR↑, *Glycolysis↓, *GlucoseCon↑, neuroP↑, Warburg↓, mt-OXPHOS↑, TumCCA↑, TumCP↓, ROS⇅, *cognitive↑, *mTOR↓, *mt-antiOx↑, *memory↑, *BBB↑, *eff↝, *ECAR↓, eff↑, lactateProd↓, NADPH↓, OXPHOS↑, AMPK↑, selectivity↑,
2533- M-Blu,  PDT,    Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells
- in-vitro, Lung, A549
MMP↓, p‑MAPK↑, ROS↑, cl‑PARP↑, Bcl-2↓, Mcl-1↓, eff↓,
4528- MAG,    Pharmacology, Toxicity, Bioavailability, and Formulation of Magnolol: An Update
- Review, Nor, NA
*Inflam↑, *cardioP↑, *angioG↓, *antiOx↑, *neuroP↑, *Bacteria↓, AntiTum↑, TumCG↓, TumCMig↓, TumCI↓, Apoptosis↑, E-cadherin↑, NF-kB↓, TumCCA↑, cycD1/CCND1↓, PCNA↓, Ki-67↓, MMP2↓, MMP7↓, MMP9↓, TumCG↓, Casp3↑, NF-kB↓, Akt↓, mTOR↓, LDH↓, Ca+2↑, eff↑, *toxicity↓, *BioAv↝, *PGE2↓, *TLR2↓, *TLR4↓, *MAPK↓, *PPARγ↓,
4525- MAG,  HNK,    Magnolol and Honokiol: Two Natural Compounds with Similar Chemical Structure but Different Physicochemical and Stability Properties
- Study, Nor, NA
*BioAv↝, *eff↑,
4517- MAG,    Mitochondrion-targeted magnolol derivatives exert synergistic anticancer activity by modulating energy metabolism and tumor microenvironment
- vitro+vivo, Var, NA
eff↑, AntiCan↑, ROS↑, ER Stress↑, Apoptosis↑,
2450- Matr,    The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors
- Review, Var, NA
HK2↓, eff↓,
2643- MCT,    Medium Chain Triglycerides enhances exercise endurance through the increased mitochondrial biogenesis and metabolism
- Review, Nor, NA
*Akt↑, *AMPK↓, *TGF-β↓, eff↑, *BioEnh↑, *ATP↑, *PGC-1α↑, *p‑mTOR↑, *SMAD3↓,
2644- MCT,    The Effects of Medium-Chain Triglyceride Oil Supplementation on Endurance Performance and Substrate Utilization in Healthy Populations: A Systematic Review
- Review, Nor, NA
*KeyT↑, *Dose↝, eff↑,
3905- MCT,    Medium Chain Triglycerides induce mild ketosis and may improve cognition in Alzheimer's disease. A systematic review and meta-analysis of human studies
- Review, AD, NA
*cognitive↑, *KeyT↑, *eff↑, *other↑, *toxicity↓,
3903- MCT,    Retrospective case studies of the efficacy of caprylic triglyceride in mild-to-moderate Alzheimer’s disease
- Case Report, AD, NA
*KeyT↑, *cognitive↑, *eff↑,
1899- MeJa,    Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death
- in-vitro, NA, NA
ROS↑, MMP↓, eff↓, H2O2?,
1782- MEL,    Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities
- Review, Var, NA
AntiCan↑, Apoptosis↑, TumCP↓, TumCG↑, TumMeta↑, ChemoSideEff↓, radioP↑, ChemoSen↑, *ROS↓, *SOD↑, *GSH↑, *GPx↑, *Catalase↑, Dose∅, VEGF↓, eff↑, Hif1a↓, GLUT1↑, GLUT3↑, CAIX↑, P21↑, p27↑, PTEN↑, Warburg↓, PI3K↓, Akt↓, NF-kB↓, cycD1/CCND1↓, CDK4↓, CycB/CCNB1↓, CDK4↓, MAPK↑, IGF-1R↓, STAT3↓, MMP9↓, MMP2↓, MMP13↓, E-cadherin↑, Vim↓, RANKL↓, JNK↑, Bcl-2↓, P53↑, Casp3↑, Casp9↑, BAX↑, DNArepair↑, COX2↓, IL6↓, IL8↓, NO↓, T-Cell↑, NK cell↑, Treg lymp↓, FOXP3↓, CD4+↑, TNF-α↑, Th1 response↑, BioAv↝, RadioS↑, OS↑,
1780- MEL,    Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing
- Review, Var, NA
*antiOx↑, *toxicity↓, ChemoSen↑, *eff↑, *mitResp↑, *ATP↑, *ROS↓, *CardioT↓, *GSH↑, *NOS2↓, *lipid-P↓, eff↑, *HO-1↑, *NRF2↑, *NF-kB↑, TumCP↓, eff↑, neuroP↑,
1779- MEL,    Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review
- Review, BC, NA
QoL↑, OS↑, Dose∅, antiOx↑, ROS↑, SOD↑, Catalase↑, GPx↑, Risk↓, NK cell↑, IL1β↓, IL6↓, TNF-α↓, radioP↑, chemoP↑, TumVol↓, TumMeta↓, angioG↓, ChemoSen↑, eff↑,
1778- MEL,    Melatonin: a well-documented antioxidant with conditional pro-oxidant actions
- Review, Var, NA - Review, AD, NA
*ROS↓, *antiOx↓, ROS↑, selectivity↑, Dose↑, *mitResp↑, *ATP↑, *ROS↓, eff↑, ROS↑, Dose↑, *toxicity∅, ROS↑, eff↓, ROS↝, Dose↑, other↑,
1777- MEL,    Melatonin as an antioxidant: under promises but over delivers
- Review, NA, NA
*ROS↓, *Fenton↓, *antiOx↑, *toxicity∅, *GPx↑, *GSR↑, *GSH↑, *NO↓, *Iron↓, *Copper↓, *IL1β↓, *iNOS↓, *Casp3↓, *BBB↑, *RenoP↑, chemoP↑, *Ca+2↝, eff↑, *PKCδ?, ChemoSen↑, eff↑, Akt↓, DR5↑, selectivity↑, ROS↑, eff↑,
2387- MET,  GEM,    Metformin Increases the Response of Cholangiocarcinoma Cells to Gemcitabine by Suppressing Pyruvate Kinase M2 to Activate Mitochondrial Apoptosis
- in-vitro, CCA, HCC9810
eff↑, tumCV↓, TumCMig↓, TumCI↓, Apoptosis↑, PKM2↓, PDHB↓,
2383- MET,    Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2
- in-vitro, RCC, A498
AMPK↑, TumCP↓, eff↓, eff↑,
2379- MET,    Down‐regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer
- in-vitro, Bladder, T24 - in-vitro, BC, UMUC3
PKM2↓, p‑STAT3↓, TumCG↓, eff↑, chemoP↑, AMPK↑,
2374- MET,    Metformin Induces Apoptosis and Downregulates Pyruvate Kinase M2 in Breast Cancer Cells Only When Grown in Nutrient-Poor Conditions
- in-vitro, BC, MCF-7 - in-vitro, BC, SkBr3 - in-vitro, BC, MDA-MB-231
eff↑, Apoptosis↑, Glycolysis↓, PKM2↓, mTOR↓, PARP↓,
1043- MET,  immuno,    Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy
- in-vitro, NA, NA
eff↑, PD-L1↓, Ki-67↑, TIM-3↑, L-sel↑,
2486- metroC,  capec,    Sustained complete response of advanced hepatocellular carcinoma with metronomic capecitabine: a report of three cases
- Case Report, HCC, NA
OS↑, eff↝, Dose↝, AFP↓, Dose↝, TumVol↓, AFP↓,
2487- metroC,    Metronomic Chemotherapy: Possible Clinical Application in Advanced Hepatocellular Carcinoma
- Review, HCC, NA
toxicity↓, toxicity↓, eff↝, angioG↓, CSCs↓, TSP-1↑, Hif1a↓, VEGF↓, eff↑,
2257- MF,  HPT,    HSP70 Inhibition Synergistically Enhances the Effects of Magnetic Fluid Hyperthermia in Ovarian Cancer
- in-vitro, Ovarian, NA
eff↑, eff↑,
2243- MF,    Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study
- in-vitro, Nor, NA
*eff↑, *mTOR↑, *Akt↑, *PKA↑, *MAPK↑, *ERK↑, *BMP2↑, *Diff↑, *PKCδ↓, *VEGF↑, *IL10↑,
2240- MF,    Pulsed electromagnetic field induces Ca2+-dependent osteoblastogenesis in C3H10T1/2 mesenchymal cells through the Wnt-Ca2+/Wnt-β-catenin signaling pathway
- in-vitro, Nor, C3H10T1/2
*Ca+2↑, *Diff↑, *BMD↑, *Wnt↑, *β-catenin/ZEB1↑, *eff↝,
2239- MF,    Time-varying magnetic fields increase cytosolic free Ca2+ in HL-60 cells
- in-vitro, AML, HL-60
Ca+2↑, eff↝,
2238- MF,    Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects
- Review, Var, NA
*BMD↑, *VGCC↑, *Ca+2↑, *NO↑, *eff↓,
2236- MF,    Changes in Ca2+ release in human red blood cells under pulsed magnetic field
- in-vitro, Nor, NA
*Ca+2↓, *eff↓, *ROS↓,
2260- MF,    Alternative magnetic field exposure suppresses tumor growth via metabolic reprogramming
- in-vitro, GBM, U87MG - in-vitro, GBM, LN229 - in-vivo, NA, NA
TumCP↓, TumCG↓, OS↑, ROS↑, SOD2↑, eff↓, ECAR↓, OCR↑, selectivity↑, *toxicity∅, TumVol↓, PGC-1α↑, OXPHOS↑, Glycolysis↓, PKM2↓,
2252- MF,  HPT,    Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins?
- Review, NA, NA
HSPs∅, *HSPs↑, eff↝, *eff↑, eff↑, eff↓,
4352- MF,    Differences in lethality between cancer cells and human lymphocytes caused by LF-electromagnetic fields
- in-vitro, lymphoma, K562 - NA, NA, U937 - NA, NA, HL-60
Apoptosis↑, eff↑,
4353- MF,  Chemo,    Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCCA↑, Apoptosis↑, eff↑, TumCCA↑, Casp↝, p‑CDK2↓, cycE/CCNE↓, Fas↑, BAX↑, survivin↓, Mcl-1↓, cl‑PARP↑, cl‑Casp7↑, cl‑Casp8↑, cl‑Casp9↑,
4354- MF,  doxoR,    Modulated TRPC1 Expression Predicts Sensitivity of Breast Cancer to Doxorubicin and Magnetic Field Therapy: Segue Towards a Precision Medicine Approach
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
selectivity↑, Apoptosis↑, TumCI↓, tumCV↓, TumVol↓, eff↓, eff↑, ROS↑, Ca+2↑, TumCMig↓,
4355- MF,    Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism
- in-vitro, Nor, C2C12
*mt-OCR↑, *mt-ROS↑, *ECAR↑, *Dose↝, *Ca+2↑, *ATP↑, *other↑, *eff↓, *eff↝,
3476- MF,    Pulsed Electromagnetic Fields Stimulate HIF-1α-Independent VEGF Release in 1321N1 Human Astrocytes Protecting Neuron-like SH-SY5Y Cells from Oxygen-Glucose Deprivation
- in-vitro, Stroke, 1321N1 - in-vitro, Park, NA
*VEGF↑, *eff↑, *neuroP↑, *other↑, *eff↑, *Inflam↓, *Hif1a∅,
3477- MF,    Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis
- Review, NA, NA
*Ca+2↑, *VEGF↑, *angioG↑, Ca+2↑, ROS↑, Necroptosis↑, TumCCA↑, Apoptosis↑, *ATP↑, *FAK↑, *Wnt↑, *β-catenin/ZEB1↑, *ROS↑, p38↑, MAPK↑, β-catenin/ZEB1↓, CSCs↓, TumCP↓, ROS↑, RadioS↑, Ca+2↑, eff↓, NO↑,
3479- MF,    Evaluation of Pulsed Electromagnetic Field Effects: A Systematic Review and Meta-Analysis on Highlights of Two Decades of Research In Vitro Studies
- Review, NA, NA
*eff↓, eff↝, *Hif1a↑, *VEGF↑, *TIMP1↑, *E2Fs↑, *MMP2↑, *MMP9↑, Apoptosis↑,
3486- MF,    Pulsed electromagnetic field potentiates etoposide-induced MCF-7 cell death
- in-vitro, NA, NA
ChemoSen↑, tumCV↓, cl‑PARP↑, Casp7↑, Casp9↑, survivin↓, BAX↑, DNAdam↑, ROS↑, eff↓,
3481- MF,    No effects of pulsed electromagnetic fields on expression of cell adhesion molecules (integrin, CD44) and matrix metalloproteinase-2/9 in osteosarcoma cell lines
- in-vitro, OS, MG63 - in-vitro, OS, SaOS2
ITGA1∅, ITGB1∅, ITGA5∅, ITGB3∅, ITGB4∅, MMP2∅, MMP9∅, eff↑,
3457- MF,    Cellular stress response to extremely low‐frequency electromagnetic fields (ELF‐EMF): An explanation for controversial effects of ELF‐EMF on apoptosis
- Review, Var, NA
Apoptosis↑, H2O2↑, ROS↑, eff↑, eff↑, Ca+2↑, MAPK↑, *Catalase↑, *SOD1↑, *GPx1↑, *GPx4↑, *NRF2↑, TumAuto↑, ER Stress↑, HSPs↑, SIRT3↑, ChemoSen↑, UPR↑, other↑, PI3K↓, JNK↑, p38↑, eff↓, *toxicity?,
3468- MF,    An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing
- Review, NA, NA
*other↑, *necrosis↓, *IL6↑, *TGF-β↑, *iNOS↑, *MMP2↑, *MCP1↑, *HO-1↑, *Inflam↓, *IL1β↓, *IL6↓, *TNF-α↓, *BioAv↑, eff⇅, DNAdam↑, Apoptosis↑, ROS↑, TumCP↓, *ROS↓, *FGF↑,
3469- MF,    Pulsed Electromagnetic Fields (PEMF)—Physiological Response and Its Potential in Trauma Treatment
- Review, NA, NA
*eff↑, *eff↝, *other↑, Ca+2↑, ROS↑, HSP70/HSPA5↑, *NOTCH↑, *HEY1↑, *p38↑, *MAPK↑,
3568- MF,    The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis
- Review, Arthritis, NA
*eff↑, *Pain↓, *motorD↑,
4093- MF,    Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species
- in-vivo, NA, NA
*ROS↑, *eff↑,
4097- MF,    Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After Stroke
- Trial, Stroke, NA
*motorD↑, *eff↑, *Dose↝,
4101- MF,    Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation
- Human, Stroke, NA
*motorD↑, *cognitive↑, *eff↑, *NO↑, *other↝, *neuroP↑,
4119- MF,    Therapeutic potential and mechanisms of repetitive transcranial magnetic stimulation in Alzheimer’s disease: a literature review
- Review, AD, NA
*cognitive↑, *memory↑, *motorD↑, *eff↑, *eff↑, *Dose↝, *Dose↝, *Dose↝, *BDNF↑, *Aβ↓, *eff↑,
4118- MF,    Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease
- Review, AD, NA
*cognitive↑, *BDNF↑, *neuroP↑, *memory↑, *ROS↓, *antiOx↑, *Aβ↓, *eff↑,
3741- MF,    Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders
- Review, NA, NA
*eff↑, *BMD↑, *Inflam↓, *PGE2↓, *IL6↓, *IL8↓, *NF-kB↓, *mTOR↝,
535- MF,    Electromagnetic Fields Trigger Cell Death in Glioblastoma Cells through Increasing miR-126-5p and Intracellular Ca2+ Levels
- in-vitro, Pca, PC3 - in-vitro, GBM, A172 - in-vitro, Pca, HeLa
Apoptosis↑, miR-129-5p↑, Ca+2↑, eff↝,
523- MF,  MTX,    Extremely low-frequency magnetic fields significantly enhance the cytotoxicity of methotrexate and can reduce migration of cancer cell lines via transiently induced plasma membrane damage
- in-vitro, AML, THP1 - in-vitro, NA, PC12 - in-vivo, Cerv, HeLa
H2O2↑, TumCD↑, CellMemb↑, eff↑,
528- MF,  Caff,    Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells
- in-vitro, GBM, U373MG
Ca+2↑, TumCP∅, TumCD∅, eff↑,
539- MF,    Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers
- in-vitro, NA, NA
eff↑,
537- MF,  immuno,    Integrating electromagnetic cancer stress with immunotherapy: a therapeutic paradigm
- Review, Var, NA
Apoptosis↑, ROS↑, TumAuto↑, Ca+2↑, ATP↓, eff↑, eff↑,
534- MF,    Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, Nor, MCF10
Ca+2↑, Apoptosis↑, eff↝, eff↑, selectivity↑, eff↝, eff↝,
532- MF,    A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
TumCP↓, MMP↓, ROS↑, eff↝, selectivity↑,
520- MF,    Exposure to a 50-Hz magnetic field induced mitochondrial permeability transition through the ROS/GSK-3β signaling pathway
- in-vitro, Nor, NA
*MPT↑, *Cyt‑c↑, *ROS↑, *p‑GSK‐3β↑, *eff↓, *MMP∅, *BAX↓, *Bcl-2∅,
188- MFrot,  MF,    Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells
- in-vitro, GBM, GBM115 - in-vitro, GBM, DIPG
ROS↑, SDH↓, eff↓, RPM↑, eff↓, eff↑, eff↝, eff↝, Casp3↑, eff↝, SOD↓, ETC↓,
203- MFrot,  MF,    Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant Glioma
- vitro+vivo, GBM, U87MG
lysoMP↓, TumVol↓, eff↑, Apoptosis↑, Ca+2↑,
226- MFrot,  MF,    Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells
- in-vitro, NA, A549 - in-vitro, NA, LoVo
TumCP↓, eff↝,
229- MFrot,  MF,    Molecular mechanism of effect of rotating constant magnetic field on organisms
- in-vivo, Nor, NA
*NO↑, *5HT↓, *eff↝, *eff↝, *β-Endo↑, *other↓,
215- MFrot,  MF,    Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields
- in-vitro, PC, CAF
TumVol↓, lysoMP↑, CAFs/TAFs↓, eff↑,
184- MFrot,  MF,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, mitResp↓, mtDam↑, Dose↝, MMP?, OCR↓, mt-H2O2↑, eff↓, SDH↓, Thiols↓, GSH↓, TumCD↑, Casp3↑, Casp7↑, MPT↑, Cyt‑c↑, selectivity↑, GSH/GSSG↓, ETC↓,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
3567- MFrot,  MF,    The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
- Review, Stroke, NA
*eff↑, *ROS↓, *Inflam↓, *cognitive↑, *Catalase↑, *SOD↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *IL1β↑, *neuroP↑, *toxicity∅,
3492- MFrot,  Chemo,  MF,    Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells
eff↑, TumCD↑,
3494- MFrot,  MF,    Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance
- in-vitro, Var, NA
eff↑, TumCD↑,
3496- MFrot,  GoldNP,  MF,    Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles
- in-vitro, Cerv, HeLa
eff↑, tumCV↓,
3535- MFrot,  MF,    Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications
- Review, Nor, NA
*eff↑, *COL2A1↑, *SOX9↑, *Ca+2↑, *FAK↑, *F-actin↑, *Inflam↓, *other↑, *Diff↑, *BMD↑,
2262- MFrot,  MF,    Effects of 0.4 T Rotating Magnetic Field Exposure on Density, Strength, Calcium and Metabolism of Rat Thigh Bones
- in-vivo, ostP, NA
*BMD↑, *eff↓, *ALP↑, *other↑,
2258- MFrot,  MF,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, OS↑, γH2AX↑, DNAdam↑, selectivity↑, ROS↑, TumCD↑, eff↑, eff↓,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
786- Mg,  VitC,    A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer
Risk↓, *VitD↑, *pH↝, *ROS↓, TumCG↓, eff↑,
1890- MGO,    The Dual-Role of Methylglyoxal in Tumor Progression – Novel Therapeutic Approaches
- Review, Var, NA
AntiCan?, TumCG↓, GAPDH↓, Apoptosis↑, TumCCA↑, MAPK↑, Bcl-2↓, MMP9↓, eff↑,
3839- Moringa,    Nutritional Value of Moringa oleifera Lam. Leaf Powder Extracts and Their Neuroprotective Effects via Antioxidative and Mitochondrial Regulation
*eff↑, *ROS↓, *lipid-P↓, *GSH↑, *antiOx↑, *Ca+2↓, *MMP↑, *neuroP↑, *BBB↑, *Catalase↑, *SOD↑, GPx↑,
3838- Moringa,    Characterization, Large-Scale HSCCC Separation and Neuroprotective Effects of Polyphenols from Moringa oleifera Leaves
- in-vitro, AD, PC12 - Review, Stroke, NA
*Inflam↓, *neuroP↑, *antiOx↑, *ROS↓, *memory↑, *MDA↓, *AChE↓, *SOD↑, *Catalase↑, *eff↑,
3841- Moringa,    Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion
- in-vivo, Stroke, NA
*MDA↓, *SOD↑, *neuroP↑, *ROS↓, *Inflam↓, *eff↝,
3844- Moringa,    Review of the Safety and Efficacy of Moringa oleifera
- Review, NA, NA
*antiOx↑, *RenoP↑, *hepatoP↑, *radioP↑, *eff↑, *toxicity↓, *ROS↓, *lipid-P↓, *DNAdam↓, *Catalase↑, *SOD↑, *GPx↑, *GSR↑, *GSTs↑, *AST↓, *ALAT↓, *ALP↓, *Bil↓,
3845- Moringa,    Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice
- in-vitro, NA, NA
*eff↑,
3847- MSM,    Methylsulfonylmethane: Applications and Safety of a Novel Dietary Supplement
- Review, Arthritis, NA
*Inflam↓, *Pain↓, *ROS↓, *antiOx↑, *Dose↝, *Half-Life↝, *NF-kB↓, *IL1↓, *IL6↓, *TNF-α↓, *iNOS↓, *COX2↓, *NLRP3↓, *NRF2↑, *STAT↓, *Cartilage↑, *eff↑, *eff↑, *GSH↑, *uricA↓, tumCV↓, TumCCA↑, necrosis↑, Apoptosis↑, VEGF↓, HSP90↓, IGF-1?,
3846- MSM,    Accumulation of methylsulfonylmethane in the human brain: identification by multinuclear magnetic resonance spectroscopy
- Human, NA, NA
*Dose↝, *BBB↑, *eff↓,
3815- mushLions,    Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines
- Review, Stroke, NA - Review, Park, NA - Review, AD, NA
*eff↑, *cognitive↑,
2484- mushLions,    Neurotrophic and Neuroprotective Effects of Hericium erinaceus
- Review, Stroke, NA - Review, AD, NA - Review, Park, NA
*eff↑, *BBB↑, *Dose↝, *neuroP↑, *cognitive↑, *toxicity∅,
1573- MushReishi,    Ganoderma lucidum (Reishi mushroom) for cancer treatment
- Review, NA, NA
ChemoSen↑, CR3↝, eff↑, NK cell↑, T-Cell↑, QoL↑,
1997- Myr,  QC,    Inhibition of Mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity
- in-vitro, Lung, A549
TrxR↓, eff↑, TumCCA↑, eff↓, ROS↑,
2931- NAD,    NAD+ Repletion Rescues Female Fertility during Reproductive Aging
- in-vivo, Nor, NA
*eff↑, *SIRT2↑, *other↑, *Dose↝,
2933- NAD,    Nicotinamide mononucleotide (NMN) as an anti-aging health product – Promises and safety concerns
- Review, Nor, NA - NA, AD, NA - NA, Diabetic, NA - NA, Stroke, NA - NA, LiverDam, NA - NA, Park, NA
*mtDam↓, *BioAv↝, *BioAv↑, *OS↑, *eff↑, *eff↑, *cognitive↑, *DNAdam↓, *SIRT1↑, *cardioP↑, *ROS↓, *Dose↝, *BioAv↑, *hepatoP↑, *eff↑, *BG↓, *creat↓,
4225- NarG,    Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury
- in-vivo, NA, NA
*motorD↑, *BDNF↑, *VEGF↑, *Bax:Bcl2↓, *Casp3↓, *Apoptosis↓, *eff↑,
1805- NarG,    Naringenin suppresses epithelial ovarian cancer by inhibiting proliferation and modulating gut microbiota
- in-vitro, Ovarian, A2780S - in-vivo, NA, NA
TumCP↓, TumCMig↓, PI3K↓, TumVol↓, TumW↓, BioAv↑, GutMicro↑, Dose∅, eff↑, EGFR↓, cycD1/CCND1↓, toxicity∅,
1801- NarG,    A Narrative Review on Naringin and Naringenin as a Possible Bioenhancer in Various Drug-Delivery Formulations
- Review, Var, NA
AntiCan↓, CYP19↓, PI3K↓, Akt↓, TumAuto↑, eff↑, BioEnh↑,
4976- Nimb,    Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition
- vitro+vivo, PC, NA
ROS↑, Apoptosis↑, TumAuto↑, TumCP↓, TumCMig↓, TumCI↓, EMT↓, Dose↓, selectivity↑, Akt↓, eff↓, BAX↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓,
4973- Nimb,    Nimbolide Exhibits Potent Anticancer Activity Through ROS-Mediated ER Stress and DNA Damage in Human Non-small Cell Lung Cancer Cells
- in-vitro, NSCLC, A549
tumCV↓, ROS↑, ER Stress↑, DNAdam↑, Apoptosis↑, eff↓,
4646- OLEC,    Oleocanthal as a Multifunctional Anti-Cancer Agent: Mechanistic Insights, Advanced Delivery Strategies, and Synergies for Precision Oncology
- Review, Var, NA
BioAv↓, *Inflam↓, *antiOx↓, cMET↓, STAT3↓, TNF-α↓, COX2↓, EMT↓, angioG↓, *GutMicro↝, eff↑,
1226- OLST,    Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation
- vitro+vivo, GC, NA
PGM1∅, FASN↓, Apoptosis↑, lipidLev↑, GlucoseCon↑, eff↑,
1996- Part,    Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells
- in-vitro, CRC, COLO205
Apoptosis↑, GSH↓, ROS↑, Ca+2↑, GRP78/BiP↑, ER Stress↑, eff↓, eff↑, Thiols↓,
1994- Part,    Parthenolide Inhibits Tumor Cell Growth and Metastasis in Melanoma A2058 Cells
- in-vitro, Melanoma, A2058 - in-vitro, Nor, L929
tumCV↓, selectivity?, ROS?, BAX↑, TumCCA?, MMP2↓, MMP9↓, TumCMig↓, eff↑,
1992- Part,    Parthenolide induces ROS-dependent cell death in human gastric cancer cell
- in-vitro, BC, MGC803
TumCCA↑, Casp↑, Apoptosis↑, Necroptosis↑, RIP1↓, RIP3↑, MLKL↑, ROS↑, eff↓,
1990- Part,    Parthenolide alleviates cognitive dysfunction and neurotoxicity via regulation of AMPK/GSK3β(Ser9)/Nrf2 signaling pathway
- in-vitro, AD, PC12
*Apoptosis↓, *ROS↓, *MMP↓, *memory↑, *eff↑,
1989- Part,    Parthenolide and Its Soluble Analogues: Multitasking Compounds with Antitumor Properties
- Review, Var, NA
eff↑, NF-kB↓, STAT↓, ROS↑, Inflam↓, Wnt↓, TCF-4↓, LEF1↓, GSH↓, MMP↓, Casp↑, eff↓, CSCs↓,
1986- Part,    Modulation of Cell Surface Protein Free Thiols: A Potential Novel Mechanism of Action of the Sesquiterpene Lactone Parthenolide
- in-vitro, NA, NA
JNK↑, ROS↑, eff↓, NF-kB↓, Trx↓,
1984- Part,    Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells
- in-vitro, Cerv, HeLa
AntiCan↑, TrxR1↓, TrxR2↓, ROS↑, Apoptosis↑, eff↓, eff↑,
1983- Part,    Targeting thioredoxin reductase by micheliolide contributes to radiosensitizing and inducing apoptosis of HeLa cells
- in-vitro, Cerv, HeLa
eff↑, TrxR↓, ROS↑, RadioS↑,
2036- PB,    Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate
- in-vitro, Pca, NA - in-vivo, NA, NA
TumCG↓, eff↑, Diff↑,
2049- PB,    Modifying histones to tame cancer: clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors
- Review, Var, NA
HDAC↓, ac‑H3↑, ac‑H4↑, ac‑H3↑, eff↝, toxicity↓,
2061- PB,  Chemo,    Complementary effects of HDAC inhibitor 4-PB on gap junction communication and cellular export mechanisms support restoration of chemosensitivity of PDAC cells
- in-vitro, PC, PANC1 - in-vitro, PC, COLO357 - in-vitro, PC, Bxpc-3
HDAC↓, Apoptosis↑, eff↑, selectivity↑, TumCCA↑, eff↑, selectivity↑,
2053- PB,    4-Phenyl butyric acid prevents glucocorticoid-induced osteoblast apoptosis by attenuating endoplasmic reticulum stress
- in-vitro, ostP, 3T3
*ER Stress↓, *mtDam↓, *Apoptosis↓, eff↑,
2048- PB,    Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo
- in-vitro, OS, CAL27 - in-vitro, Oral, HSC3 - in-vitro, OS, SCC4 - in-vivo, NA, NA
*NH3↓, *HDAC↓, *ER Stress↓, Apoptosis?, Bcl-2↓, cl‑Casp3↑, TGF-β↑, N-cadherin↓, E-cadherin↑, TumVol↓, eff↑,
2044- PB,  DCA,    Differential inhibition of PDKs by phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by combination with dichloroacetate
- in-vivo, NA, NA
PDK1↓, PDKs↓, eff↑, PDH↑,
2043- PB,  Cisplatin,    Phenylbutyrate interferes with the Fanconi anemia and BRCA pathway and sensitizes head and neck cancer cells to cisplatin
- in-vitro, HNSCC, UM-SCC-1
ChemoSen↑, eff↑, HDAC↓, BRCA1↓, RadioS↑,
2063- PB,  Rad,    Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation
- in-vitro, GBM, U87MG - NA, NA, U251
RadioS↑, eff↝, P53↝,
2074- PB,  Chemo,    The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells
- in-vitro, Lung, A549 - in-vitro, Lung, Calu-6 - in-vitro, Lung, H1650
TumCG↓, eff↑, ChemoSen↑, HDAC↓,
2070- PB,    Phenylbutyrate-induced apoptosis is associated with inactivation of NF-kappaB IN HT-29 colon cancer cells
- in-vitro, CRC, HT-29
TumCG↓, Apoptosis↑, MMP↓, Casp3↑, PARP↓, NF-kB↓, eff↑,
2069- PB,    Toxic and metabolic effect of sodium butyrate on SAS tongue cancer cells: role of cell cycle deregulation and redox changes
- in-vitro, Tong, NA
TumCG↓, ROS↑, P21↑, CycB/CCNB1↓, cDC2↓, CDC25↓, eff↓, TumCCA↑, Apoptosis↑,
2068- PB,    Phenylbutyrate-induced glutamine depletion in humans: effect on leucine metabolism
- in-vivo, Nor, NA
glut↓, NH3↓, eff↝,
2065- PB,  TMZ,    Inhibition of Mitochondria- and Endoplasmic Reticulum Stress-Mediated Autophagy Augments Temozolomide-Induced Apoptosis in Glioma Cells
- in-vitro, GBM, NA
eff↑, ROS↑, MMP↓, ER Stress↑, CHOP↑, GRP78/BiP↑, pro‑Casp12↓, eff↝, Ca+2↝,
2026- PB,    Oral sodium phenylbutyrate in patients with recurrent malignant gliomas: A dose escalation and pharmacologic study
- Trial, GBM, NA
Dose↝, Dose↑, Dose↝, OS↑, HDAC↓, TumCCA↑, P21↑, other↝, BioAv↑, eff↑,
2028- PB,    Potential of Phenylbutyrate as Adjuvant Chemotherapy: An Overview of Cellular and Molecular Anticancer Mechanisms
- Review, Var, NA
HDAC↓, TumCCA↑, P21↑, Dose↝, Telomerase↓, IGFBP3↑, p‑p38↑, JNK↑, ERK↑, BAX↑, Casp3↑, Bcl-2↓, Cyt‑c↝, FAK↓, survivin↓, VEGF↓, angioG↓, DNArepair↓, TumMeta↓, HSP27↑, ASK1↑, ROS↑, eff↑, ER Stress↓, GRP78/BiP↓, CHOP↑, AR↓, other?,
2077- PB,    Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells
- in-vitro, Liver, HUH7
miR-22↑, SIRT1↓, ROS↑, Cyt‑c↑, Casp3↑, eff↓, TumCG↓, TumCP↓, HDAC↓, SIRT1↓, CD44↓, proMMP2↓, MMP↓, SOD↓,
2430- PBG,    The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation
- in-vitro, BC, MDA-MB-231
TumCP↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eff↓, MMP↓, LDH↑, ATP↓, Ca+2↑,
1664- PBG,    Anticancer Activity of Propolis and Its Compounds
- Review, Var, NA
Apoptosis↑, TumCMig↓, TumCCA↑, TumCP↓, angioG↓, P21↑, p27↑, CDK1↓, p‑CDK1↓, cycA1/CCNA1↓, CycB/CCNB1↓, P70S6K↓, CLDN2↓, HK2↓, PFK↓, PKM2↓, LDHA↓, TLR4↓, H3↓, α-tubulin↓, ROS↑, Akt↓, GSK‐3β↓, FOXO3↓, NF-kB↓, cycD1/CCND1↓, MMP↓, ROS↑, i-Ca+2↑, lipid-P↑, ER Stress↑, UPR↑, PERK↑, eIF2α↑, GRP78/BiP↑, BAX↑, PUMA↑, ROS↑, MMP↓, Cyt‑c↑, cl‑Casp8↑, cl‑Casp8↑, cl‑Casp3↑, cl‑PARP↑, eff↑, eff↑, RadioS↑, ChemoSen↑, eff↑,
1666- PBG,    Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer
- Review, Var, NA
ChemoSen↑, TumCCA↑, TumCP↓, Apoptosis↑, antiOx↓, ROS↑, COX2↑, ER(estro)↓, cycA1/CCNA1↓, CycB/CCNB1↓, CDK2↓, P21↑, p27↑, hTERT/TERT↓, HDAC↓, ROS⇅, Dose?, ROS↓, ROS↑, DNAdam↑, ChemoSen↑, LOX1↓, lipid-P↓, NO↑, Igs↑, NK cell↑, MMPs↓, VEGF↓, Hif1a↓, GLUT1↓, HK2↓, selectivity↑, RadioS↑, GlucoseCon↓, lactateProd↓, eff↓, *BioAv↓,
1668- PBG,    Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCP↓, Apoptosis↑, eff↝, MMPs↓, TNF-α↓, iNOS↓, COX2↓, IL1β↑, *BioAv↓, BAX↑, Casp3↑, Cyt‑c↑, Bcl-2↓, eff↑, selectivity↑, P53↑, ROS↑, Casp↑, eff↑, ERK↓, Dose∅, TRAIL↑, NF-kB↑, ROS↑, Dose↑, MMP↓, DNAdam↑, TumAuto↑, LC3II↑, p62↓, EGF↓, Hif1a↓, VEGF↓, TLR4↓, GSK‐3β↓, NF-kB↓, Telomerase↓, ChemoSen↑, ChemoSideEff↓,
1672- PBG,    The Potential Use of Propolis as an Adjunctive Therapy in Breast Cancers
- Review, BC, NA
ChemoSen↓, RadioS↑, Inflam↓, AntiCan↑, Dose∅, mtDam↑, Apoptosis?, OCR↓, ATP↓, ROS↑, ROS↑, LDH↓, TP53↓, Casp3↓, BAX↓, P21↓, ROS↑, eNOS↑, iNOS↑, eff↑, hTERT/TERT↓, cycD1/CCND1↓, eff↑, eff↑, eff↑, eff↑, STAT3↓, TIMP1↓, IL4↓, IL10↓, OS↑, Dose∅, ER Stress↑, ROS↑, NF-kB↓, p65↓, MMP↓, TumAuto↑, LC3II↑, p62↓, TLR4↓, mtDam↑, LDH↓, ROS↑, Glycolysis↓, HK2↓, PFK↓, PKM2↓, LDH↓, IL10↓, HDAC8↓, eff↑, eff↑, P21↑,
1660- PBG,    Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents
- Review, Var, NA
MMPs↓, angioG↓, TumMeta↓, TumCCA↑, Apoptosis↑, ChemoSideEff↓, eff∅, HDAC↓, PTEN↑, p‑PTEN↓, p‑Akt↓, Casp3↑, p‑ERK↑, p‑FAK↑, Dose?, Akt↓, GSK‐3β↓, FOXO3↓, eff↑, IL2↑, IL10↑, NF-kB↓, VEGF↓, mtDam↑, ER Stress↑, AST↓, ALAT↓, ALP↓, COX2↓, eff↑, Bax:Bcl2↑,
1648- PBG,    Contribution of Green Propolis to the Antioxidant, Physical, and Sensory Properties of Fruity Jelly Candies Made with Sugars or Fructans
- Review, Nor, NA
Dose∅, Dose∅, eff↓, antiOx↑,
1682- PBG,    Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits
- Review, Var, NA
i-LDH↓, Akt↓, MAPK↓, NF-kB↓, IL1β↓, IL6↓, TNF-α↓, iNOS↓, COX2↓, ROS↓, Bcl-2↓, PARP↓, P53↑, BAX↑, Casp3↑, TumCCA↑, Cyt‑c↑, MMP↓, eff↑,
1678- PBG,  5-FU,  sericin,    In vitro and in vivo anti-colorectal cancer effect of the newly synthesized sericin/propolis/fluorouracil nanoplatform through modulation of PI3K/AKT/mTOR pathway
- in-vitro, CRC, Caco-2 - in-vivo, NA, NA
PI3K↓, Akt↓, mTOR↓, TumCP↓, Bcl-2↓, BAX↑, Casp3↑, Casp9↑, ROS↓, FOXO1↑, *toxicity∅, eff↑,
1674- PBG,  SDT,  HPT,    Study on the effect of a triple cancer treatment of propolis, thermal cycling-hyperthermia, and low-intensity ultrasound on PANC-1 cells
- in-vitro, PC, PANC1 - in-vitro, Nor, H6c7
tumCV↓, ROS↑, eff↑, Dose∅, selectivity↑, MMP↓, mtDam↑, cl‑PARP↑, p‑ERK↓, p‑JNK↑, p‑p38↑, eff↓, ChemoSen↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
1231- PBG,    Caffeic acid phenethyl ester inhibits MDA-MB-231 cell proliferation in inflammatory microenvironment by suppressing glycolysis and lipid metabolism
- in-vitro, BC, MDA-MB-231
TumCP↓, TumCMig↓, TumCI↓, MMP↓, TLR4↓, TNF-α↓, NF-kB↓, IL1β↓, IL6↓, IRAK4↓, GLUT1↓, GLUT3↓, HK2↓, PFK↓, PKM2↓, LDHA↓, ACC↓, FASN↓, eff↓,
4929- PEITC,  PacT,    Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ChemoSen↑, Apoptosis↑, TumCCA↑, eff↑, CDK1↓, Bcl-2↓, BAX↑, cl‑PARP↑, SAL↑,
4934- PEITC,    Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
GSH↓, ROS↑, chemoPv↑, Apoptosis↑, Casp9↑, Casp3↑, eff↓, TumCG↓, TumCCA↑, BAX↑, Nrf1↑, GSH↓, GSSG↓, GSH/GSSG↓,
4935- PEITC,    Phenethyl Isothiocyanate Suppresses Inhibitor of Apoptosis Family Protein Expression in Prostate Cancer Cells in Culture and In Vivo
- in-vivo, Pca, LNCaP - in-vivo, Pca, PC3
Apoptosis↑, XIAP↓, survivin↓, *BioAv↑, tumCV↓, eff↓,
4926- PEITC,    PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT
- in-vitro, CRC, SW48
TumCI↓, TumCMig↓, EMT↓, Smad1↓, AntiCan↑, Snail↓, Slug↓, Zeb1↓, ZEB2↓, TGF-β1↓, eff↑, E-cadherin↑, N-cadherin↓, Vim↓,
4959- PEITC,    Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment
- in-vitro, Ovarian, NA
CSCs↓, ALDH↓, CSCsMark↓, eff↑,
4954- PEITC,    Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate
- vitro+vivo, Ovarian, SKOV3
ROS↑, GSH↓, selectivity↑, mtDam↑, TumCD↑, OS↑, eff↑, *toxicity↓, H2O2↑, NO↑, eff↓, GPx↓, Dose↝, eff↑,
4953- PEITC,    effective-in-killing">PEITC: a natural compound effective in killing primary leukemia cells and overcoming drug resistance
- in-vitro, CLL, NA
ROS↑, GSH↓, TumCD↓, eff↓, Mcl-1↓, Casp3↑,
4951- PEITC,    ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis
- in-vitro, Ovarian, PA1 - in-vitro, Ovarian, SKOV3
ROS↑, TumCP↓, GSH↓, selectivity↑, UPR↑, CHOP↑, ER Stress↑, GRP78/BiP↑, PERK↑, ATF6↑, eff↓, TumCG↓, Apoptosis↑, toxicity↓,
4946- PEITC,    Phenethyl Isothiocyanate Inhibits Oxidative Phosphorylation to Trigger Reactive Oxygen Species-mediated Death of Human Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, TumAuto↑, ROS↑, OXPHOS↓, ATP↓, selectivity↑, ETC↓, eff↓, eff↓, BAX↑,
4944- PEITC,    Phenethyl isothiocyanate induces DNA damage-associated G2/M arrest and subsequent apoptosis in oral cancer cells with varying p53 mutations
- in-vitro, Oral, NA
TumCG↓, TumCCA↑, Apoptosis↑, ROS↑, NO↑, GSH↓, MMP↓, DNAdam↑, ATM↑, Chk2↑, P53↑, eff↓,
4943- PEITC,    Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation
- in-vitro, Ovarian, OVCAR-3
TumCD↑, TumCP↓, Apoptosis↑, Casp3↑, Casp9↑, Bcl-2↓, BAX↑, Akt↓, ERK↓, cMyc↓, p38↑, JNK↑, eff↓,
1767- PG,    Propyl gallate induces cell death in human pulmonary fibroblast through increasing reactive oxygen species levels and depleting glutathione
- in-vitro, Nor, NA
*ROS↑, *GSH↓, *SOD↓, *Catalase↓, eff↓,
1769- PG,    The Anti-Apoptotic Effects of Caspase Inhibitors in Propyl Gallate-Treated Lung Cancer Cells Are Related to Changes in Reactive Oxygen Species and Glutathione Levels
- in-vitro, Lung, Calu-6 - in-vitro, Lung, A549
TumCP↓, eff↑, ROS↑, GSH↑,
1770- PG,    Propyl gallate sensitizes human lung cancer cells to cisplatin-induced apoptosis by targeting heme oxygenase-1 for TRC8-mediated degradation
- in-vitro, Lung, NA
antiOx↑, Inflam↓, HO-1↓, eff↑, ChemoSen↑,
1765- PG,    Enhanced cell death effects of MAP kinase inhibitors in propyl gallate-treated lung cancer cells are related to increased ROS levels and GSH depletion
- in-vitro, Lung, A549 - in-vitro, Lung, Calu-6
TumCD↑, MMP↓, ROS↑, GSH↓, Dose∅, eff↑,
1254- PI,  VitC,    Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway
- in-vivo, GC, NA
STAT3⇅, eff↑, ROS↑, Apoptosis↑,
3595- PI,    Black pepper and health claims: a comprehensive treatise
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *chemoP↑, TumCG↓, *cognitive↑, *MMPs↓, *PGE2↓, *AP-1↓, *5LO↓, *COX1↓, *other↑, *other↑, *other↑, *SOD↑, *Catalase↑, *GSTs↑, *GSR↑, *other↑, *Weight↓, *BioEnh↑, *BioAv↑, *eff↑, *CYP3A2↓, *neuroP↑, *BP↓, *other↑,
3587- PI,    Piperine: A review of its biological effects
- Review, Park, NA - Review, AD, NA
*hepatoP↑, *Inflam↓, *neuroP↑, *antiOx↑, *angioG↑, *cardioP↑, *BioAv↑, *P450↓, *eff↑, *BioAv↑, E-cadherin↓, ER(estro)↓, MMP2↓, MMP9↓, VEGF↓, cMyc↓, BAX↑, P53↑, TumCG↓, OS↑, *cognitive↑, *GSK‐3β↓, *GSH↑, *Casp3↓, *Casp9↓, *Cyt‑c↓, *lipid-P↓, *motorD↑, *AChE↓, *memory↑, *cardioP↑, *ROS↓, *PPARγ↑, *ALAT↓, *AST↓, *ALP↓, *AMPK↑, *5HT↑, *SIRT1↑, *eff↑,
1950- PL,    Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
selectivity↑, ROS↑, SETBP1↓, cl‑Casp9↑, eff↓, FOSB↑,
1939- PL,    Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP
- in-vitro, HCC, HepG2 - in-vitro, HCC, HUH7 - in-vivo, NA, NA
TumCMig↓, TumCI↓, ER Stress↑, selectivity↑, tumCV↓, ROS↑, GSH↓, eff↓, Ca+2↑, MAPK↑, CHOP↑, Dose↝,
1940- PL,    Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways
- in-vitro, GBM, LN229 - in-vitro, GBM, U87MG
ROS↑, GSH↓, p38↑, JNK↑, IKKα↑, NF-kB↓, eff↓,
1941- PL,    Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer
- in-vitro, HNSCC, NA
selectivity↑, eff↑, ROS↑, toxicity↑, GSH↓, GSSG↑, *GSSG∅, cl‑PARP↑, PUMA↑, GSTP1/GSTπ↓, ChemoSen↑,
1944- PL,    Piperlongumine, a Novel TrxR1 Inhibitor, Induces Apoptosis in Hepatocellular Carcinoma Cells by ROS-Mediated ER Stress
- in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
ER Stress↑, TrxR1↓, ROS↑, eff↓, Bcl-2↓, proCasp3↓, BAX↓, cl‑Casp3↑, TumCCA↑, p‑PERK↑, ATF4↑, TumCG↓, lipid-P↑, selectivity↑,
1946- PL,  PI,    Piperlonguminine and Piperine Analogues as TrxR Inhibitors that Promote ROS and Autophagy and Regulate p38 and Akt/mTOR Signaling
- in-vitro, Liver, NA
eff↑, toxicity↓, TrxR↓, ROS↑, MMP↓, p38↑, Akt↓, mTOR↓,
1947- PL,    Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer
- in-vitro, GC, SGC-7901 - in-vitro, GC, NA
TrxR1↓, ROS↑, ER Stress↑, mtDam↑, selectivity↑, NO↑, TumCCA↑, mt-ROS↑, Casp9↑, Bcl-2↓, Bcl-xL↓, cl‑PARP↑, eff↓, lipid-P↑,
1948- PL,  born,    Natural borneol serves as an adjuvant agent to promote the cellular uptake of piperlongumine for improving its antiglioma efficacy
- in-vitro, GBM, NA
selectivity↑, ROS↑, BioAv↓, BioAv↑, Apoptosis↑, TumCCA↑, eff↑,
1951- PL,    Piperlongumine Analogs Promote A549 Cell Apoptosis through Enhancing ROS Generation
- in-vitro, Lung, A549
ROS↑, lipid-P↑, MMP↓, TumCCA↑, TrxR↓, eff↑,
1952- PL,  5-FU,    Piperlongumine induces ROS accumulation to reverse resistance of 5-FU in human colorectal cancer via targeting TrxR
- in-vivo, CRC, HCT8
ROS↑, TrxR↓, eff↑, p‑Akt↓,
2958- PL,    Natural product piperlongumine inhibits proliferation of oral squamous carcinoma cells by inducing ferroptosis and inhibiting intracellular antioxidant capacity
- in-vitro, Oral, HSC3
TumCP↓, lipid-P↑, ROS↑, DNMT1↑, FTH1↓, GPx4↓, eff↓, GSH↓, Ferroptosis↑, MDA↓,
2957- PL,    Piperlongumine Induces Cell Cycle Arrest via Reactive Oxygen Species Accumulation and IKKβ Suppression in Human Breast Cancer Cells
- in-vitro, BC, MCF-7
TumCP↓, TumCMig↓, TumCCA↑, ROS↑, H2O2↑, GSH↓, IKKα↓, NF-kB↓, P21↑, eff↓,
2956- PL,    Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis
- in-vitro, PC, NA
ROS↑, Ferroptosis↓, GSH↓, GPx↓, cl‑PARP∅, cl‑Casp3∅, eff↑, eff↑,
2953- PL,    Piperlongumine Acts as an Immunosuppressant by Exerting Prooxidative Effects in Human T Cells Resulting in Diminished TH17 but Enhanced Treg Differentiation
- in-vitro, Nor, NA
*ROS↑, *GSTA1↓, eff↝, *toxicity↓, ROS↑, *Hif1a↓,
2951- PL,  Aur,    Synergistic Dual Targeting of Thioredoxin and Glutathione Systems Irrespective of p53 in Glioblastoma Stem Cells
- in-vitro, GBM, U87MG
GSH↓, eff↑, GSTP1/GSTπ↓,
2949- PL,    Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation
- in-vitro, GBM, LN229 - in-vitro, GBM, U87MG
selectivity↑, ROS↑, JNK↑, p38↑, GSH↓, eff↓,
2946- PL,    Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent
- Review, Var, NA
ROS↑, GSH↓, DNAdam↑, ChemoSen↑, RadioS↑, BioEnh↑, selectivity↑, BioAv↓, eff↑, p‑Akt↓, mTOR↓, GSK‐3β↓, β-catenin/ZEB1↓, HK2↓, Glycolysis↓, Cyt‑c↑, Casp9↑, Casp3↑, Casp7↑, cl‑PARP↑, TrxR↓, ER Stress↑, ATF4↝, CHOP↑, Prx4↑, NF-kB↓, cycD1/CCND1↓, CDK4↓, CDK6↓, p‑RB1↓, RAS↓, cMyc↓, TumCCA↑, selectivity↑, STAT3↓, NRF2↑, HO-1↑, PTEN↑, P-gp↓, MDR1↓, MRP1↓, survivin↓, Twist↓, AP-1↓, Sp1/3/4↓, STAT1↓, STAT6↓, SOX4↑, XBP-1↑, P21↑, eff↑, Inflam↓, COX2↓, IL6↓, MMP9↓, TumMeta↓, TumCI↓, ICAM-1↓, CXCR4↓, VEGF↓, angioG↓, Half-Life↝, BioAv↑,
2944- PL,    Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells
- in-vitro, Thyroid, IHH4 - in-vitro, Thyroid, 8505C - in-vivo, NA, NA
ROS↑, selectivity↑, tumCV↓, TumCCA↑, Apoptosis↑, ERK↑, Akt↓, mTOR↓, neuroP↑, Bcl-2↓, Casp3↑, PARP↑, JNK↑, *toxicity↓, eff↓, TumW↓,
2943- PL,    Piperlongumine Inhibits Thioredoxin Reductase 1 by Targeting Selenocysteine Residues and Sensitizes Cancer Cells to Erastin
- in-vitro, CRC, HCT116 - in-vitro, Lung, A549 - in-vitro, BC, MCF-7
TrxR1?, TumCD↑, ROS↑, GSH↓, eff↑,
2940- PL,    Piperlongumine Induces Reactive Oxygen Species (ROS)-dependent Downregulation of Specificity Protein Transcription Factors
- in-vitro, PC, PANC1 - in-vitro, Lung, A549 - in-vitro, Kidney, 786-O - in-vitro, BC, SkBr3
ROS↑, TumCP↓, Apoptosis↑, eff↓, Sp1/3/4↓, cycD1/CCND1↓, survivin↓, cMyc↓, EGFR↓, cMET↓,
2964- PL,    Preformulation Studies on Piperlongumine
- Analysis, Nor, NA
*BioAv↓, *BioAv↑, *other↝, *eff↓,
2965- PL,  docx,    Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple negative breast cancer
- Analysis, Var, NA
BioEnh↑, eff↑,
2962- PL,    Synthesis of Piperlongumine Analogues and Discovery of Nuclear Factor Erythroid 2‑Related Factor 2 (Nrf2) Activators as Potential Neuroprotective Agents
- in-vitro, Nor, PC12
*GSH↑, *NQO1↑, *Trx↑, *TrxR↑, *NRF2↑, *NRF2⇅, *eff↑, *BioAv↑, *ROS↓,
2966- PL,    A strategy to improve the solubility and bioavailability of the insoluble drug piperlongumine through albumin nanoparticles
- in-vitro, LiverDam, NA
*Half-Life↑, *BioAv↑, eff↑, ROS↑,
2968- PL,  Chit,    efficient_cancer_therapy">Preparation of piperlongumine-loaded chitosan nanoparticles for safe and efficient cancer therapy
- in-vitro, GC, AGS
eff↑, Dose↝, ROS↑, BioAv↑,
2004- Plum,    Plumbagin Inhibits Proliferative and Inflammatory Responses of T Cells Independent of ROS Generation But by Modulating Intracellular Thiols
- in-vivo, Var, NA
TumCP↓, TumCG↓, NF-kB↓, ROS↑, GSH↓, eff↓, i-Thiols↓, GSH/GSSG↓, *GSH↓, *ROS↑,
2006- Plum,    Plumbagin induces apoptosis in human osteosarcoma through ROS generation, endoplasmic reticulum stress and mitochondrial apoptosis pathway
- in-vitro, OS, MG63 - in-vitro, Nor, hFOB1.19
tumCV↓, selectivity↑, mtDam↑, Ca+2↓, ER Stress↑, ROS↑, Casp3↑, Casp9↑, Apoptosis↑, eff↓,
2005- Plum,    Plumbagin induces apoptosis in lymphoma cells via oxidative stress mediated glutathionylation and inhibition of mitogen-activated protein kinase phosphatases (MKP1/2)
- in-vivo, Nor, EL4 - in-vitro, AML, Jurkat
JNK↑, Cyt‑c↑, FasL↑, BAX↑, ROS↑, *ROS↑, MKP1↓, MKP2↓, selectivity∅, tumCV↑, Cyt‑c↑, Casp3↑, GSH/GSSG↓, ROS↑, mt-ROS↑, *ROS↑, eff↓,
3917- PS,    Phosphatidylserine, inflammation, and central nervous system diseases
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*Inflam↓, *neuroP↑, *cognitive↑, *Choline↑, *IL1β↓, *IL6↓, *TNF-α↓, *Ach↑, *eff↑, *eff↑, *BioEnh↑, other↑,
3916- PS,    The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: a pilot study
- Human, AD, NA
*memory↑, *cognitive↑, *BP↓, *Dose↝, *eff↑,
4965- PSO,  Cisplatin,    The synergistic antitumor effects of psoralidin and cisplatin in gastric cancer by inducing ACSL4-mediated ferroptosis
- vitro+vivo, GC, HGC27 - vitro+vivo, GC, MKN45
TumCP↓, TumCMig↓, TumCI↓, TumCG↓, *toxicity↓, eff↑, Ferroptosis↑, ACSL4↑, GPx4↓, ChemoSen↑, chemoP↑, AntiTum↑, Sepsis↓,
5032- PTS,    Pterostilbene Decreases the Antioxidant Defenses of Aggressive Cancer Cells In Vivo: A Physiological Glucocorticoids- and Nrf2-Dependent Mechanism
- in-vivo, Melanoma, NA
TumCG↓, NRF2↓, GR↓, BBB↑, ACTH↓, eff↑,
4703- PTS,  RES,    Pterostilbene and resveratrol: Exploring their protective mechanisms against skin photoaging - A scoping review
- NA, Nor, NA
*AntiAge↑, *eff↑, *Inflam↓, *AntiCan↑, *ROS↓, *Catalase↑, *GSR↑, *HO-1↑, *NAD↑, *NQO1↑, *SOD↑, *NRF2↑,
4690- PTS,  immuno,    Pterostilbene: Mechanisms of its action as oncostatic agent in cell models and in vivo studies
- Review, Var, NA
eff↑, Half-Life↑, TumCG↓, TumMeta↓, angioG↓, CSCs↓, Apoptosis↑, eff↑, CD44↓, CD24↓,
4689- PTS,    Pterostilbene Suppresses both Cancer Cells and Cancer Stem-Like Cells in Cervical Cancer with Superior Bioavailability to Resveratrol
eff↑, TumCCA↑, ROS↑, MMP2↓, MMP9↓, CSCs↓, CD133↓, OCT4↓, SOX2↓, Nanog↓, STAT3↓, BioAv↑, TumCI↓, ROS↑, Apoptosis↑,
3347- QC,    Recent Advances in Potential Health Benefits of Quercetin
- Review, Var, NA - Review, AD, NA
*antiOx↑, *ROS↓, *Inflam↓, TumCP↓, Apoptosis↑, *cardioP↑, *BP↓, TumMeta↓, MDR1↓, NADPH↓, ChemoSen↑, MMPs↓, TIMP2↑, *NLRP3↓, *IFN-γ↑, *COX2↓, *NF-kB↓, *MAPK↓, *CRP↓, *IL6↓, *TNF-α↓, *IL1β↓, *TLR4↑, *PKCδ↓, *AP-1↓, *ICAM-1↓, *NRF2↑, *HO-1↑, *lipid-P↓, *neuroP↑, *eff↑, *memory↑, *cognitive↑, *AChE↓, *BioAv↑, *BioAv↑, *BioAv↑, *BioAv↑, *BioAv↑,
3343- QC,    Quercetin, a Flavonoid with Great Pharmacological Capacity
- Review, Var, NA - Review, AD, NA - Review, Arthritis, NA
*antiOx↑, *ROS↓, *angioG↓, *Inflam↓, *BioAv↓, *Half-Life↑, *GSH↑, *SOD↑, *Catalase↑, *Nrf1↑, *BP↓, *cardioP↑, *IL10↓, *TNF-α↓, *Aβ↓, *GSK‐3β↓, *tau↓, *neuroP↑, *Pain↓, *COX2↓, *NRF2↑, *HO-1↑, *IL1β↓, *IL17↓, *MCP1↓, PKCδ↓, ERK↓, BAX↓, cMyc↓, KRAS↓, ROS↓, selectivity↑, tumCV↓, Apoptosis↑, TumCCA↑, eff↑, P-gp↓, eff↑, eff↑, eff↑, eff↑, CycB/CCNB1↓, CDK1↓, CDK4↓, CDK2↓, TOP2↓, Cyt‑c↑, cl‑PARP↑, MMP↓, HSP70/HSPA5↓, HSP90↓, MDM2↓, RAS↓, eff↑,
3380- QC,    Quercetin as a JAK–STAT inhibitor: a potential role in solid tumors and neurodegenerative diseases
- Review, Var, NA - Review, Park, NA - Review, AD, NA
JAK↓, STAT↓, Inflam↓, NO↓, COX2↓, CRP↓, selectivity↑, *neuroP↑, STAT3↓, cycD1/CCND1↓, MMP2↓, STAT4↓, JAK2↓, TumCP↓, Diff↓, *eff↑, *IL6↓, *TNF-α↓, *IL1β↓, *Aβ↓,
3376- QC,    Inhibiting CDK6 Activity by Quercetin Is an Attractive Strategy for Cancer Therapy
- in-vitro, BC, MCF-7 - in-vitro, Lung, A549
CDK6↓, tumCV↓, Apoptosis↑, ROS↓, eff↑,
3368- QC,    The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: An update
- Review, Var, NA
*Inflam↓, *antiOx↑, *AntiCan↑, Casp3↓, p‑Akt↓, p‑mTOR↓, p‑ERK↓, β-catenin/ZEB1↓, Hif1a↓, AntiAg↓, VEGFR2↓, EMT↓, EGFR↓, MMP2↓, MMP↓, TumMeta↓, MMPs↓, Akt↓, Snail↓, N-cadherin↓, Vim↓, E-cadherin↑, STAT3↓, TGF-β↓, ROS↓, P53↑, BAX↑, PKCδ↓, PI3K↓, COX2↓, cFLIP↓, cycD1/CCND1↓, cMyc↓, IL6↓, IL10↓, Cyt‑c↑, TumCCA↑, DNMTs↓, HDAC↓, ac‑H3↑, ac‑H4↑, Diablo↑, Casp3↑, Casp9↑, PARP1↑, eff↑, PTEN↑, VEGF↓, NO↓, iNOS↓, ChemoSen↑, eff↑, eff↑, eff↑, uPA↓, CXCR4↓, CXCL12↓, CLDN2↓, CDK6↓, MMP9↓, TSP-1↑, Ki-67↓, PCNA↓, ROS↑, ER Stress↑,
3607- QC,    Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More
- Review, AD, NA - Review, Park, NA
*neuroP↑, *NRF2↑, *PONs↑, *antiOx↑, *Inflam↓, *SIRT1↑, *eff↑, *ROS↓, *cognitive↑, *eff↑, *lipid-P↓, *GSH↑, *GPx↑, *SOD↑, *NRF2↑,
3611- QC,    Quercetin and vitamin C supplementation: effects on lipid profile and muscle damage in male athletes
- Trial, Nor, NA
*eff↝, *LDH↓,
2341- QC,    Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vivo, NA, NA
MMP2↓, MMP9↓, VEGF↓, Glycolysis↓, lactateProd↓, PKM2↓, GLUT1↓, LDHA↓, TumAuto↑, Akt↓, mTOR↓, TumMeta↓, MMP3↓, eff↓, GlucoseCon↓, lactateProd↓, TumAuto↑, LC3B-II↑,
2340- QC,    Oral Squamous Cell Carcinoma Cells with Acquired Resistance to Erlotinib Are Sensitive to Anti-Cancer Effect of Quercetin via Pyruvate Kinase M2 (PKM2)
- in-vitro, OS, NA
TumCG↓, GlucoseCon↓, TumCI↓, GLUT1↓, PKM2↓, LDHA↓, Glycolysis↓, lactateProd↓, HK2↓, eff↑,
81- QC,  EGCG,    Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea
- in-vivo, Pca, NA
COMT↓, MRP1↓, Ki-67↓, Bax:Bcl2↑, AR↓, Akt↓, p‑ERK↓, COMT↓, eff↑,
39- QC,    A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells
- Analysis, NA, NA
ROS↑, GSH↓, IL6↓, COX2↓, IL8↓, iNOS↓, TNF-α↓, MAPK↑, ERK↑, SOD↑, ATP↓, Casp↑, PI3K/Akt↓, mTOR↓, NOTCH1↓, Bcl-2↓, BAX↑, IFN-γ↓, TumCP↓, TumCCA↑, Akt↓, P70S6K↓, *Keap1↓, *GPx↑, *Catalase↑, *HO-1↑, *NRF2↑, NRF2↑, eff↑, HIF-1↓,
4686- QC,    Quercetin suppresses endometrial cancer stem cells via ERα-mediated inhibition of STAT3 signaling
- in-vitro, EC, EMN8 - in-vitro, EC, EMN21
CSCs↓, ALDH1A1↓, cMyc↓, Nanog↓, OCT4↓, STAT3↓, JAK2↓, STAT3↓, eff↑,
4827- QC,  CUR,    Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin
- Review, Var, NA
*AntiCan↑, *Inflam↓, *Bacteria↓, *AntiDiabetic↑, *ROS↓, *SOD↑, *Catalase↑, *GSH↑, *NRF2↑, *Trx↑, *IronCh↑, *MDA↑, cycD1/CCND1↓, PI3K↓, Casp3↑, BAX↑, ChemoSen↑, ROS↑, eff↑, MMP↓, Cyt‑c↑, Akt↓, ERK↓,
5030- QC,    Quercetin-derived microbial metabolite DOPAC potentiates CD8+ T cell anti-tumor immunity via NRF2-mediated mitophagy
- in-vivo, Nor, NA
*MitoP↑, *NRF2↑, eff↑, *eff↓, *GutMicro↑,
1391- RES,  BBR,    Effects of Resveratrol, Berberine and Their Combinations on Reactive Oxygen Species, Survival and Apoptosis in Human Squamous Carcinoma (SCC-25) Cells
- in-vitro, Tong, SCC25
ROS↑, eff↑,
1511- RES,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
eff↑, *NRF2↑, *GSH↑, *ROS↓, chemoPv↑, ChemoSideEff↓,
2442- RES,    High absorption but very low bioavailability of oral resveratrol in humans
- in-vitro, Nor, NA
BioAv↝, Half-Life↝, BioAv↓, eff↝,
2441- RES,    Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions
- Review, Var, NA
*toxicity↓, *BioAv↝, *Dose↝, *hepatoP↑, *neuroP↑, *AntiAg↑, *COX2↓, *antiOx↑, *ROS↓, *ROS↑, PI3K↓, Akt↓, NF-kB↓, Wnt↓, β-catenin/ZEB1↓, NRF2↑, GPx↑, HO-1↑, BioEnh?, PTEN↑, ChemoSen↑, eff↑, mt-ROS↑, Warburg↓, Glycolysis↓, GlucoseCon↓, GLUT1↓, lactateProd↓, HK2↓, EGFR↓, cMyc↓, ROS↝, MMPs↓, MMP7↓, survivin↓, TumCP↓, TumCMig↓, TumCI↓,
2566- RES,    A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke
- Review, Stroke, NA
*neuroP↑, *NRF2↑, *SIRT1↑, *PGC-1α↑, *FOXO↑, *HO-1↑, *NQO1↑, *ROS↓, *BP↓, *BioAv↓, *Half-Life↝, *AMPK↑, *GSK‐3β↓, *eff↑, *AntiAg↑, *BBB↓, *Inflam↓, *MPO↓, *TLR4↓, *NF-kB↓, *p65↓, *MMP9↓, *TNF-α↓, *IL1β↓, *PPARγ↑, *MMP↑, *ATP↑, *Cyt‑c∅, *mt-lipid-P↓, *H2O2↓, *HSP70/HSPA5↝, *Mets↝, *eff↑, *eff↑, *motorD↑, *MDA↓, *NADH:NAD↑, eff↑, eff↑,
2567- RES,    Neuroprotective Effects of Resveratrol in Ischemic Brain Injury
- Review, Stroke, NA
*eff↑, *neuroP↑, *antiOx↑, *Inflam↓, *cardioP↑, *AntiAg↑,
3079- RES,    Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action
- Review, Var, NA
angioG↓, TumMeta↓, ChemoSen↑, NADPH↑, SIRT1↑, NF-kB↓, NLRP3↓, Dose↝, COX2↓, MMP9↓, PGE2↓, TIMP1↑, TIMP2↑, Sp1/3/4↓, p‑JNK↓, uPAR↓, ROS↓, CXCR4↓, IL6↓, Gli1↓, *ROS↓, *GSTs↑, *SOD↑, *Catalase↑, *GPx↑, *lipid-P↓, *GSH↑, eff↑, eff↑, eff↑,
3052- RES,    Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Bxpc-3
NAF1↓, ROS↑, NRF2↑, eff↑, TumCG↓,
3055- RES,    Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
BioAv↓, BioAv↓, Dose↑, eff↑, eff↑, Dose↑, BioAv↑, ROS↑, MMP↓, P21↑, p27↑, TumCCA↑, ChemoSen↑, COX2↓, 5LO↓, VEGF↓, IL1↓, IL6↓, IL8↓, AR↓, PSA↓, MAPK↓, Hif1a↓, Glycolysis↓, miR-21↓, PTEN↑, Half-Life↝, *IGF-1↓, *IGFBP3↑, Half-Life↓,
2991- RES,  Chemo,    Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells
- in-vitro, Melanoma, MSTO-211H - in-vitro, Nor, MeT5A
eff↑, selectivity↑, Sp1/3/4↓,
3092- RES,    Resveratrol in breast cancer treatment: from cellular effects to molecular mechanisms of action
- Review, BC, MDA-MB-231 - Review, BC, MCF-7
TumCP↓, tumCV↓, TumCI↓, TumMeta↓, *antiOx↑, *cardioP↑, *Inflam↓, *neuroP↑, *Keap1↓, *NRF2↑, *ROS↓, p62↓, IL1β↓, CRP↓, VEGF↓, Bcl-2↓, MMP2↓, MMP9↓, FOXO4↓, POLD1↓, CK2↓, MMP↓, ROS↑, Apoptosis↑, TumCCA↑, Beclin-1↓, Ki-67↓, ATP↓, GlutMet↓, PFK↓, TGF-β↓, SMAD2↓, SMAD3↓, Vim?, Snail↓, Slug↓, E-cadherin↑, EMT↓, Zeb1↓, Fibronectin↓, IGF-1↓, PI3K↓, Akt↓, HO-1↑, eff↑, PD-1↓, CD8+↑, Th1 response↑, CSCs↓, RadioS↑, SIRT1↑, Hif1a↓, mTOR↓,
3087- RES,    Resveratrol cytotoxicity is energy-dependent
- Review, Var, NA
OXPHOS↓, eff↝, eff↑,
2687- RES,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, NA, NA - Review, AD, NA
NF-kB↓, P450↓, COX2↓, Hif1a↓, VEGF↓, *SIRT1↑, SIRT1↓, SIRT2↓, ChemoSen⇅, cardioP↑, *memory↑, *angioG↑, *neuroP↑, STAT3↓, CSCs↓, RadioS↑, Nestin↓, Nanog↓, TP53↑, P21↑, CXCR4↓, *BioAv↓, EMT↓, Vim↓, Slug↓, E-cadherin↑, AMPK↑, MDR1↓, DNAdam↑, TOP2↓, PTEN↑, Akt↓, Wnt↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MALAT1↓, TCF↓, ALDH↓, CD44↓, Shh↓, IL6↓, VEGF↓, eff↑, HK2↓, ROS↑, MMP↓,
4662- RES,    A Promising Resveratrol Analogue Suppresses CSCs in Non-Small-Cell Lung Cancer via Inhibition of the ErbB2 Signaling Pathway
- in-vitro, NSCLC, A549 - in-vitro, NSCLC, H460
CSCs↓, CD133↓, OCT4↓, β-catenin/ZEB1↓, HER2/EBBR2↓, TumCP↓, PI3K↓, Akt↓, ALDH1A1↓, eff↑,
4666- RES,    Structural modification of resveratrol analogue exhibits anticancer activity against lung cancer stem cells via suppression of Akt signaling pathway
- in-vitro, Lung, H23 - in-vitro, Lung, H292 - in-vitro, Lung, A549
CSCs↓, eff↑, Akt↓, GSK‐3β↑, SOX2↓, cMyc↓, TumCCA↑, ROS↑, Apoptosis↑,
4357- RF,    Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies
- Review, Var, NA
other↝, Dose↝, AntiTum↑, Ca+2↝, eff↝,
3490- RF,    Multidimensional insights into the repeated electromagnetic field stimulation and biosystems interaction in aging and age-related diseases
- Review, AD, NA - Review, Park, NA
*OS↑, *memory↑, *cognitive↑, *memory↑, *Aβ↓, *eff↑, *HSF1↑, *HSP70/HSPA5↑,
3461- RF,    Electromagnetic Field Stimulation Therapy for Alzheimer’s Disease
- Review, AD, NA
*Aβ↓, *HSF1↑, *ROS↓, *Inflam↓, *cognitive↑, *memory↑, *eff↑,
1749- RosA,    Rosmarinic Acid and Related Dietary Supplements: Potential Applications in the Prevention and Treatment of Cancer
- Review, Var, NA
antiOx↑, eff↑, *toxicity↝, *BioAv↑, *ROS↓, SOD↑, Catalase↑, GPx↑, lipid-P↓, P450↓, chemoP↑, hepatoP↑, ChemoSen↑,
1742- RosA,    Rosmarinic acid, a natural polyphenol, has a potential pro-oxidant risk via NADH-mediated oxidative DNA damage
- Analysis, Var, NA
ROS↑, eff↑, eff↑, eff↑, eff↑, eff↓, Dose↝, Dose↝,
1743- RosA,    New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid
- Analysis, Var, NA
ROS↑, Fenton↑, eff↑, antiOx↑, Iron↓, ROS↑,
1744- RosA,    Therapeutic Applications of Rosmarinic Acid in Cancer-Chemotherapy-Associated Resistance and Toxicity
- Review, Var, NA
chemoR↓, ChemoSideEff↓, RadioS↑, ROS↓, ChemoSen↑, BioAv↑, Half-Life↝, antiOx↑, ROS↑, Fenton↑, DNAdam↑, Apoptosis↑, CSCs↓, HH↓, Bax:Bcl2↑, MDR1↓, P-gp↓, eff↑, eff↑, FOXO4↑, *eff↑, *ROS↓, *JNK↓, *ERK↓, *GSH↑, *H2O2↑, *MDA↓, *SOD↑, *HO-1↑, *CardioT↓, selectivity↑,
1747- RosA,    Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review
- Review, BC, MDA-MB-231 - Review, BC, MDA-MB-468
TumCCA↑, TNF-α↑, GADD45A↑, BNIP3↑, survivin↓, Bcl-2↓, BAX↑, HH↓, eff↑, ChemoSen↑, RadioS↑, TumCP↓, TumCMig↓, Apoptosis↑, RenoP↑, CardioT↓,
3028- RosA,    Network pharmacology mechanism of Rosmarinus officinalis L.(Rosemary) to improve cell viability and reduces apoptosis in treating Alzheimer’s disease
- in-vitro, AD, HT22 - in-vivo, NA, NA
*Aβ↓, *Apoptosis↓, *antiOx↑, *neuroP↑, *eff↑, *IGF-1↑, *MMP9↑, *Src↓, *MAPK↓, *MMP↑,
3021- RosA,    Rosmarinic acid ameliorates septic-associated mortality and lung injury in mice via GRP78/IRE1α/JNK pathway
- in-vivo, Sepsis, NA
*eff↑, *SOD↑, *MDA↓, *GRP78/BiP↓, *IRE1↓, *JNK↓, *Sepsis↓,
3002- RosA,    Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols
- Review, Var, NA
TumCG↓, TumCP↓, TumCCA↑, ChemoSen↑, NRF2↑, PERK↑, SESN2↑, HO-1↑, cl‑Casp3↑, ROS↑, UPR↑, ER Stress↑, CHOP↑, HER2/EBBR2↓, ER-α36↓, PSA↓, BAX↑, AR↓, P-gp↓, Cyt‑c↑, HSP70/HSPA5↑, eff↑, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, cl‑PARP↑, eff↑,
3005- RosA,    Nanoformulated rosemary extract impact on oral cancer: in vitro study
- in-vitro, Laryn, HEp2
TumCCA↑, ROS↑, Bcl-2↓, BAX↑, Casp3↑, P53↑, necrosis↑, eff↑, BioAv↑,
3007- RosA,    Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action
- Review, NA, NA
*ROS↓, *lipid-P↓, *Inflam↓, *neuroP↑, *angioG↓, *eff↑, *AST↓, *ALAT↓, *GSSG↓, *eNOS↓, *iNOS↓, *NO↓, *NF-kB↓, *MMP2↓, *MDA↓, *TNF-α↓, *GSH↑, *SOD↑, *IL6↓, *PGE2↓, *COX2↓, *mTOR↑,
3034- RosA,  RES,  Ba,    The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells
- in-vitro, BC, MCF-7
DNMTs↓, eff↑, eff↝,
4899- Sal,    Anticancer activity of salinomycin quaternary phosphonium salts
- in-vitro, Var, NA
eff↑, selectivity↑, CSCs↓, TumCCA↑, MMP↓, ROS↑, mitResp↑,
4900- Sal,    Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications
- Review, BC, NA
CSCs↓, Apoptosis↑, TumAuto↑, necrosis↑, TumCP↓, TumCI↓, TumCMig↓, TumCG↓, TumMeta↓, eff↑, Bcl-2↓, cMyc↓, Snail↓, ALDH↓, Myc↓, AR↓, ROS↑, NF-kB↓, PTCH1↓, Smo↓, Gli1↓, GLI2↓, Wnt↓, mTOR↓, GSK‐3β↓, cycD1/CCND1↓, survivin↓, P21↑, p27↑, CHOP↑, Ca+2↑, DNAdam↑, Hif1a↓, VEGF↓, angioG↓, MMP↓, ATP↓, p‑P53↑, γH2AX↑, ChemoSen↑,
4908- Sal,    Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
tumCV↓, ROS↑, lipid-P↑, UPR↑, ER Stress↑, NRF2↓, NADPH↓, HO-1↓, SOD↓, Catalase↓, GPx↓, eff↓, TumCP↓,
4902- Sal,  OXA,    Salinomycin and oxaliplatin synergistically enhances cytotoxic effect on human colorectal cancer cells in vitro and in vivo
- vitro+vivo, CRC, NA
RadioS↑, ChemoSen↑, TumCP↓, Apoptosis↑, ROS↑, MMP↓, MAPK↑, eff↓, TumCG↓, TumCCA↑,
4904- Sal,  CUR,    Co-delivery of Salinomycin and Curcumin for Cancer Stem Cell Treatment by Inhibition of Cell Proliferation, Cell Cycle Arrest, and Epithelial–Mesenchymal Transition
CSCs↓, TumCCA↑, EMT↓, other↝, TumAuto↑, Iron↑, Ferroptosis↑, BioAv↓, ROS↑, lipid-P↑, GPx4↓, eff↑,
4906- Sal,    A Concise Review of Prodigious Salinomycin and Its Derivatives Effective in Treatment of Breast Cancer: (2012–2022)
- Review, BC, NA
CSCs↓, Casp3↑, cl‑PARP↝, Apoptosis↑, ROS↑, ABC↓, OXPHOS↓, Glycolysis↓, eff↑, TumAuto↑, DNAdam↑, Wnt↓, Ferritin↓, Iron↑,
5004- Sal,    Targeting Telomerase Enhances Cytotoxicity of Salinomycin in Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
eff↑, AntiCan↑, CSCs↑, Wnt↓, β-catenin/ZEB1↓, Diff↑, ROS↑, toxicity↝, selectivity↝, eff↑,
5003- Sal,    Salinomycin, as an autophagy modulator-- a new avenue to anticancer: a review
- Review, Var, NA
CSCs↓, TumAuto↑, selectivity↑, DNAdam↑, TumCCA↑, P-gp↓, Wnt↓, β-catenin/ZEB1↓, RadioS↑, ChemoSen↑, Shh↓, eff↓, ROS↑, AMPK↑, JNK↑, ER Stress↑,
5000- Sal,    Salinomycin kills cancer stem cells by sequestering iron in lysosomes
- vitro+vivo, BC, NA
CSCsMark↓, eff↑, Ferroptosis↑, ROS↑,
1388- Sco,    Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells
- in-vitro, CRC, NA
tumCV↓, Apoptosis↑, Casp3↑, Casp7↑, BAX↑, Bcl-2↓, ROS↑, GSH↓, SOD↓, ER Stress↑, GRP78/BiP↑, CHOP↑, eff↓,
1403- SDT,  BBR,    From 2D to 3D In Vitro World: Sonodynamically-Induced Prooxidant Proapoptotic Effects of C60-Berberine Nanocomplex on Cancer Cells
- in-vitro, Cerv, HeLa - in-vitro, Lung, LLC1
eff↑, tumCV↓, ATP↓, ROS↑, Casp3↑, Casp7↑, mtDam↑,
2548- SDT,    Sonoporation, a Novel Frontier for Cancer Treatment: A Review of the Literature
- Review, Var, NA
sonoP↑, Dose↝, eff↓, Dose↝, BioEnh↑, toxicity↝,
2537- SDT,    Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers
- Review, Var, NA
Dose↝, eff↑, eff↑, eff↑, eff↑,
2536- SDT,    Sonodynamic Therapy: Rapid Progress and New Opportunities for Non-Invasive Tumor Cell Killing with Sound
- Review, Var, NA
ROS↑, eff↑, Dose?,
2549- SDT,    Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation
- Review, Var, NA
sonoP↑, tumCV↓, MMP↓, ROS↑, Ca+2↑, eff↝, eff↑, selectivity↑, Half-Life↝, Dose↝, P-gp↓, ER Stress↑, other↑,
2140- Se,    Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression
- Review, Var, NA
Risk↓, antiOx↑, eff↑, eff↝,
1687- Se,    Selenium for preventing cancer
- Analysis, Var, NA
eff∅, AntiCan∅,
1688- Se,    Potential Role of Selenium in the Treatment of Cancer and Viral Infections
- Review, Var, NA
IL2↑, INF-γ↑, Th1 response↑, Th2↑, Dose↑, AntiCan∅, Risk↑, chemoP↑, Hif1a↓, VEGF↓, selectivity↑, *GADD45A↑, NRF2↓, *NRF2↑, ChemoSen↑, angioG↓, PrxI↓, ChemoSideEff↓, eff↑,
1689- Se,    Selenium and breast cancer - An update of clinical and epidemiological data
- Analysis, BC, NA
OS↑, eff↑, Dose∅, *toxicity↝, eff↑,
1706- Se,    Selenium in Prostate Cancer: Prevention, Progression, and Treatment
- Review, Pca, NA
Risk∅, ChemoSen↑, Risk↓, toxicity↝, Risk↑, eff↑, *toxicity↑, RadioS↑, eff↓, eff↑, ChemoSen↑, ChemoSideEff↓,
1702- Se,    Supplemental Selenium May Decrease Ovarian Cancer Risk in African-American Women
- Human, Ovarian, NA
Risk↓, eff∅,
1699- Se,    Vegetarianism and colorectal cancer risk in a low-selenium environment: effect modification by selenium status? A possible factor contributing to the null results in British vegetarians
- Analysis, CRC, NA
Dose↑, eff↓, Dose↓,
4608- Se,    Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics
- Review, Var, NA - NA, AD, NA
*toxicity↝, *toxicity↓, *other↝, ROS↑, *Dose↝, *selenoP↑, AntiCan↑, AntiTum↑, *Bacteria↓, *radioP↑, *BioAv↑, *Inflam↓, *Imm↑, ChemoSen↑, *AntiAg↑, selectivity↑, eff↑, other↝, *eff↑, *Aβ↓, *eff↑,
4612- Se,  Rad,    Histopathological Evaluation of Radioprotective Effects: Selenium Nanoparticles Protect Lung Tissue from Radiation Damage
- in-vivo, Nor, NA
*radioP↑, *Inflam↓, *antiOx↑, *Dose↝, *DNAdam↓, *ROS↓, *SOD↑, *GPx↑, *Dose↝, *eff↑,
4603- Se,    Therapeutic applications of selenium nanoparticles
- Review, Var, NA
AntiCan↑, Imm↑, *AntiDiabetic↑, *antiOx↑, *Inflam↓, ROS↑, ER Stress↑, DNAdam↑, *toxicity↓, *eff↑, *BioAv↑, selectivity↑, TumCCA↑, Risk↓, *lipid-P↓, *TNF-α↓, *CRP↓, TumMeta↓, angioG↓, selectivity↑, eff↑, *eff↑,
4607- Se,  SNP,    A Review on synthesis and their antibacterial activity of Silver and Selenium nanoparticles against biofilm forming Staphylococcus aureus
- Review, NA, NA
*Bacteria↓, *eff↑, ROS↑, *Dose↝, *eff↑, toxicity↝, *Sepsis↓, *other↝, eff↑,
4727- Se,    Selenium inhibits ferroptosis in ulcerative colitis through the induction of Nrf2/Gpx4
- in-vivo, Col, NA
*Ferroptosis↓, *NRF2↑, *GPx4↑, *eff↑, *other↓, *antiOx↑, *Inflam↓, AntiTum↑,
4722- Se,    The Yin and Yang of Nrf2-Regulated Selenoproteins in Carcinogenesis
- Review, Var, NA
Risk↓, *NRF2↓, NRF2↑, *NRF2↓, OS↑, eff↝, eff↝, NRF2↝,
4721- Se,    A review on selenium nanoparticles and their biomedical applications
- Review, AD, NA - Review, Diabetic, NA - Review, Arthritis, NA
*antiOx↑, *Inflam↓, *eff↝, *selenoP↑, *Bacteria↓, *neuroP↑, *ROS↓, ChemoSen↑,
4717- Se,    A systematic review of Selenium as a complementary treatment in cancer patients
- Review, Var, NA
*antiOx↑, eff↝, radioP↑, chemoP↑, *selenoP↑, *GPx↑, TrxR↑, *ROS↓,
4715- Se,    The Interaction of Selenium with Chemotherapy and Radiation on Normal and Malignant Human Mononuclear Blood Cells
chemoP↑, radioP↑, selectivity↑, ChemoSen↑, GSH↓, *GSH↑, *DNAdam↓, DNAdam↑, eff↑,
4714- Se,    Selenium in cancer management: exploring the therapeutic potential
- Review, Var, NA
Risk↓, *BioAv↑, eff↝, *ROS↓, MMP↓, ROS↑, P53↑, *toxicity↓, TumCP↓, Casp↑, Apoptosis↑,
4713- Se,  VitC,  VitK3,    Selenium supplementation protects cancer cells from the oxidative stress and cytotoxicity induced by the combination of ascorbate and menadione sodium bisulfite
- in-vitro, GBM, NA
eff↓,
4750- Se,  Rad,    Selenium in Radiation Oncology—15 Years of Experiences in Germany
- Review, Var, NA
RadioS∅, radioP↑, eff↑,
4743- Se,    Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients
- Review, Var, NA
eff↝, chemoP↝, radioP↝,
4726- Se,  Oxy,    Oxygen therapy accelerates apoptosis induced by selenium compounds via regulating Nrf2/MAPK signaling pathway in hepatocellular carcinoma
- in-vivo, HCC, NA
eff↝, NRF2↓, p‑p38↑, Apoptosis↑, eff↑, TumVol↓, other↝, toxicity↓, Dose↝, NRF2↝, HO-1↓, Catalase↓, SOD↓, e-pH↓, pH∅, MAPK↑, eff↑,
4739- Se,  Chemo,  Rad,    Therapeutic Benefits of Selenium in Hematological Malignancies
- Review, Var, NA
ChemoSen↑, radioP↑, QoL↑, Risk↓, *selenoP↑, TumCP↓, Inflam↓, ChemoSen↑, TumCCA↑, Apoptosis↑, angioG↓, Dose⇅, ROS↑, eff↑, Risk↓, eff∅, CSCs↓, ROS↑,
4728- Se,    Selective Impact of Selenium Compounds on Two Cytokine Storm Players
- NA, Covid, NA
*IL6↓, *TNF-α↓, *NRF2↑, *other↑, *eff↑,
4469- Se,    Selenium Nanoparticles in Cancer Therapy: Unveiling Cytotoxic Mechanisms and Therapeutic Potential
- Review, Var, NA
antiOx↑, selectivity↑, eff↑, AntiCan↑, Apoptosis↑, ROS↑, MMP↓, Casp3↑, Casp9↑, AntiTum↑, TumCG↓, TumMeta↓, angioG↓, Cyt‑c↑, DNAdam↑, RadioS↑, BBB↑, *toxicity↓, ChemoSen↑,
4453- Se,    Selenium Nanoparticles: Green Synthesis and Biomedical Application
- Review, NA, NA
*toxicity↓, *Bacteria↓, ROS↑, MMP↓, ER Stress↑, P53↑, Apoptosis↑, Casp9↑, DNAdam↑, TumCCA↑, eff↑, Catalase↓, SOD↓, GSH↓, selectivity↓, selectivity↑, PCNA↓, eff↑, *ALAT↓, *AST↓, *ALP↓, *creat↓, *Inflam↓, *toxicity↓, selectivity↑,
4470- Se,  Chit,    Synthesis and cytotoxic activities of selenium nanoparticles incorporated nano-chitosan
- in-vitro, CRC, HCT116 - in-vitro, Liver, HepG2 - in-vitro, BC, MCF-7
Dose↝, AntiCan↑, eff↑,
4471- Se,    Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis
- in-vitro, Liver, HepG2
eff↑, ROS↑, MMP↓, Casp9↑, Bcl-2↓, selectivity↑, Apoptosis↑,
4472- Se,    Therapeutic potential of selenium nanoparticles
- Review, Var, NA
*ROS↓, *BioAv↑, *antiOx↑, toxicity↓, eff↑, *other↝, EPR↑, selectivity↑, eff↑, RadioS↑, eff↑, *Bacteria↓,
4465- Se,  VitC,    Selenium nanoparticles: Synthesis, in-vitro cytotoxicity, antioxidant activity and interaction studies with ct-DNA and HSA, HHb and Cyt c serum proteins
- Study, NA, NA
*other↝, *eff↑, AntiCan↑, *Dose↝, *BioAv↑, *other↝,
4464- Se,    Antioxidant Properties of Selenium Nanoparticles Synthesized Using Tea and Herb Water Extracts
- Study, NA, NA
*eff↑, *eff↝,
4457- Se,    Selenium nanoparticles: a review on synthesis and biomedical applications
- Review, Var, NA - NA, Diabetic, NA
*BioAv↑, *toxicity↓, *eff↑, chemoPv↑, *Inflam↓, antiOx↑, *selenoP↑, *ROS↓, *Dose↝, AntiCan↑, *Bacteria↓, eff↑, DNAdam↑, selectivity↑, *eff↑,
4458- Se,    Selenium Nanoparticles for Antioxidant Activity and Selenium Enrichment in Plants
*Dose↝, *eff↑, *Dose↝,
4459- Se,  VitC,    Nano and mesosized selenium and its synthesis using the ascorbic acid route
*eff↑, *Dose↝, *Dose↝,
4488- Se,  Chit,  PEG,    Anticancer effect of selenium/chitosan/polyethylene glycol/allyl isothiocyanate nanocomposites against diethylnitrosamine-induced liver cancer in rats
- in-vivo, Liver, HepG2 - in-vivo, Nor, HL7702
tumCV↓, Apoptosis↑, *GSH↑, *VitC↑, *VitE↑, *SOD↑, *GPx↑, *GR↑, ALAT↓, ALP↓, AST↓, LDH↓, selectivity↑, eff↑,
4483- Se,  Chit,    Anti-cancer potential of chitosan-starch selenium Nanocomposite: Targeting osteoblastoma and insights of molecular docking
- in-vitro, OS, NA
AntiCan↑, TumCP↓, Apoptosis↑, ROS↑, eff↑, other↝, eff↑, TumCCA↑,
2556- SFN,    The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review
- Review, Var, NA
chemoPv↑, HDAC↓, Hif1a↓, angioG↓, CYP1A1↓, eff↑, BioAv↑,
3198- SFN,    Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells
- in-vitro, Pca, NA
Nanog↓, SOX2↓, E-cadherin↓, Snail↓, VEGFR2↓, Diff↓, TumCMig↓, EMT↓, CXCR4↓, NOTCH1↓, ALDH1A1↓, CSCs↓, eff↑,
1731- SFN,    Targeting cancer stem cells with sulforaphane, a dietary component from broccoli and broccoli sprouts
- Review, Var, NA
CSCs↓, ChemoSen↑, NF-kB↓, Shh↓, Smo↓, Gli1↓, GLI2↓, PI3K↓, Wnt↓, β-catenin/ZEB1↓, Nanog↓, COX2↓, Zeb1↓, Snail↓, ChemoSideEff↓, eff↑, *BioAv↑,
1729- SFN,    Discovery and development of sulforaphane as a cancer chemopreventive phytochemical
- Review, Nor, NA
eff↑, angioG↓, VEGF↓, MMP9↓, MMP2↓,
1728- SFN,    Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens
- Review, Nor, NA
eff↑, eff↓,
1727- SFN,    Glucoraphanin, sulforaphane and myrosinase activity in germinating broccoli sprouts as affected by growth temperature and plant organs
- Analysis, Nor, NA
eff↑, eff↓,
1726- SFN,    Sulforaphane: A Broccoli Bioactive Phytocompound with Cancer Preventive Potential
- Review, Var, NA
Dose↝, eff↝, IL1β↓, IL6↓, IL12↓, TNF-α↓, COX2↓, CXCR4↓, MPO↓, HSP70/HSPA5↓, HSP90↓, VCAM-1↓, IKKα↓, NF-kB↓, HO-1↑, Casp3↑, Casp7↑, Casp8↑, Casp9↑, cl‑PARP↑, Cyt‑c↑, Diablo↑, CHOP↑, survivin↓, XIAP↓, p38↑, Fas↑, PUMA↑, VEGF↓, Hif1a↓, Twist↓, Zeb1↓, Vim↓, MMP2↓, MMP9↓, E-cadherin↑, N-cadherin↓, Snail↓, CD44↓, cycD1/CCND1↓, cycA1/CCNA1↓, CycB/CCNB1↓, cycE/CCNE↓, CDK4↓, CDK6↓, p50↓, P53↑, P21↑, GSH↑, SOD↑, GSTs↑, mTOR↓, Akt↓, PI3K↓, β-catenin/ZEB1↓, IGF-1↓, cMyc↓, CSCs↓,
1494- SFN,  doxoR,    Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model
- in-vivo, BC, NA - in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10
CardioT↓, *GSH↑, *ROS↓, *NRF2↑, NRF2∅, HDAC↓, DNMTs↓, Casp3↑, ER-α36↓, Remission↑, eff↑, ROS↑, selectivity?,
1455- SFN,    Sulforaphane Activates a lysosome-dependent transcriptional program to mitigate oxidative stress
- in-vitro, Cerv, HeLa - in-vitro, Nor, 1321N1
*ROS↓, *BioAv↑, LC3II↑, LAMP1?, TumAuto↑, TFEB↑, ROS↑, eff↓,
1482- SFN,    Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway
- in-vitro, Bladder, T24
tumCV↓, Apoptosis↑, Cyt‑c↑, Bax:Bcl2↑, Casp9↑, Casp3↑, Casp8∅, cl‑PARP↑, ROS↑, MMP↓, eff↓, ER Stress↑, p‑NRF2↑, HO-1↑,
1483- SFN,    Targeting p62 by sulforaphane promotes autolysosomal degradation of SLC7A11, inducing ferroptosis for osteosarcoma treatment
- in-vitro, OS, 143B - in-vitro, Nor, HEK293 - in-vivo, OS, NA
AntiCan↑, *toxicity∅, Ferroptosis↑, ROS↑, lipid-P↑, GSH↓, p62↑, SLC12A5↓, eff↓, GPx4↓, i-Iron↑, eff↓, MDA↑, TumVol↓, TumW↓, Ki-67↓, LC3B↑, *Weight∅,
1484- SFN,    Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
- Review, Var, NA - Review, AD, NA
neuroP↑, AntiCan↑, NRF2↑, HDAC↓, eff↑, *ROS↓, neuroP↑, HDAC↓, *toxicity∅, BioAv↑, eff↓, cycD1/CCND1↓, CDK4↓, p‑RB1↓, Glycolysis↓, miR-30a-5p↑, TumCCA↑, TumCG↓, TumMeta↓, eff↑, ChemoSen↑, RadioS↑, CardioT↓, angioG↓, Hif1a↓, VEGF↓, *BioAv?, *Half-Life∅,
1454- SFN,    Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract
- Human, Nor, NA
*HDAC↓, *eff↑, *eff↑, *eff↑, *BioAv↑, *BioAv↑,
1495- SFN,  doxoR,    Sulforaphane protection against the development of doxorubicin-induced chronic heart failure is associated with Nrf2 Upregulation
- in-vivo, Nor, NA
*CardioT↓, *NRF2↑, *eff↓, *ROS↓,
1496- SFN,  VitD3,    Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells
- in-vitro, CRC, Caco-2
eff↑, VDR↑, CYP11A1↓, HDAC↓,
1501- SFN,    The Inhibitory Effect of Sulforaphane on Bladder Cancer Cell Depends on GSH Depletion-Induced by Nrf2 Translocation
- in-vitro, CRC, T24
Dose↝, NRF2↑, GSH↓, eff↑,
1437- SFN,    Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition
- Review, NA, NA
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, eff↑, ac‑HSP90↑, DNMT1↓, DNMT3A↓, hTERT/TERT↓, NRF2↑, HO-1↑, NQO1↑, miR-155↓, miR-200c↑, SOX9↓, *toxicity↓,
1456- SFN,    Sulforaphane regulates cell proliferation and induces apoptotic cell death mediated by ROS-cell cycle arrest in pancreatic cancer cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1
tumCV↓, TumCP↓, cl‑PARP↑, cl‑Casp3↑, TumCCA↑, ROS↑, MMP↓, γH2AX↑, eff↓, *toxicity↓,
1458- SFN,    Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma
- Review, Bladder, NA
HDAC↓, eff↓, TumW↓, TumW↓, angioG↓, *toxicity↓, GutMicro↝, AntiCan↑, ROS↑, MMP↓, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, Casp8∅, cl‑PARP↑, TRAIL↑, DR5↑, eff↓, NRF2↑, ER Stress↑, COX2↓, EGFR↓, HER2/EBBR2↓, ChemoSen↑, NF-kB↓, TumCCA?, p‑Akt↓, p‑mTOR↓, p70S6↓, p19↑, P21↑, CD44↓, CSCs↓,
1459- SFN,  Aur,    Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway
- in-vitro, Liver, Hep3B - in-vitro, Liver, HepG2
eff↑, TumCCA↑, Apoptosis↑, MMP↓, BAX↑, cl‑PARP↑, Casp3↑, Casp8↑, Casp9↑, ROS↑, eff↓, PI3K↓, Akt↓, TrxR↓, BAX↑, Bcl-2∅,
1460- SFN,    High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells
- in-vitro, Lung, NA
ROS↑, EGFR↓, eff↓, TumCCA↑, γH2AX↑, DNAdam↑, eff↓,
1463- SFN,    Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells
- in-vitro, Bladder, 5637
tumCV↓, CycB/CCNB1↑, p‑CDK1↑, Apoptosis↑, Casp8↑, Casp9↑, Casp3↑, cl‑PARP↑, ROS↑, eff↓,
1464- SFN,    d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway
- in-vitro, GBM, NA
Apoptosis↑, Casp3↑, BAX↑, Bcl-2↓, ROS↑, p‑STAT3↓, JAK2↓, eff↓,
1465- SFN,    TRAIL attenuates sulforaphane-mediated Nrf2 and sustains ROS generation, leading to apoptosis of TRAIL-resistant human bladder cancer cells
- NA, Bladder, NA
eff↑, Apoptosis↑, Casp↑, MMP↓, BID↑, DR5↑, ROS↑, NRF2↑, eff↑, eff↓,
1466- SFN,    Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway
- vitro+vivo, Thyroid, FTC-133
TumCP↓, TumCCA↑, Apoptosis↑, TumCMig↓, TumCI↓, EMT↓, Slug↓, Twist↓, MMP2↓, MMP9↓, TumCG↓, p‑Akt↓, P21↑, ERK↑, p38↑, ROS↑, *toxicity∅, MMP↓, eff↓,
1467- SFN,    Sulforaphane generates reactive oxygen species leading to mitochondrial perturbation for apoptosis in human leukemia U937 cells
- in-vitro, AML, U937
Apoptosis↑, ROS↑, MMP↓, Casp3↑, Bcl-2↓, eff↓,
1480- SFN,    Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells
- in-vitro, CRC, HCT116
tumCV↓, TumCCA↑, Apoptosis↑, cycA1/CCNA1↑, CycB/CCNB1↑, CDC25↓, CDK1↓, ROS↑, eff↓, Cyt‑c↑, AIF↑, ER Stress↑,
1469- SFN,    Sulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vivo, Pca, NA
eff↑, ROS↑, MMP↓, Casp3↑, Casp9↑, DR4↑, DR5↑, BAX↑, Bak↑, BIM↑, NOXA↑, Bcl-2↓, Bcl-xL↓, Mcl-1↓, eff↓, TumCG↓, TumCP↓, eff↑, NF-kB↓, PI3K↓, Akt↓, MEK↓, ERK↓, angioG↓, FOXO3↑,
1470- SFN,  Rad,    Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, Lung, A549 - in-vitro, lymphoma, U937
eff↓, ROS↑, NKG2D↑,
1471- SFN,    ROS-mediated activation of AMPK plays a critical role in sulforaphane-induced apoptosis and mitotic arrest in AGS human gastric cancer cells
- in-vitro, GC, AGS
TumCP↓, Apoptosis↑, TumCCA↑, CycB/CCNB1↑, P21↑, p‑H3↑, p‑AMPK↑, eff↓, MMP↓, Cyt‑c↑, ROS↑, eff↓,
1474- SFN,    Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway
- in-vitro, Colon, SW480
TumCG↓, Apoptosis↑, MMP↓, Bax:Bcl2↑, Casp3↑, Casp7↑, Casp9↑, ROS↑, e-ERK↑, p38↑, P53∅, eff↓, ChemoSen↑,
1475- SFN,  Form,    Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway
- in-vitro, Cerv, HeLa
TumCP↓, PI3K↓, Akt↓, mTOR↓, eff↑, ROS↑,
1476- SFN,  PDT,    Enhancement of cytotoxic effect on human head and neck cancer cells by combination of photodynamic therapy and sulforaphane
- in-vitro, HNSCC, NA
eff↑, tumCV↓, ROS↑, eff↓, Casp↑,
1478- SFN,  acet,    Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells
- in-vitro, Nor, NA
eff↑, NO↓, iNOS↓, COX2↓, IL1β↓, ROS↓,
1508- SFN,    Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment
- Review, Var, NA
*BioAv↑, HDAC↓, TumCCA↓, eff↓, Wnt↓, β-catenin/ZEB1↓, Casp12?, Bcl-2↓, cl‑PARP↑, Bax:Bcl2↑, IAP1↓, Casp3↑, Casp9↑, Telomerase↓, hTERT/TERT↓, ROS?, DNMTs↓, angioG↓, VEGF↓, Hif1a↓, cMYB↓, MMP1↓, MMP2↓, MMP9↓, ERK↑, E-cadherin↑, CD44↓, MMP2↓, eff↑, IL2↑, IFN-γ↑, IL1β↓, IL6↓, TNF-α↓, NF-kB↓, ERK↓, NRF2↑, RadioS↑, ChemoSideEff↓,
1513- SFN,  acetaz,    Next-generation multimodality of nutrigenomic cancer therapy: sulforaphane in combination with acetazolamide actively target bronchial carcinoid cancer in disabling the PI3K/Akt/mTOR survival pathway and inducing apoptosis
- in-vitro, BrCC, H720 - in-vivo, BrCC, NA - in-vitro, BrCC, H727
eff↑, tumCV↓, Apoptosis↑, P21↑, PI3K↓, Akt↓, mTOR↓, 5HT↓, NRF2↑,
1509- SFN,    Combination therapy in combating cancer
- Review, NA, NA
NRF2↑, ChemoSideEff↓, eff↑, TumCP↓, Apoptosis↑, TumCCA↑, eff↑, PSA↓, P53↑, Hif1a↓, CAIX↓, chemoR↓, 5HT↓,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB/CCNB1↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1/CCND1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3307- SIL,    Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications
- Review, Var, NA
*NRF2↑, *antiOx↑, *chemoP↑, *Inflam↓, *BioAv↑, eff↑, *NQO1↑, TNF-α↓, IL6↓, *GSH↑, *ROS↓, *MDA↓, eff↑, *hepatoP↑, *GPx↑, *SOD↑, *Catalase↑, *HO-1↑, *neuroP↑,
3298- SIL,    Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells
- in-vitro, BC, MCF-7
LC3II↑, Beclin-1↑, Bcl-2↓, ROS↑, MMP↓, ATP↓, eff↓, BNIP3?, TumAuto↑, eff↑,
3294- SIL,    Silymarin: a review on paving the way towards promising pharmacological agent
- Review, Nor, NA - Review, Arthritis, NA
*hepatoP↑, *Inflam↓, *chemoP↑, *glucose↓, *antiOx↑, *ROS↓, *ACC↓, *FASN↓, *radioP↑, *NF-kB↓, *TGF-β↓, *AST↓, *α-SMA↝, *eff↑, *neuroP↑, eff↑, ROS↓,
3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, TumMeta↓, Inflam↓, chemoP↑, radioP↑, Half-Life↝, *GSTs↑, p‑JNK↑, BAX↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, eff↑, TumCCA↑, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, Casp3↑, Casp9↑, eff↑, CXCR4↓, Dose↝,
3292- SIL,  Fe,    Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
*antiOx↑, ROS↑, OS↑, Weight↑, TumVol↓, eff↑, Fenton↑,
3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, *BioAv↓, Fas↑, FasL↑, FADD↑, pro‑Casp8↑, Apoptosis↑, DR5↑, Bcl-2↑, BAX↑, Casp3↑, PI3K↓, FOXM1↓, p‑mTOR↓, p‑P70S6K↓, Hif1a↓, Akt↑, angioG↓, STAT3↓, NF-kB↓, lipid-P↓, eff↑, CDK1↓, survivin↓, CycB/CCNB1↓, Mcl-1↓, Casp9↑, AP-1↓, BioAv↑,
2217- SK,    Shikonin Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis to Attenuate Renal Ischemia/Reperfusion Injury by Activating the Sirt1/Nrf2/HO-1 Pathway
- in-vivo, Nor, NA - in-vitro, Nor, HK-2
*ER Stress↓, *SIRT1↑, *NRF2↑, *HO-1↑, *eff↓, *RenoP↑, *GRP78/BiP↓, *CHOP↓, *Casp12↓, *BAX↓, *cl‑Casp3↓,
2364- SK,    Pyruvate Kinase M2 Mediates Glycolysis Contributes to Psoriasis by Promoting Keratinocyte Proliferation
- in-vivo, PSA, NA
eff↑, lactateProd↓, PKM2↓,
2358- SK,    SIRT1 improves lactate homeostasis in the brain to alleviate parkinsonism via deacetylation and inhibition of PKM2
- in-vivo, Park, NA
*eff↑, *PKM2↓, *motorD↑, *lactateProd↓,
2230- SK,    Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
TumCG↓, Bcl-2↓, ROS↑, Bcl-xL↓, MMP↓, Casp↑, selectivity↑, cycD1/CCND1↓, TumCCA↑, eff↓,
2229- SK,    Shikonin induces apoptosis and prosurvival autophagy in human melanoma A375 cells via ROS-mediated ER stress and p38 pathways
- in-vitro, Melanoma, A375
Apoptosis↑, TumAuto↑, TumCP↓, TumCCA↑, P21↑, cycD1/CCND1↓, ER Stress↑, p‑eIF2α↑, CHOP↑, cl‑Casp3↑, p38↑, LC3B-II↑, Beclin-1↑, ROS↑, eff↓,
2228- SK,    Shikonin induced Apoptosis Mediated by Endoplasmic Reticulum Stress in Colorectal Cancer Cells
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT15 - in-vivo, NA, NA
Apoptosis↑, Bcl-2↓, Casp3↑, Casp9↑, cl‑PARP↑, GRP78/BiP↑, PERK↑, eIF2α↑, ATF4↑, CHOP↑, JNK↑, eff↓, ER Stress↑, ROS↑, TumCG↓,
2227- SK,    Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
- in-vitro, GC, BGC-823 - in-vitro, GC, SGC-7901 - in-vitro, Nor, GES-1
selectivity↑, TumCP↓, TumCD↑, ROS↑, MMP↓, Casp↑, Cyt‑c↑, Endon↑, AIF↑, eff↓, ChemoSen↑, TumCCA↑, GSH/GSSG↓, lipid-P↑,
2226- SK,    Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma
- in-vitro, HCC, HUH7 - in-vitro, HCC, Bel-7402
selectivity↑, ROS↑, eff↓, Akt↓, RIP1↓, NF-kB↓,
2224- SK,    Shikonin induces apoptosis and autophagy via downregulation of pyrroline-5-carboxylate reductase1 in hepatocellular carcinoma cells
- in-vitro, HCC, SMMC-7721 cell - in-vitro, HCC, HUH7 - in-vitro, HCC, HepG2
PYCR1↓, PI3K↓, Akt↓, mTOR↓, eff↑,
2469- SK,    Shikonin induces the apoptosis and pyroptosis of EGFR-T790M-mutant drug-resistant non-small cell lung cancer cells via the degradation of cyclooxygenase-2
- in-vitro, Lung, H1975
Apoptosis↑, Pyro↑, Casp↑, cl‑PARP↑, GSDME↑, ROS↑, COX2↓, PDK1↓, Akt↓, ERK↓, eff↓, eff↓, eff↑,
3047- SK,    Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, SW48
TumCG↓, p‑STAT3↓, ADAM17↓, Apoptosis↑, Casp3↑, cl‑PARP↑, cycD1/CCND1↓, cycE/CCNE↓, TumCCA↑, JAK1?, p‑JAK1↓, p‑JAK2↓, p‑eIF2α↑, eff↓, ROS↑, IL6↓,
3051- SK,    Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation
- Review, Var, NA
Nrf1↑, Apoptosis↑, TumCP↓, eff⇅, chemoP↑, eff↑, VCAM-1↓, Hif1a↓,
1281- SK,    Enhancement of NK cells proliferation and function by Shikonin
- in-vivo, Colon, Caco-2
Perforin↑, GranB↑, p‑ERK↑, p‑Akt↑, NK cell↑, eff↝,
1344- SK,    Novel multiple apoptotic mechanism of shikonin in human glioma cells
- in-vitro, GBM, U87MG - in-vitro, GBM, Hs683 - in-vitro, GBM, M059K
ROS↑, GSH↓, MMP↓, P53↑, cl‑PARP↑, Catalase↓, SOD1↑, Bcl-2↓, BAX↑, eff↓,
2010- SK,    Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxR and activating the EGFR proteasomal degradation pathway
- in-vitro, Lung, H1975 - in-vitro, Lung, H1650 - in-vitro, Nor, CCD19
EGFR↓, selectivity↑, Casp↑, PARP↑, Apoptosis↑, ROS↑, eff↓, selectivity↑,
2009- SK,    Necroptosis inhibits autophagy by regulating the formation of RIP3/p62/Keap1 complex in shikonin-induced ROS dependent cell death of human bladder cancer
- in-vitro, Bladder, NA
TumCG↓, selectivity↑, *toxicity∅, Necroptosis↑, ROS↑, p62↑, Keap1↑, *NRF2↑, eff↑,
2008- SK,  Cisplatin,    Enhancement of cisplatin-induced colon cancer cells apoptosis by shikonin, a natural inducer of ROS in vitro and in vivo
- in-vitro, CRC, HCT116 - in-vivo, NA, NA
ChemoSen↑, selectivity↑, i-ROS↑, DNAdam↑, MMP↓, TumCCA↑, eff↓, *toxicity↓,
2189- SK,    PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells
- in-vitro, Melanoma, NA
PKM2↓, chemoPv↑, eff↝, lactateProd↓, ROS↑, *ROS?, *PKM2↓,
2188- SK,    Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment
- Review, Var, NA
ROS↑, EGFR↓, PI3K↓, Akt↓, angioG↓, Apoptosis↑, Necroptosis↑, GSH↓, Ca+2↓, MMP↓, ERK↓, p38↑, proCasp3↑, eff↓, VEGF↓, FOXO3↑, EGR1↑, SIRT1↑, RIP1↑, RIP3↑, BioAv↓, NF-kB↓, Half-Life↓,
2186- SK,    Shikonin differentially regulates glucose metabolism via PKM2 and HIF1α to overcome apoptosis in a refractory HCC cell line
- in-vitro, HCC, HepG2 - in-vitro, HCC, HCCLM3
Glycolysis↓, PKM2↓, Apoptosis↑, ROS↑, OXPHOS⇅, eff↓,
2201- SK,    Shikonin promotes ferroptosis in HaCaT cells through Nrf2 and alleviates imiquimod-induced psoriasis in mice
- in-vitro, PSA, HaCaT - in-vivo, NA, NA
*eff↑, *IL6↓, *IL17↓, *TNF-α↓, *lipid-P↑, *NRF2↓, *HO-1↝, *NCOA4↝, *GPx4↓, *Ferroptosis↓, *Inflam↓, *ROS↓, *Iron↓,
2213- SK,    Shikonin attenuates cerebral ischemia/reperfusion injury via inhibiting NOD2/RIP2/NF-κB-mediated microglia polarization and neuroinflammation
- in-vivo, Stroke, NA
*neuroP↑, *Inflam↓, *iNOS↓, *TNF-α↓, *IL1β↓, *IL6↓, *ARG↑, *TGF-β↑, *IL10↑, *NF-kB↓, *eff↓,
2210- SK,    Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway
- in-vitro, BC, MGC803
TumCA↓, TumCI↓, TumCMig↓, MMP2↓, MMP7↓, TLR2↓, p65↓, NF-kB↓, eff↑, ROS↑,
2215- SK,  doxoR,    Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice
- in-vivo, Nor, NA
*cardioP↑, *ROS↓, *Inflam↓, *Mst1↓, *NRF2↑, *eff↓, *antiOx↑, *SOD↑, *GSH↑, *TNF-α↓, BAX↓, Bcl-2↑,
2196- SK,    Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species
- Review, Var, NA
*ALAT↓, *AST↓, *Inflam?, *EMT↑, ROS?, TrxR1↓, PERK↑, eIF2α↑, ATF4↑, CHOP↑, IRE1↑, JNK↑, eff↝, DR5↑, Glycolysis↓, PKM2↓, ChemoSen↑, GPx4↓, HO-1↑,
346- SNP,  RSQ,    Investigating Silver Nanoparticles and Resiquimod as a Local Melanoma Treatment
- in-vivo, Melanoma, SK-MEL-28 - in-vivo, Melanoma, WM35
ROS↑, Ca+2↝, Casp3↑, Casp8↑, Casp9↑, CD4+↑, CD8+↑, tumCV↓, eff↓, *toxicity↓,
356- SNP,  MF,    Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study
- in-vitro, BC, MCF-7 - in-vitro, Bladder, HTB-22
Apoptosis↑, P53↑, iNOS↑, NF-kB↑, Bcl-2↓, ROS↑, SOD↑, TumCCA↑, eff↑, Catalase↑, other↑,
306- SNP,    Cancer Therapy by Silver Nanoparticles: Fiction or Reality?
- Analysis, NA, NA
EPR↝, ROS↑, IL1↑, IL8↑, ER Stress↑, MMP9↑, MMP↓, Cyt‑c↑, Apoptosis↑, Hif1a↑, BBB↑, GutMicro↝, eff↑, eff↑, RadioS↑,
326- SNP,  TSA,    Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles
- in-vitro, Cerv, HeLa
Apoptosis↑, ChrMod↝, eff↑,
357- SNP,    Hypoxia-mediated autophagic flux inhibits silver nanoparticle-triggered apoptosis in human lung cancer cells
- in-vitro, Lung, A549 - in-vitro, Lung, L132
mtDam↑, ROS↑, Hif1a↑, LC3s↑, p62↑, eff↓,
2205- SNP,    Potential protective efficacy of biogenic silver nanoparticles synthesised from earthworm extract in a septic mice model
- in-vivo, Nor, NA
*Dose↝, *eff↑, *RenoP↑, *antiOx↑, *MDA↓, *NO↓, *hepatoP↑, *toxicity↝, *GSH↑, *SOD↑, *GSTs↑, *Catalase↑,
2207- SNP,  TQ,    Protective effects of Nigella sativa L. seeds aqueous extract-based silver nanoparticles on sepsis-induced damages in rats
- in-vivo, Nor, NA
*eff↑, *RenoP↑, *hepatoP↑, *MDA↓, *SOD↑, *GSH↑, *TNF-α↓, *IL1β↓,
1903- SNP,    Novel Silver Complexes Based on Phosphanes and Ester Derivatives of Bis(pyrazol-1-yl)acetate Ligands Targeting TrxR: New Promising Chemotherapeutic Tools Relevant to SCLC Managemen
- in-vitro, Lung, U1285
TrxR↓, eff↝, ROS↑,
1906- SNP,  GoldNP,  Cu,    Current Progresses in Metal-based Anticancer Complexes as Mammalian TrxR Inhibitors
- Review, Var, NA
TrxR↓, eff↓, eff↓,
1907- SNP,  GoldNP,  Cu,    In vitro antitumour activity of water soluble Cu(I), Ag(I) and Au(I) complexes supported by hydrophilic alkyl phosphine ligands
- in-vitro, Lung, A549 - in-vitro, BC, MCF-7 - in-vitro, Melanoma, A375 - in-vitro, Colon, HCT15 - in-vitro, Cerv, HeLa
TrxR↓, eff↓, eff↓, other∅,
2287- SNP,    Silver nanoparticles induce endothelial cytotoxicity through ROS-mediated mitochondria-lysosome damage and autophagy perturbation: The protective role of N-acetylcysteine
- in-vitro, Nor, HUVECs
*TumCP↓, *ROS↑, *eff↓, *MDA↑, *GSH↓, *MMP↓, *ATP↓, *LC3II↑, *p62↑, *Bcl-2↓, *BAX↑, *Casp3↑,
2286- SNP,    Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size
- in-vitro, Nor, 3T3
*eff↑, *mt-ROS↑, *eff↑,
2835- SNP,  Gluc,    Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake
- in-vitro, Liver, HepG2
Dose↝, eff↑, ROS↑, eff↝, eff↑, eff↝, eff↑, eff↝,
2836- SNP,  Gluc,    Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells
- in-vitro, Cerv, HeLa
eff↝, TumCCA↑, eff↑, eff↑, ROS↑, GSH↓, SOD↓, lipid-P↑, LDH↑,
2837- SNP,    Trojan-Horse Mechanism in the Cellular Uptake of Silver Nanoparticles Verified by Direct Intra- and Extracellular Silver Speciation Analysis
- in-vitro, NA, NA
eff↑,
2538- SNP,  SDT,  Z,    Dual-functional silver nanoparticle-enhanced ZnO nanorods for improved reactive oxygen species generation and cancer treatment
- Study, Var, NA - vitro+vivo, NA, NA
ROS↑, eff↑, eff↑, TumCP↓, toxicity↓,
4421- SNP,    Effect of Biologically Synthesized Silver Nanoparticles on Human Cancer Cells
- in-vitro, Cerv, NA
selectivity↑, eff↝, other↝,
4554- SNP,    Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects
- in-vitro, Cerv, HeLa
Telomerase↓, eff↝,
4553- SNP,    Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types
- in-vitro, Nor, RAW264.7
*Wound Healing↑, *eff↝, *toxicity↝,
4552- SNP,  ART/DHA,    Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS)
- in-vitro, GC, AGS
AntiCan↑, Apoptosis↑, eff↑,
4551- SNP,  Fenb,    Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy
- in-vivo, Lung, NA
eff↑, eff↑, Apoptosis↑, selectivity↓, TumCG↓,
4549- SNP,    Silver nanoparticles: Synthesis, medical applications and biosafety
- Review, Var, NA - Review, Diabetic, NA
ROS↑, eff↑, other↝, DNAdam↑, EPR↑, eff↑, eff↑, TumMeta↓, angioG↓, *Bacteria↓, *eff↑, *AntiViral↑, *AntiFungal↑, eff↑, eff↑, TumCP↓, tumCV↓, P53↝, HIF-1↓, TumCCA↑, lipid-P↑, ATP↓, Cyt‑c↑, MMPs↓, PI3K↓, Akt↓, *Wound Healing↑, *Inflam↓, *Bone Healing↑, *glucose↓, *AntiDiabetic↑, *BBB↑,
4547- SNP,  GoldNP,  VitC,    Exploration of Biocompatible Ascorbic Acid Reduced and Stabilized Gold Nanoparticles, as Sensitive and Selective Detection Nanoplatform for Silver Ion in Solution
- Study, NA, NA
*eff↑,
4545- SNP,  VitC,  Citrate,    Ascorbic Acid-assisted Green Synthesis of Silver Nanoparticles: pH and Stability Study
- Study, NA, NA
*other↝, *other↝, *eff↑, *eff↑,
4544- SNP,  VitC,    Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications
- Review, Nor, NA
*Bacteria↓, *eff↑,
4423- SNP,    Pongamia pinnata seed extract-mediated green synthesis of silver nanoparticle loaded nanogel for estimation of their antipsoriatic properties
- in-vivo, PSA, NA
*eff↑, *other↑,
4424- SNP,    Understanding the prospective of nano-formulations towards the treatment of psoriasis
- in-vivo, PSA, NA
*eff↑,
4447- SNP,    Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysis
- Review, Nor, NA
*Inflam↓, *COX2↓, *ROS↓, *Dose↝, *eff↑, *toxicity↓, *IL4↑, *IL5↑, *IL10↑, *IL1↓, *IL6↓, *TNF-α↓, *NF-kB↓, *MDA↓, *GSH↑,
4574- SNP,    Advances in nano silver-based biomaterials and their biomedical applications
- Review, NA, NA
*Wound Healing↑, *AntiThr↑, *AntiAg↑, eff↑,
4564- SNP,  GoldNP,  Cu,  Chemo,  PDT  Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral Cancer: A review
- Review, Var, NA
ROS↑, DNAdam↑, TumCCA↑, eff↑, Apoptosis↑, eff↓, ChemoSen↑,
4561- SNP,  VitC,    Cellular Effects Nanosilver on Cancer and Non-cancer Cells: Potential Environmental and Human Health Impacts
- in-vitro, CRC, HCT116 - in-vitro, Nor, HEK293
NRF2↑, TumCCA↑, ROS↑, selectivity↑, *AntiViral↑, *toxicity↝, ETC↓, MMP↓, DNAdam↑, Apoptosis↑, lipid-P↑, other↝, UPR↑, *GRP78/BiP↑, *p‑PERK↑, *cl‑eIF2α↑, *CHOP↑, *JNK↑, Hif1a↓, AntiCan↑, *toxicity↓, eff↑,
4600- SNP,    Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model
- in-vivo, Nor, NA
*Half-Life↝, *toxicity↓, *Dose↑, *other↝, *eff↝, *BioAv↓,
4378- SNP,    Exploring silver nanoparticles for cancer therapy and diagnosis
- Review, Var, NA
AntiTum↑, ROS↑, eff↑, RadioS↑,
4383- SNP,    Exploring the Potentials of Silver Nanoparticles in Overcoming Cisplatin Resistance in Lung Adenocarcinoma: Insights from Proteomic and Xenograft Mice Studies
- in-vitro, Lung, A549 - in-vivo, Lung, A549
Apoptosis↑, VEGF↓, P53↓, TumCCA↑, ROS↑, AntiTum↑, eff↑, ATP↓, eff↑, CTR1↑,
4381- SNP,    Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells
- in-vitro, Liver, HepG2
eff↓, ROS↑, other↑,
4380- SNP,    Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways
- in-vitro, Lung, A549
ROS↑, tumCV↓, MMP↓, TumCCA↑, PCNA↓, eff↓,
4379- SNP,    Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells
- in-vitro, CRC, LoVo
eff↑, TumCD↑, ROS↑, Bacteria↓,
4377- SNP,    Interaction between silver nanoparticles of 20 nm (AgNP20 ) and human neutrophils: induction of apoptosis and inhibition of de novo protein synthesis by AgNP20 aggregates
- in-vitro, NA, NA
eff↑, Apoptosis↑,
4376- SNP,    Interaction of multi-functional silver nanoparticles with living cells
- in-vitro, Nor, L929 - in-vitro, Lung, A549
eff↑, selectivity↑,
4375- SNP,    The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells
- in-vitro, AML, K562
eff↑, ROS↑, Apoptosis↑, eff↓,
4374- SNP,    Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides
- in-vitro, BC, MCF-7
eff↑, TumCD↑,
4404- SNP,  Rad,    Main Approaches to Enhance Radiosensitization in Cancer Cells by Nanoparticles: A Systematic Review
- Review, Var, NA
eff↑, ROS↑,
4403- SNP,    Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
- in-vitro, GBM, U251 - in-vitro, GBM, U87MG - in-vitro, GBM, GL26 - in-vitro, Cerv, HeLa - in-vitro, CRC, RKO
AntiCan↑, eff↑, EPR↑, selectivity↑, ROS↑, Casp↑, Apoptosis↑, DNAdam↑, tumCV↓, eff↑,
4400- SNP,  Rad,    Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells
- in-vitro, BC, MCF-7 - in-vitro, Nor, MCF10 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vivo, BC, MDA-MB-231
ROS↑, DNAdam↑, selectivity↑, TumCG↓, RadioS↑, Dose↝, selectivity↑, other↝, eff↓, eff↑, γH2AX↑, Dose↓, eff↑,
4399- SNP,  Chit,    Silver nanoparticles impregnated alginate-chitosan-blended nanocarrier induces apoptosis in human glioblastoma cells
- in-vitro, GBM, U87MG
DNAdam↑, ROS↑, MMP↓, eff↑,
4398- SNP,    Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier
- in-vitro, Colon, HT29
Apoptosis↑, MMP↓, Casp3↑, ROS↑, eff↑,
4392- SNP,    Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata
- in-vivo, LiverDam, NA
*antiOx↑, *eff?,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
4413- SNP,  Anzaroot,    Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells
- in-vitro, BC, MCF-7
chemoP↑, TumCG↓, eff↑, CellMemb↑, selectivity↑, ROS↑, P53↑,
4412- SNP,    Biosynthesis and characterization of silver nanoparticles from Asplenium dalhousiae and their potential biological properties
- in-vitro, CRC, HCT116 - in-vitro, Melanoma, A2780S
Bacteria↓, antiOx↑, AntiCan↑, eff↑,
4405- SNP,    Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis
- in-vitro, OS, NA
Apoptosis↑, other↑, ROS↑, eff↑, P53↝, Apoptosis↑, cl‑Casp3↑, survivin↓, MMP↓, Cyt‑c↑,
4359- SNP,    Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends
- NA, Wounds, NA
*Bacteria↓, *eff↑, *other↝, *toxicity↓,
4365- SNP,    Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview
- Review, Var, NA
ROS↑, *toxicity↓, *Bacteria↓, *Inf↓, *Diff↑, *eff↑, RadioS↑, selectivity↑,
4362- SNP,    Enhancing Colorectal Cancer Radiation Therapy Efficacy using Silver Nanoprisms Decorated with Graphene as Radiosensitizers
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vivo, NA, NA
eff↑, TumCG↓, OS↑, RadioS↑, eff↑, ROS↑, DNAdam↑, eff↝,
4360- SNP,    Silver Nanoparticles as Real Topical Bullets for Wound Healing
- Study, Nor, NA
*other↝, *toxicity↓, *eff↑, *eff↑, *Inflam↓, *IL6↓, *TGF-β↑, *MMP9↓, *eff↑,
4358- SNP,  HPT,  Rad,    Silver nanocrystals mediated combination therapy of radiation with magnetic hyperthermia on glioma cells
- in-vitro, GBM, U251
RadioS↑, eff↑, TumCD↑,
4893- Sper,  immuno,    Chemoproteomic Identification of Spermidine-Binding Proteins and Antitumor-Immunity Activators
- in-vitro, Var, NA
*mt-FAO↑, eff↑,
4892- Sper,  erastin,    Spermidine inactivates proteasome activity and enhances ferroptosis in prostate cancer
- in-vitro, Pca, PC3 - in-vivo, Pca, NA
Ferroptosis↑, lipid-P↑, Iron↑, eff↑, HO-1↑, NRF2↑, ROS↑, AntiTum↑, eff↓,
4896- Sper,  immuno,    Spermidine potentiates anti-tumor immune responses and immunotherapy sensitivity in breast cancer
- vitro+vivo, BC, NA
eff↑, AntiTum↑,
1512- Squ,    Combination therapy in combating cancer
- Review, NA, NA
ChemoSideEff↓, *ROS↓, *GSH↑, eff↑, chemoP↑,
1575- statins,  Citrate,    Inhibition of Lung Cancer Growth: ATP Citrate Lyase Knockdown and Statin Treatment Leads to Dual Blockade of Mitogen-Activated Protein Kinase (MAPK) and Phosphatidylinositol-3-Kinase (PI3K)/AKT Pathways
- in-vitro, NSCLC, A549
eff↑, HMG-CoA↓, eff↑, AntiTum↑, EGFR↓, eff↑, ROS↑, EMT↓, E-cadherin↑, MUC1↑, p‑ACLY↓, p‑Akt↓, eff↑,
4151- Taur,  Gins,    Taurine and Ginsenoside Rf Induce BDNF Expression in SH-SY5Y Cells: A Potential Role of BDNF in Corticosterone-Triggered Cellular Damage
- in-vitro, AD, NA
*BDNF↑, *antiOx↑, *neuroP↑, *eff↑,
3950- Taur,    Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes
- Review, Diabetic, NA - Review, Stroke, NA - Review, AD, NA
*Ca+2↝, *neuroP↑, *other↝, *pH↝, *ROS∅, eff↑, *MMP↑, *Apoptosis↓, *other↝, *ER Stress↓, *Bcl-xL↓, *BAX↑, *Cyt‑c↑, *cal2↓, *Casp3↓, *UPR↓, *other↝, *NF-kB↓, *NRF2↑, *GLUT1↑, *GLUT3↑, *memory↑,
3960- Taur,    Versatile Triad Alliance: Bile Acid, Taurine and Microbiota
- Review, AD, NA - Review, Stroke, NA
*ROS↓, *Inflam↓, *GABA↑, *memory↑, *cognitive↑, *iNOS↓, *CRP↓, *HO-1↑, *Prx↑, *Trx↑, *NRF2↑, *GSH↑, *SOD↑, *Catalase↑, *lipid-P↓, *MDA↓, *eff↝, *GutMicro↑, other↑,
3553- TQ,    Study Effectiveness and Stability Formulation Nanoemulsion of Black Cumin Seed (Nigella sativa L.) Essential Oil: A Review
- Review, Nor, NA
*AntiCan↑, *Inflam↓, *antiOx↑, *AntiAge↑, *hepatoP↑, *cardioP↑, *neuroP↑, *eff↑,
3571- TQ,    The Role of Thymoquinone in Inflammatory Response in Chronic Diseases
- Review, Var, NA - Review, Stroke, NA
*BioAv↓, *BioAv↑, *Inflam↓, *antiOx↑, *ROS↓, *GSH↑, *GSTs↑, *MPO↓, *NF-kB↓, *COX2↓, *IL1β↓, *TNF-α↓, *IFN-γ↓, *IL6↓, *cardioP↑, *lipid-P↓, *TAC↑, *RenoP↑, Apoptosis↑, TumCCA↑, TumCP↓, TumCMig↓, angioG↓, TNF-α↓, NF-kB↓, ROS↑, EMT↓, *Aβ↓, *p‑tau↓, *BACE↓, *TLR2↓, *TLR4↓, *MyD88↓, *IRF3↓, *eff↑, eff↑, DNAdam↑, *iNOS↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
3403- TQ,    A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cells
- in-vitro, RCC, 786-O
tumCV↓, ROS↑, TumCCA↑, eff↓, TumCI↓,
3415- TQ,    The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations
- in-vitro, Lung, H446
tumCV↓, TumCCA↑, ROS↓, CycB/CCNB1↑, CycD3↑, cycA1/CCNA1↓, cycE/CCNE↓, cDC2↓, antiOx↑, PARP↓, NRF2↓, ARE/EpRE↑, eff↑,
3408- TQ,    Thymoquinone: A small molecule from nature with high therapeutic potential
- Review, AD, NA - Review, Park, NA
*neuroP↑, *hepatoP↑, *cardioP↑, *Inflam↓, *antiOx↑, ChemoSen↑, eff↑, eff↑, TumCP↓, TumCCA↑, angioG↓, cycA1/CCNA1↓, cycD1/CCND1↓, cycE/CCNE↓, CDK2↓,
3411- TQ,    Anticancer and Anti-Metastatic Role of Thymoquinone: Regulation of Oncogenic Signaling Cascades by Thymoquinone
- Review, Var, NA
p‑STAT3↓, cycD1/CCND1↓, JAK2↓, β-catenin/ZEB1↓, cMyc↓, MMP7↓, MET↓, p‑Akt↓, p‑mTOR↓, CXCR4↓, Bcl-2↓, BAX↑, ROS↑, Cyt‑c↑, Twist↓, Zeb1↓, E-cadherin↑, p‑p38↑, p‑MAPK↑, ERK↑, eff↑, ERK↓, TumCP↓, TumCMig↓, TumCI↓,
3412- TQ,    Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells
- in-vitro, Melanoma, SK-MEL-28 - in-vivo, NA, NA
Apoptosis↑, JAK2↓, STAT3↓, cycD1/CCND1↓, survivin↓, ROS↑, eff↓,
3414- TQ,    Thymoquinone induces apoptosis through inhibition of JAK2/STAT3 signaling via production of ROS in human renal cancer Caki cells
- in-vitro, RCC, Caki-1
tumCV↓, Apoptosis↑, P53↑, BAX↑, Cyt‑c↑, cl‑Casp9↑, cl‑Casp3↑, cl‑PARP↑, Bcl-2↓, Bcl-xL↓, p‑STAT3↓, p‑JAK2↓, STAT3↓, survivin↓, cycD1/CCND1↓, ROS↑, eff↓,
1934- TQ,    Studies on molecular mechanisms of growth inhibitory effects of thymoquinone against prostate cancer cells: role of reactive oxygen species
- in-vitro, Pca, PC3 - in-vitro, Pca, C4-2B
ROS↑, GSH↓, eff↓,
1933- TQ,    Thymoquinone: potential cure for inflammatory disorders and cancer
- Review, Var, NA
antiOx↑, Inflam↓, AntiCan↑, TumCCA↑, ROS↑, angioG↓, Apoptosis↑, Casp↑, eff↑, eff↝,
2129- TQ,  doxoR,    Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells
- in-vitro, BC, MCF-7
ChemoSen↑, PTEN↑, p‑Akt↓, TumCCA↑, P53↑, P21↑, Apoptosis↑, MMP↓, Casp↑, cl‑PARP↑, Bax:Bcl2↑, eff↓, DNAdam↓, p‑γH2AX↑, ROS↑,
2130- TQ,    Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model
- in-vivo, Nor, NA
*eff↑, *memory↑, *NRF2↑, *HO-1↑, *SOD↑, *ROS↓,
2131- TQ,    Therapeutic impact of thymoquninone to alleviate ischemic brain injury via Nrf2/HO-1 pathway
- in-vitro, Stroke, NA - in-vivo, Nor, NA
*eff↑, *OS↑, *Inflam↓, *ROS↓, *NRF2↑, *HO-1↑,
2135- TQ,    Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets
- in-vitro, Nor, HaCaT
*HO-1↑, *NRF2↑, *e-ERK↑, *e-Akt↑, *AMPKα↑, *ROS⇅, *eff↓, *tumCV∅,
2127- TQ,    Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways
- Review, GBM, NA
chemoP↑, ChemoSen↑, BioAv↑, PTEN↑, PI3K↓, Akt↓, TumCCA↓, NF-kB↓, p‑Akt↓, p65↓, XIAP↓, Bcl-2↓, COX2↓, VEGF↓, mTOR↓, RAS↓, Raf↓, MEK↓, ERK↓, MMP2↓, MMP9↓, TumCMig↓, TumCI↓, Casp↑, cl‑PARP↑, ROS⇅, ROS↑, MMP↓, eff↑, Telomerase↓, DNAdam↑, Apoptosis↑, STAT3↓, RadioS↑,
2125- TQ,    Thymoquinone Selectively Kills Hypoxic Renal Cancer Cells by Suppressing HIF-1α-Mediated Glycolysis
- in-vitro, RCC, RCC4 - in-vitro, RCC, Caki-1
Hif1a↓, eff↝, uPAR↓, VEGF↓, CAIX↓, PDK1↓, GLUT1↓, LDHA↓, Glycolysis↓, e-lactateProd↓, i-ATP↓,
2123- TQ,    Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma
- in-vitro, lymphoma, PEL
Akt↓, ROS↑, BAX↓, MMP↓, Cyt‑c↑, eff↑, Casp9↑, Casp3↑, cl‑PARP↑, DR5↑,
2121- TQ,    Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
p‑p38↑, ROS↑, TumCP↓, eff↑, XIAP↓, survivin↓, Bcl-xL↓, Bcl-2↓, Ki-67↓, *Catalase↑, *SOD↑, *GSH↑, hepatoP↑, p‑MAPK↑, JNK↓, eff↓,
2120- TQ,    Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3
- in-vitro, Melanoma, A431
ROS↑, Apoptosis↑, P53↑, BAX↑, MDM2↓, Bcl-2↓, Bcl-xL↓, Casp9↑, Casp7↑, Casp3↑, STAT3↓, cycD1/CCND1↓, survivin↓, eff↓,
2101- TQ,    HDAC inhibition by Nigella sativa L. sprouts extract in hepatocellular carcinoma: an approach to study anti-cancer potential
- Study, HCC, NA
HDAC↓, eff↑, eff↑, AntiCan↑,
2098- TQ,    Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed
- in-vitro, Colon, MC38 - in-vitro, lymphoma, L428
NF-kB↓, eff↑, eff↓,
2096- TQ,    Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines
- in-vitro, Nor, GP-293 - in-vitro, Kidney, ACHN
selectivity↑, eff↝,
2095- TQ,    Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis
- Review, Var, NA
TumCCA↑, Apoptosis↑, ROS↑, Cyt‑c↑, Bax:Bcl2↑, Casp3↑, Casp9↑, cl‑PARP↑, P53↑, P21↑, cMyc↓, hTERT/TERT↓, cycD1/CCND1↓, CDK4↓, NF-kB↓, IAP1↓, IAP2↓, XIAP↓, Bcl-xL↓, survivin↓, COX2↓, MMP9↓, VEGF↓, eff↑,
2106- TQ,    Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy
- Review, Var, NA
Apoptosis↑, TumCCA↑, ROS↑, *Catalase↑, *SOD↑, *GR↑, *GSTA1↓, *GPx↑, *H2O2↓, *ROS↓, *lipid-P↓, *HO-1↑, p‑Akt↓, AMPKα↑, NK cell↑, selectivity↑, Dose↝, eff↑, GSH↓, eff↓, P53↑, p‑STAT3↓, PI3K↑, MAPK↑, GSK‐3β↑, ChemoSen↑, RadioS↑, BioAv↓, NRF2↑,
2104- TQ,    The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa
TumCP↓, Apoptosis↑, UHRF1↓, DNMT1↓, HDAC1↓, eff↝,
1929- TQ,    Thymoquinone Suppresses the Proliferation, Migration and Invasiveness through Regulating ROS, Autophagic Flux and miR-877-5p in Human Bladder Carcinoma Cells
- in-vitro, Bladder, 5637 - in-vitro, Bladder, T24
tumCV↓, TumCP↓, TumCI↓, Casp↑, ROS↑, PD-L1↓, EMT↓, MMP↓, eff↓,
1931- TQ,  doxoR,    Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms
- in-vivo, AML, NA
eff↑, tumCV↓, TumCCA↑, ROS↑, MMP↓, eff↑, TumVol↓, eff↑, Ki-67↓,
2353- TQ,    The effects of thymoquinone on pancreatic cancer: Evidence from preclinical studies
- Review, PC, NA
BioAv↝, BioAv↑, MUC4↓, PKM2↓, eff↑, TumVol↓, HDAC↓, NF-kB↓, Bcl-2↓, Bcl-xL↓, survivin↓, XIAP↓, COX2↓, PGE1↓,
2454- Trip,    Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-ΙΙ
- in-vitro, HNSCC, HaCaT - in-vivo, NA, NA
GSDME-N↑, Pyro↑, cMyc↓, HK2↓, BAD↑, BAX↑, Casp3↑, NRF2↓, xCT↓, ROS↑, eff↑, Glycolysis↓, GlucoseCon↓, lactateProd↓, ATP↓, xCT↓, eff↑,
2412- TTT,    A review of tumor treating fields (TTFields): advancements in clinical applications and mechanistic insights
- Review, GBM, NA
TumCG↓, eff↝, OS↑,
5017- UA,    Ursolic acid disturbs ROS homeostasis and regulates survival-associated gene expression to induce apoptosis in intestinal cancer cells
- in-vitro, Cerv, INT-407 - in-vitro, CRC, HCT116
AntiCan↑, TumCG↓, ROS↑, Apoptosis↑, TumCMig↓, CTNNB1↓, Twist↓, Bcl-2↓, survivin↓, NF-kB↓, Sp1/3/4↓, BAX↑, P21↑, P53↑, eff↓, TumCMig↓,
4856- Uro,    Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro
- in-vitro, NPC, CNE1 - in-vitro, NPC, CNE2
Apoptosis↑, MMP↓, ROS↑, E-cadherin↑, BAX↑, cl‑Casp3↑, PARP↑, MMP2↓, MMP9↓, N-cadherin↓, Vim↓, Snail↓, eff↓, TumCP↓, TumCMig↓, TumCI↓, EMT↓,
4843- Uro,    The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide
- in-vitro, Pca, LNCaP
TumCP↓, eff↑, ChemoSen↝,
4842- Uro,    Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages
- vitro+vivo, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MCF-7 - in-vitro, BC, 4T1
Inflam↓, IL6↓, TNF-α↓, eff↑, STAT3↓, TumCP↓, TumCMig↓,
4834- Uro,    Urolithin A increases the natural killer activity of PBMCs in patients with prostate cancer
- Human, Pca, NA
eff↑, NK cell↑,
4833- Uro,    Unveiling the potential of Urolithin A in Cancer Therapy: Mechanistic Insights to Future Perspectives of Nanomedicine
- Review, Var, NA - Review, AD, NA - Review, IBD, NA
BioAv↝, TumAuto↝, TumCG↓, TumMeta↓, ChemoSen↑, Imm↑, RadioS↑, BioAv↑, other↝, eff↓, *antiOx↓, *Inflam↓, AntiCan↓, AntiAge↑, chemoP↑, *neuroP↑, *ROS↓, *cognitive↑, *lipid-P↓, *cardioP↑, *TNF-α↓, *IL6↓, GutMicro↑, TumCCA↑, Apoptosis↑, angioG↓, NF-kB↓, PI3K↓, Akt↓, Casp↑, survivin↓, TumCP↓, cycD1/CCND1↓, cMyc↑, BAX↑, Bcl-2↓, COX2↓, P53↑, p38↑, *ROS↓, *SOD↑, *GPx↑, SIRT1↑, FOXO1↑, eff↑, ChemoSen↑,
4876- Uro,    Urolithin A in Health and Diseases: Prospects for Parkinson’s Disease Management
- Review, Park, NA - Review, AD, NA
*Inflam↓, *antiOx↓, *neuroP↑, *p‑tau↓, *Aβ↓, *eff↑, *BioAv↓, *BioAv↑, *GSH↑, *SOD↑, *lipid-P↓, *Catalase↑, *GSR↑, *GPx↑, *ROS↓, *NRF2↑, *GutMicro↑, *Risk↓, *BBB↓, *NLRP3↓, *MAOA↓,
4875- Uro,    Impact of the Natural Compound Urolithin A on Health, Disease, and Aging
- Review, AD, NA - Review, Stroke, NA - Review, ostP, NA - Review, IBD, NA
*MitoP↓, *Strength↑, *PINK1↑, *PARK2↑, *Inflam↓, *COX2↓, *IL1β↓, *IL6↓, *TNF-α↓, *OS↑, *cardioP↑, *memory↑, *neuroG↑, *neuroP↑, *Cartilage↑, *Inflam↓, *RenoP↑, *eff↑, *Dose↝, *Half-Life↑, *NRF2↑, *GutMicro↑,
4861- Uro,    Urolithin A improves Alzheimer's disease cognition and restores mitophagy and lysosomal functions
- in-vivo, AD, NA
*memory↑, *Aβ↓, *toxicity↓, *BBB↑, *p‑tau↓, *eff↓, *IL1α↓, *MCP1↓, *MIP‑1α↓, *TNF-α↓, *IL2↓, *SIRT1↓, *DNAdam↓, *Dose↝, *Strength↑, *motorD↑, *CTSZ↓,
4869- Uro,    Urolithin A in Central Nervous System Disorders: Therapeutic Applications and Challenges
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*MitoP↑, *Inflam↓, *antiOx↑, *Risk↓, *Aβ↓, *p‑tau↓, *p62↓, *PARK2↑, *MMP↑, *ROS↓, *Strength↑, *CRP↓, *IL1β↓, *IL6↓, *TNF-α↓, *AMPK↑, *NF-kB↓, *MAPK↓, *p62↑, *NRF2↑, *SOD↑, *Catalase↑, *HO-1↑, *Ferroptosis↓, *lipid-P↓, *Cartilage↑, *PI3K↓, *Akt↓, *mTOR↓, *Apoptosis↓, *neuroP↑, *Bcl-2↓, *BAX↑, *Casp3↑, *ATP↑, *eff↑, *motorD↑, *NLRP3↓, *radioP↑, *BBB↑,
4312- VitB1/Thiamine,    Pharmacological thiamine levels as a therapeutic approach in Alzheimer's disease
- Review, AD, NA
*eff↑, *cognitive↑, *memory↑, *GlucoseCon↑, *Aβ↓, *Inflam↓, *antiOx↑, *p‑tau↓, *AGEs↓, *Dose↝,
4049- VitB1/Thiamine,    Vitamin B1 (thiamine) and dementia
- Review, AD, NA
*memory↑, *p‑tau↓, *cognitive↑, *Dose↝, *Dose↓, *Aβ↓, *other↝, *eff↑, *eff↑,
1888- VitB1/Thiamine,  DCA,    High Dose Vitamin B1 Reduces Proliferation in Cancer Cell Lines Analogous to Dichloroacetate
- in-vitro, PC, SK-N-BE - NA, PC, PANC1
p‑PDH↓, GlucoseCon↓, lactateProd↓, MMP↓, Casp3↑, eff↑, PDKs↓, selectivity↑, TumCG↓, Dose∅, MMP↓, ROS∅, toxicity↑, antiOx↑,
4043- VitB12,  FA,    Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment
- Trial, AD, NA
*other↑, *other↑, *eff↝, *homoC↓, *cognitive↑,
4033- VitB3,    Can nicotinamide riboside protect against cognitive impairment?
- in-vivo, AD, NA
*memory↑, *DNAdam↓, *Inflam↓, *Apoptosis↓, *cognitive↑, *BACE↓, *Aβ↓, *BBB↑, *GutMicro↑, *eff↑,
4326- VitB5,    Cerebral Vitamin B5 (D-Pantothenic Acid) Deficiency as a Potential Cause of Metabolic Perturbation and Neurodegeneration in Huntington’s Disease
- in-vivo, HD, NA
*Risk↓, *neuroP↑, *other?, *Ach↑, *other↝, *eff↓, *other↝,
4052- VitB6,    B-Vitamin Intake and Biomarker Status in Relation to Cognitive Decline in Healthy Older Adults in a 4-Year Follow-Up Study
- Study, AD, NA
*neuroP↑, *other↑, *other↑, *cognitive↑, *eff↝, *Risk↑, *other↑,
1836- VitC,  VitK3,  Chemo,    Vitamins C and K3: A Powerful Redox System for Sensitizing Leukemia Lymphocytes to Everolimus and Barasertib
- in-vitro, AML, NA
tumCV↓, selectivity↑, Apoptosis↑, eff↑, ChemoSen↑,
3117- VitC,    Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
- in-vitro, Nor, mESC
TET1↑, eff↝,
3121- VitC,  immuno,    Ascorbic acid induced TET2 enzyme activation enhances cancer immunotherapy efficacy in renal cell carcinoma
- in-vivo, RCC, A498 - in-vitro, RCC, 786-O
TET2↑, eff↑, eff↑,
3114- VitC,    Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression
- in-vitro, AML, NA
TET2↑, eff↑, ROS↑, Fenton↑, Hif1a↓,
3107- VitC,    Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment
- Review, Var, NA
Risk↓, *ROS↓, ROS↑, VEGF↓, COX2↓, ER Stress↑, IRE1↑, JNK↑, CHOP↑, Hif1a↓, eff↑, Glycolysis↓, MMPs↓, TumMeta↓, YAP/TEAD↓, eff↑, TET1↑,
3153- VitC,    Vitamin C Status and Cognitive Function: A Systematic Review
- Review, AD, NA
cognitive↑, eff↑,
3140- VitC,    Vitamin-C-dependent downregulation of the citrate metabolism pathway potentiates pancreatic ductal adenocarcinoma growth arrest
- in-vitro, PC, MIA PaCa-2 - in-vitro, Nor, HEK293
citrate↓, FASN↓, ACLY↓, LDH↓, Glycolysis↓, Warburg↓, PDK1↓, GLUT1↓, LDHA↓, ECAR↓, PDH↑, eff↑,
3148- VitC,    Antioxidants in brain tumors: current therapeutic significance and future prospects
- Review, Var, NA
*antiOx↑, *ROS↓, chemoPv↑, ChemoSen↑, TET2↑, eff↑, OS↑, QoL↑, eff↑,
3143- VitC,  ATO,    Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis
- in-vitro, OS, NA
TumCP↓, TumCMig↓, TumCI↓, eff↑, Glycolysis↓, lactateProd↓, ATP↓, PGK1↓, PGM1↓, LDHA↓,
3141- VitC,    High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer
- in-vitro, CRC, HCT116
Glycolysis↓, eff↑, PD-L1↓, AMPK↑, HK2↓, NF-kB↓, Warburg↓, tumCV↓, GLUT1↓, PKM2↓, LDHA↓, CD4+↑, CD8+↑,
3139- VitC,    Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress
- in-vitro, Nor, H9c2
*Apoptosis∅, *LDH∅, *MDA∅, *SOD↓, eff↝,
3138- VitC,    The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity
- in-vitro, RCC, RCC4 - in-vitro, CRC, HCT116 - in-vitro, BC, MDA-MB-435 - in-vitro, Ovarian, SKOV3 - in-vitro, Colon, SW48 - in-vitro, GBM, U251
eff↑, Warburg↓, BioAv↑, ROS↑, DNAdam↑, ATP↓, eff↑, necrosis↑, PARP↑,
3136- VitC,    Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer
- in-vitro, Colon, SW48 - in-vitro, Colon, LoVo
ERK↓, p‑PKM2↓, GLUT1↓, Warburg↓, TumCD↑, eff↑, ROS↓, cMyc↓,
3129- VitC,    Therapeutic treatment with vitamin C reduces focal cerebral ischemia-induced brain infarction in rats by attenuating disruptions of blood brain barrier and cerebral neuronal apoptosis
- in-vivo, Stroke, NA
*BBB↑, *MMP9↓, *MMPs↓, *MMP2↓, *CLDN1↝, *ZO-1↝, eff↑,
4468- VitC,  Se,    Selenium modulates cancer cell response to pharmacologic ascorbate
- in-vivo, GBM, U87MG - in-vitro, CRC, HCT116
eff↓, TumCD↑, ChemoSen↑, ROS⇅, DNAdam↑, PARP↑, NAD↓, Glycolysis↓, Fenton↑, lipid-P↑, eff↓, H2O2↑, other↝,
4086- VitD3,    The beneficial role of vitamin D in Alzheimer's disease
- Review, AD, NA
*Mood↑, *cognitive↑, *eff↑,
1313- VitD3,  MEL,    The effects of melatonin and vitamin D3 on the gene expression of BCl-2 and BAX in MCF-7 breast cancer cell line
- in-vitro, BC, MCF-7
BAX↑, Bcl-2↓, Bax:Bcl2↑, eff↑,
1739- VitD3,    Effect of Vitamin D3 Supplements on Development of Advanced Cancer
- Trial, Var, NA
AntiCan↑, Dose↝, Risk↓, TumCP↓, Inflam↓, eff∅,
1741- VitD3,    Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging
- Review, Var, NA
*Inflam↓, *antiOx↑, *eff↑, *ROS↓, *NRF2↑, *GPx↑, *Dose↝, Dose↑,
1740- VitD3,    Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms
- Review, Var, NA
Risk↓, eff↑, eff↑, Risk↓, Risk↓, ChemoSen↑, RadioS↑, Cyt‑c↑, Casp3↑, Casp9↑, hTERT/TERT↓, eff↑, E-cadherin↑, CLDN2↑, ZO-1↑, Snail↓, Zeb1↓, Vim↓, VEGF↓, NK cell↑, Risk↓, eff↑,
2171- VitD3,    Vitamin D and the Immune System
- Analysis, Nor, NA
eff↑, Dose↝, eff↝, eff↑, eff↑,
2285- VitK2,    New insights into vitamin K biology with relevance to cancer
- Review, Var, NA
Risk↓, AntiCan↑, eff↑, MMP↓, ROS↑, Cyt‑c↑, eff↓, SXR↑,
2283- VitK2,    Vitamin K Contribution to DNA Damage—Advantage or Disadvantage? A Human Health Response
- Review, Var, NA
*ER Stress↓, *toxicity↓, *toxicity↑, ROS↑, PI3K↑, Akt↑, Hif1a↑, GlucoseCon↑, lactateProd↑, ChemoSen↑, eff↑, eff↑,
2280- VitK2,    Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468 - in-vitro, AML, HL-60
ROS↑, p62↓, eff↓,
2279- VitK2,    Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82 - in-vitro, Nor, HEK293 - in-vitro, Nor, L02 - in-vivo, NA, NA
MMP↓, Cyt‑c↑, Casp3↑, p‑JNK↑, p‑p38↑, ROS↑, eff↓, tumCV↓, selectivity↑, *toxicity↓, TumVol↓,
2278- VitK2,  VitK3,  VitC,    Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect
- Review, Var, NA
ChemoSen↑, ROS↑, eff↑,
1214- VitK2,    Vitamin K2 promotes PI3K/AKT/HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells
- in-vitro, Bladder, T24 - in-vitro, Bladder, J82
Glycolysis↑, GlucoseCon↑, lactateProd↑, TCA↓, PI3K↑, Akt↑, AMPK↑, mTORC1↓, TumAuto↑, GLUT1↑, HK2↑, LDHA↑, ACC↓, PDH↓, eff↓, cMyc↓, Hif1a↑, p‑Akt↑, eff↓, eff↓, eff↓, eff↓, ROS↑,
1824- VitK2,    Vitamin K and its analogs: Potential avenues for prostate cancer management
- Review, Pca, NA
AntiCan↑, toxicity∅, Risk↓, Apoptosis↑, ROS↑, TumCCA↑, eff↑, DNAdam↑, MMP↓, Cyt‑c↑, pro‑Casp3↑, FasL↑, Fas↑, TumAuto↑, ChemoSen↑, RadioS↑,
1817- VitK2,    Research progress on the anticancer effects of vitamin K2
- Review, Var, NA
TumCCA↑, Apoptosis↑, TumAuto↑, TumCI↓, TumCG↓, ChemoSen↓, ChemoSideEff↓, toxicity∅, eff↑, cycD1/CCND1↓, CDK4↓, eff↑, IKKα↓, NF-kB↓, other↑, p27↑, cMyc↓, i-ROS↑, Bcl-2↓, BAX↑, p38↑, MMP↓, Casp9↑, p‑ERK↓, RAS↓, MAPK↓, p‑P53↑, Casp8↑, Casp3↑, cJun↑, MMPs↓, eff↑, eff↑,
1818- VitK2,    New insights on vitamin K biology with relevance to cancer
- Review, Var, NA
TumCG↓, ChemoSen↑, toxicity∅, OS↑, BMD↑, eff↑, MMP↓, ROS↑, eff↓, ERK↑, JNK↑, p38↑, Cyt‑c↑, Casp↑, ATP↓, lactateProd↑, AMPK↑, Rho↓, TumCG↓, BioAv↑, cardioP↑, Risk↓,
1839- VitK3,    Vitamin K3 derivative inhibits androgen receptor signaling in targeting aggressive prostate cancer cells
- in-vitro, Pca, NA
TumCP↓, Apoptosis↑, TumCCA↑, ROS↑, eff↓, AR↓, Trx↓, Bcl-2↓,
1838- VitK3,  PDT,    Photodynamic Effects of Vitamin K3 on Cervical Carcinoma Cells Activating Mitochondrial Apoptosis Pathways
- in-vitro, Cerv, NA
eff↑, ROS↑, tumCV↓, TumCG↓, Apoptosis↑, cl‑Casp3↑, cl‑Casp9↑, Bcl-xL↑, Cyt‑c↑, Bcl-2↓,
1837- VitK3,  VitC,    Alpha-Tocopheryl Succinate Inhibits Autophagic Survival of Prostate Cancer Cells Induced by Vitamin K3 and Ascorbate to Trigger Cell Death
- in-vivo, Pca, NA
eff↑, ROS↑, TumAuto↑,
1834- VitK3,  PDT,    Effects of Vitamin K3 Combined with UVB on the Proliferation and Apoptosis of Cutaneous Squamous Cell Carcinoma A431 Cells
- in-vitro, Melanoma, A431
eff↑, TumCG↓, TumCP↓, ROS↑, MMP↓,
1828- VitK3,  VitC,    Pankiller effect of prolonged exposure to menadione on glioma cells: potentiation by vitamin C
- in-vivo, GBM, NA
eff↑, ROS↑, Dose∅,
1826- VitK3,    PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug
- in-vitro, Cerv, HeLa - in-vitro, Lung, A549
eff↑, ROS↑,
2372- VitK3,    The role of pyruvate kinase M2 in anticancer therapeutic treatments
- Review, Var, NA
PKM2↓, eff↑, AntiCan↑,
1755- WBV,    Reduction of breast cancer extravasation via vibration activated osteocyte regulation
Dose∅, TumMeta↑, eff∅, Piezo1↑, COX2↑, RANKL↓, TumCG∅, tumCV∅, TumCI↓,
1758- WBV,    Whole-body vibration in breast cancer survivors: a pilot study exploring its effects on muscle activity and subjectively perceived exertion
- Human, BC, NA
eff↑,
1752- WBV,  Chemo,    Feasibility of whole body vibration during intensive chemotherapy in patients with hematological malignancies – a randomized controlled pilot study
- Trial, Var, NA
*BP∅, eff↑, Dose∅, other↑, *toxicity∅, eff↑,
1754- WBV,    Vibration Therapy for Cancer-Related Bone Diseases
- Review, Var, NA
*BMD↑, *toxicity∅, other↓, Dose↝, Dose↑, eff↑, eff↑, eff↑,
2427- Wog,    Anti-cancer natural products isolated from chinese medicinal herbs
- Review, Var, NA
NO↓, PGE2↓, COX2↓, Ca+2↑, mtDam↑, *toxicity↓, eff↑, eff↓,
4197- Z,    The Effect of Zinc Supplementation on Circulating Levels of Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Randomized Controlled Trials
- Review, NA, NA
*BDNF↑, *other↓, *eff↑, *Inflam↓, *antiOx↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 945

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

ACTH↓, 1,   chemoPv↑, 12,   DrugR↓, 1,  

Redox & Oxidative Stress

antiOx↓, 5,   antiOx↑, 19,   ARE/EpRE↑, 1,   ATF3↑, 2,   Catalase↓, 8,   Catalase↑, 4,   compI↓, 1,   CoQ10↑, 1,   CYP1A1↓, 2,   CYP1A1↑, 1,   DJ-1↓, 1,   ENOX2↓, 2,   ENOX2↑, 1,   Fenton↑, 12,   Ferroptosis↓, 1,   Ferroptosis↑, 19,   frataxin↑, 1,   GCLM↓, 1,   GPx↓, 7,   GPx↑, 6,   GPx1↓, 1,   GPx1↑, 1,   GPx4↓, 12,   GPx4↑, 1,   GSH↓, 53,   GSH↑, 4,   GSH∅, 1,   mt-GSH↓, 1,   GSH/GSSG↓, 10,   GSR↓, 2,   GSR↑, 1,   GSSG↓, 1,   GSSG↑, 1,   ox-GSSG↑, 1,   GSTA1↓, 1,   GSTP1/GSTπ↓, 2,   GSTs↓, 3,   GSTs↑, 2,   GSTZ1∅, 1,   H2O2?, 1,   H2O2↑, 15,   e-H2O2↓, 1,   i-H2O2∅, 1,   mt-H2O2↑, 1,   HO-1↓, 11,   HO-1↑, 18,   HO-2↓, 1,   HO-2↑, 1,   hyperG↓, 1,   ICD↑, 1,   Iron↓, 1,   Iron↑, 8,   i-Iron↑, 1,   Keap1↓, 1,   Keap1↑, 1,   lipid-P?, 1,   lipid-P↓, 4,   lipid-P↑, 28,   MDA↓, 2,   MDA↑, 6,   MPO↓, 1,   NADH↑, 1,   NADHdeh?, 1,   NADPH/NADP+↓, 1,   NAF1↓, 1,   NQO1↓, 1,   NQO1↑, 4,   Nrf1↑, 2,   NRF2↓, 19,   NRF2↑, 28,   NRF2⇅, 1,   NRF2↝, 2,   NRF2∅, 1,   p‑NRF2↑, 1,   OXPHOS↓, 9,   OXPHOS↑, 4,   OXPHOS⇅, 1,   OXPHOS↝, 1,   mt-OXPHOS↑, 2,   PARK2↑, 1,   Prx3↑, 1,   Prx4↑, 1,   Prx6↑, 2,   PrxI↓, 1,   PYCR1↓, 2,   ROS?, 5,   ROS↓, 25,   ROS↑, 428,   ROS⇅, 9,   ROS↝, 3,   ROS∅, 1,   i-ROS↑, 4,   mt-ROS↑, 10,   RPM↑, 1,   SIRT3↓, 1,   SIRT3↑, 3,   SOD↓, 16,   SOD↑, 7,   SOD1↓, 3,   SOD1↑, 3,   SOD2↓, 3,   SOD2↑, 2,   Thiols↓, 2,   i-Thiols↓, 1,   Trx↓, 4,   Trx↑, 1,   Trx1↓, 1,   Trx2↓, 1,   TrxR↓, 19,   TrxR↑, 1,   TrxR1?, 1,   TrxR1↓, 5,   TrxR2↓, 1,   VitC↓, 1,   VitE↓, 1,   xCT↓, 2,  

Metal & Cofactor Biology

Ferritin↓, 5,   FTH1↓, 3,   IronCh↑, 1,   KLF5↓, 1,   NCOA4↑, 1,   Tf↓, 1,  

Mitochondria & Bioenergetics

ADP:ATP↑, 2,   AIF↑, 7,   ATP↓, 27,   ATP↑, 1,   ATP∅, 1,   i-ATP↓, 1,   i-ATP↑, 1,   mt-ATP↓, 1,   BCR-ABL↓, 1,   CDC2↓, 3,   CDC25↓, 8,   compIII↓, 1,   compIII↑, 1,   EGF↓, 3,   ETC↓, 4,   FGFR1↓, 1,   Insulin↓, 4,   MEK↓, 4,   p‑MEK↓, 1,   mitResp↓, 5,   mitResp↑, 4,   MMP?, 1,   MMP↓, 143,   MMP↑, 2,   Mortalin↓, 1,   MPT↑, 2,   mtDam↑, 19,   OCR↓, 6,   OCR↑, 2,   PGC-1α↑, 2,   PINK1↑, 1,   Raf↓, 4,   c-Raf↓, 1,   SDH↓, 3,   XIAP↓, 18,  

Core Metabolism/Glycolysis

12LOX?, 1,   12LOX↓, 3,   ACC↓, 2,   ACC↑, 3,   ACLY↓, 8,   p‑ACLY↓, 1,   ACSL4↑, 2,   adiP↑, 1,   ALAT↓, 3,   ALAT∅, 1,   AMPK↑, 26,   AMPK↝, 1,   p‑AMPK↑, 3,   ATG7↑, 2,   CAIX↓, 3,   CAIX↑, 1,   citrate↓, 2,   cMyc↓, 31,   cMyc↑, 1,   CPT1A↓, 1,   CRM↑, 1,   CYP3A4↓, 1,   ECAR↓, 6,   ECAR↝, 1,   ECAR∅, 1,   FASN↓, 7,   FASN↑, 2,   FBPase↑, 1,   GAPDH↓, 1,   GLS↓, 1,   glucoNG↑, 1,   glucose↑, 1,   GlucoseCon↓, 14,   GlucoseCon↑, 3,   GlucoseCon∅, 1,   glut↓, 1,   GlutMet↓, 1,   glyC↓, 1,   Glycolysis↓, 51,   Glycolysis↑, 2,   Glycolysis↝, 1,   Histones↝, 1,   HK2↓, 23,   HK2↑, 1,   HK2∅, 1,   HMG-CoA↓, 6,   homoC↓, 4,   homoC↝, 1,   KeyT↑, 1,   lactateProd↓, 23,   lactateProd↑, 4,   lactateProd∅, 1,   e-lactateProd↓, 1,   LAT↓, 1,   LDH?, 1,   LDH↓, 12,   LDH↑, 2,   i-LDH↓, 1,   LDHA↓, 13,   LDHA↑, 1,   LDHA∅, 1,   LDL↓, 3,   lipidLev↑, 1,   lipoGen↓, 1,   MCU↓, 1,   NAD↓, 2,   NADPH↓, 8,   NADPH↑, 3,   NH3↓, 1,   PDH↓, 3,   PDH↑, 6,   p‑PDH↓, 1,   p‑PDH↑, 1,   PDHB↓, 1,   PDK1?, 2,   PDK1↓, 10,   PDK3↑, 1,   PDKs↓, 12,   PFK↓, 7,   PFK1↓, 2,   PFK2?, 1,   PFK2↓, 1,   PFKP↓, 2,   PGK1↓, 1,   PGM1↓, 1,   PGM1∅, 1,   PI3K/Akt↓, 1,   PKM2↓, 25,   p‑PKM2↓, 1,   POLD1↓, 1,   polyA↓, 1,   PPARα↓, 2,   PPARγ↓, 1,   PPARγ↑, 3,   PPP↓, 1,   PSMB5↓, 1,   Pyruv↓, 1,   p‑S6K↓, 1,   SIRT1↓, 8,   SIRT1↑, 7,   SIRT2↓, 1,   SREBP1↓, 1,   SREBP2↓, 2,   TCA?, 1,   TCA↓, 3,   TCA↑, 1,   TS↓, 3,   Warburg↓, 12,   β-oxidation↓, 1,  

Cell Death

Akt↓, 78,   Akt↑, 9,   p‑Akt↓, 27,   p‑Akt↑, 2,   APAF1↑, 1,   Apoptosis?, 2,   Apoptosis↓, 6,   Apoptosis↑, 221,   mt-Apoptosis↑, 2,   ASK1↑, 2,   aSmase↑, 1,   BAD↑, 7,   BAD↝, 1,   Bak↑, 11,   BAX↓, 7,   BAX↑, 95,   BAX↝, 1,   Bax:Bcl2↑, 27,   Bcl-2↓, 105,   Bcl-2↑, 3,   Bcl-2∅, 1,   Bcl-xL↓, 26,   Bcl-xL↑, 1,   BID↑, 4,   BIM↑, 7,   Casp↑, 33,   Casp↝, 1,   Casp1↓, 1,   Casp12?, 1,   Casp12↑, 3,   pro‑Casp12↓, 1,   Casp2↑, 2,   Casp3↓, 5,   Casp3↑, 127,   cl‑Casp3↑, 24,   cl‑Casp3∅, 1,   proCasp3↓, 2,   proCasp3↑, 1,   pro‑Casp3↑, 1,   Casp7↑, 12,   cl‑Casp7↑, 2,   Casp8↓, 1,   Casp8↑, 21,   Casp8∅, 2,   cl‑Casp8↑, 6,   pro‑Casp8↑, 1,   Casp9↑, 71,   cl‑Casp9↑, 12,   proCasp9↓, 1,   cFLIP↓, 5,   Chk2↓, 1,   Chk2↑, 2,   CK2↓, 5,   Cupro↑, 2,   Cyt‑c↑, 85,   Cyt‑c↝, 1,   Diablo↑, 6,   DR4↑, 3,   DR4∅, 1,   DR5↑, 23,   Endon↑, 1,   FADD↑, 5,   Fap1↓, 1,   Fas↑, 12,   FasL↑, 10,   Ferroptosis↓, 1,   Ferroptosis↑, 19,   GranB↑, 1,   GSDMD↑, 2,   GSDME↑, 1,   cl‑GSDME↑, 1,   GSDME-N↑, 2,   HEY1↓, 1,   HGF/c-Met↓, 1,   Hippo↓, 1,   hTERT/TERT↓, 12,   IAP1↓, 4,   IAP2↓, 2,   cl‑IAP2↑, 1,   iNOS↓, 8,   iNOS↑, 2,   JNK↓, 2,   JNK↑, 26,   p‑JNK↓, 3,   p‑JNK↑, 7,   lysoMP↓, 1,   lysoMP↑, 1,   MAPK↓, 14,   MAPK↑, 12,   p‑MAPK↑, 3,   Mcl-1↓, 22,   Mcl-1↑, 1,   MDM2↓, 8,   p‑MDM2↓, 1,   MKP1↓, 1,   MKP2↓, 1,   MLKL↑, 3,   p‑MLKL↓, 1,   Myc↓, 4,   Myc↑, 1,   Necroptosis↑, 7,   necrosis↑, 6,   NOXA↑, 4,   p27↑, 19,   p38↓, 1,   p38↑, 21,   p‑p38↓, 1,   p‑p38↑, 9,   Paraptosis↑, 5,   Perforin↑, 1,   Proteasome?, 1,   Proteasome↓, 3,   PUMA↑, 5,   Pyro↑, 6,   RIP1↓, 2,   RIP1↑, 1,   p‑RSK↑, 1,   SK↓, 1,   survivin↓, 41,   Telomerase↓, 14,   TRAIL↑, 5,   TRPV1↑, 2,   TumCD↓, 1,   TumCD↑, 32,   TumCD∅, 1,   TUNEL↑, 1,   YAP/TEAD↓, 1,   YAP/TEAD↑, 1,  

Kinase & Signal Transduction

AMPKα↑, 3,   CaMKII ↓, 1,   cSrc↓, 1,   EF-1α↓, 1,   FOXD3↑, 1,   HER2/EBBR2↓, 8,   p70S6↓, 3,   SOX9?, 1,   SOX9↓, 1,   Sp1/3/4↓, 11,   TSC2↑, 2,  

Transcription & Epigenetics

ChrMod↝, 1,   cJun↓, 4,   cJun↑, 2,   EZH2↓, 2,   H3↓, 3,   H3↑, 2,   p‑H3↑, 1,   ac‑H3↑, 5,   H4↓, 1,   H4↑, 1,   ac‑H4↑, 4,   HATs↓, 1,   HATs↑, 2,   miR-129-5p↑, 1,   miR-21↓, 2,   miR-27a-3p↓, 1,   miR-30a-5p↑, 1,   other?, 3,   other↓, 7,   other↑, 18,   other↝, 31,   other∅, 2,   PhotoS↑, 1,   p‑pRB↓, 1,   SETBP1↓, 1,   sonoS↑, 2,   tumCV?, 1,   tumCV↓, 65,   tumCV↑, 2,   tumCV∅, 1,  

Protein Folding & ER Stress

ATF6↑, 2,   CHOP↑, 28,   cl‑CHOP↑, 1,   eIF2α↓, 1,   eIF2α↑, 6,   p‑eIF2α↑, 8,   ER Stress↓, 2,   ER Stress↑, 67,   ER Stress↝, 1,   ERStress↑, 1,   GRP78/BiP↓, 4,   GRP78/BiP↑, 20,   GRP78/BiP↝, 1,   HSF1↓, 1,   HSP27↓, 2,   HSP27↑, 1,   HSP70/HSPA5↓, 8,   HSP70/HSPA5↑, 4,   HSP90↓, 9,   ac‑HSP90↑, 1,   HSPs↓, 1,   HSPs↑, 1,   HSPs∅, 1,   IRE1↑, 5,   PERK↑, 9,   p‑PERK↓, 1,   p‑PERK↑, 1,   UPR↓, 1,   UPR↑, 13,   mt-UPR↑, 1,   XBP-1↓, 1,   XBP-1↑, 4,  

Autophagy & Lysosomes

ATG3↓, 1,   ATG3↑, 1,   ATG5↑, 4,   Beclin-1↓, 2,   Beclin-1↑, 11,   BNIP3?, 2,   BNIP3↑, 2,   LAMP2↑, 1,   LC3‑Ⅱ/LC3‑Ⅰ↑, 3,   LC3B↑, 3,   LC3B-II↑, 5,   LC3II↓, 1,   LC3II↑, 16,   LC3s↓, 1,   LC3s↑, 2,   p62↓, 9,   p62↑, 9,   p‑p62↑, 1,   SESN2↑, 1,   TFEB↑, 1,   TumAuto↓, 1,   TumAuto↑, 44,   TumAuto↝, 1,  

DNA Damage & Repair

ATM↑, 2,   BRCA1↓, 1,   CHK1↓, 3,   DNA-PK↑, 4,   DNAdam↓, 2,   DNAdam↑, 65,   mt-DNAdam↑, 1,   DNArepair↓, 1,   DNArepair↑, 1,   DNMT1↓, 8,   DNMT1↑, 1,   DNMT3A↓, 2,   DNMTs↓, 9,   m-FAM72A↓, 1,   GADD45A↑, 1,   MDMX↓, 1,   MGMT↓, 1,   p16↑, 3,   P53↓, 3,   P53↑, 56,   P53↝, 3,   P53∅, 1,   p‑P53↑, 4,   PARP↓, 5,   PARP↑, 10,   p‑PARP↑, 1,   cl‑PARP↑, 64,   cl‑PARP↝, 1,   cl‑PARP∅, 1,   proPARP↓, 1,   PARP1↑, 1,   cl‑PARP1↑, 1,   PCNA↓, 13,   SIRT6↓, 1,   SIRT6↑, 1,   TP53↓, 3,   TP53↑, 2,   UHRF1↓, 1,   γH2AX↑, 8,   p‑γH2AX↑, 3,  

Cell Cycle & Senescence

CDK1↓, 9,   p‑CDK1↓, 1,   p‑CDK1↑, 1,   CDK2↓, 22,   p‑CDK2↓, 1,   CDK4↓, 34,   CDK4↑, 3,   Cyc↓, 2,   cycA1/CCNA1↓, 9,   cycA1/CCNA1↑, 2,   CycB/CCNB1↓, 15,   CycB/CCNB1↑, 4,   cycD1/CCND1↓, 59,   cycD1/CCND1↑, 1,   CycD3↓, 2,   CycD3↑, 1,   cycE/CCNE↓, 19,   cycE/CCNE↑, 1,   cycE1↓, 1,   E2Fs↓, 1,   p19↑, 1,   P21?, 2,   P21↓, 2,   P21↑, 48,   RB1↑, 2,   p‑RB1↓, 6,   Securin↓, 1,   TumCCA?, 2,   TumCCA↓, 5,   TumCCA↑, 153,  

Proliferation, Differentiation & Cell State

ALDH↓, 6,   ALDH1A1↓, 3,   BMI1↓, 2,   CD133↓, 5,   CD24↓, 2,   CD34↓, 1,   CD44↓, 9,   cDC2↓, 2,   CDK8↓, 1,   cFos↓, 4,   cFos↑, 1,   cMET↓, 2,   cMYB↓, 2,   CSCs↓, 41,   CSCs↑, 1,   CSCsMark↓, 2,   CTNNB1↓, 1,   Diff↓, 3,   Diff↑, 2,   EMT↓, 45,   EMT↑, 2,   ERK↓, 24,   ERK↑, 9,   p‑ERK↓, 11,   p‑ERK↑, 5,   e-ERK↑, 1,   FOXM1↓, 2,   FOXO↑, 1,   FOXO1↑, 2,   FOXO3↓, 3,   FOXO3↑, 7,   FOXO4↓, 1,   FOXO4↑, 1,   Gli↓, 1,   Gli1↓, 3,   GSK‐3β↓, 8,   GSK‐3β↑, 3,   p‑GSK‐3β↓, 3,   p‑GSK‐3β↑, 1,   H3K27ac∅, 1,   HDAC↓, 37,   HDAC1↓, 6,   HDAC10↓, 1,   HDAC10↑, 1,   HDAC2↓, 4,   HDAC3↓, 4,   HDAC8↓, 2,   HH↓, 4,   HMGCR↑, 1,   HMGCR⇅, 1,   HMTs↓, 1,   IGF-1?, 1,   IGF-1↓, 19,   IGF-1↑, 1,   IGF-1↝, 1,   IGF-1R↓, 4,   IGF-1R↑, 1,   p‑IGF-1R↓, 1,   IGFBP1↑, 2,   IGFBP3↑, 4,   IGFR↓, 1,   KLF4↓, 1,   Let-7↑, 2,   miR-34a↑, 1,   mTOR↓, 46,   mTOR↑, 3,   mTOR⇅, 1,   mTOR↝, 1,   p‑mTOR↓, 9,   mTORC1↓, 5,   p‑mTORC1↓, 1,   mTORC2↓, 1,   mTORC2↑, 1,   n-MYC↓, 1,   Nanog↓, 9,   Nestin↓, 3,   NOTCH↓, 4,   NOTCH1↓, 6,   NOTCH1↑, 3,   NOTCH3↓, 3,   OCT4↓, 7,   P70S6K↓, 2,   p‑P70S6K↓, 2,   p85S6K↓, 1,   P90RSK↓, 1,   PI3K↓, 51,   PI3K↑, 7,   p‑PI3K↓, 2,   Piezo1↑, 1,   PTCH1↓, 1,   PTEN↓, 1,   PTEN↑, 20,   p‑PTEN↓, 1,   RAS↓, 5,   SAL↑, 1,   Shh↓, 4,   SHP1↑, 1,   Smo↓, 2,   SOX2↓, 6,   Src↓, 1,   p‑Src↓, 1,   STAT↓, 2,   STAT1↓, 1,   STAT3↓, 44,   STAT3⇅, 1,   p‑STAT3↓, 14,   p‑STAT3↑, 2,   mt-STAT3↓, 1,   STAT4↓, 1,   STAT5↓, 1,   STAT6↓, 2,   p‑STAT6↓, 1,   TCF↓, 1,   TCF↑, 1,   TCF-4↓, 2,   TOP1↓, 4,   TOP1↑, 1,   TOP2↓, 3,   TOP2↑, 2,   TumCG↓, 104,   TumCG↑, 4,   TumCG∅, 1,   VDR↑, 1,   Wnt?, 1,   Wnt↓, 21,   Wnt↑, 1,   Wnt/(β-catenin)↓, 2,  

Migration

5LO↓, 1,   Akt2↓, 1,   annexin II↓, 1,   AntiAg↓, 1,   AntiAg↑, 5,   AP-1↓, 8,   ATPase↓, 1,   AXL↓, 2,   CA↓, 1,   Ca+2↓, 6,   Ca+2↑, 38,   Ca+2↝, 4,   i-Ca+2?, 1,   i-Ca+2↓, 1,   i-Ca+2↑, 2,   CAFs/TAFs↓, 2,   cal2↑, 1,   Cdc42↓, 3,   Cdc42↑, 1,   CDKN1C↑, 1,   CEA↓, 1,   Chl∅, 1,   CLDN1↓, 3,   CLDN2↓, 2,   CLDN2↑, 1,   CXCL12↓, 2,   E-cadherin↓, 5,   E-cadherin↑, 29,   ER-α36↓, 3,   FAK↓, 8,   p‑FAK↓, 3,   p‑FAK↑, 1,   Fibronectin↓, 4,   FOSB↑, 1,   GLI2↓, 3,   ITGA1∅, 1,   ITGA5∅, 1,   ITGB1↓, 2,   ITGB1∅, 1,   ITGB3↓, 1,   ITGB3∅, 1,   ITGB4↓, 1,   ITGB4∅, 1,   Ki-67↓, 17,   Ki-67↑, 1,   KLF2↓, 1,   KRAS↓, 1,   L-sel↑, 1,   LAMP1?, 1,   LAMs↓, 1,   LEF1↓, 1,   MALAT1↓, 2,   MET↓, 3,   p‑MET↓, 1,   miR-139-5p↑, 1,   miR-155↓, 1,   miR-200b↑, 1,   miR-200c↑, 1,   miR-203↑, 1,   miR-22↑, 1,   MMP-10↓, 1,   MMP1↓, 6,   MMP13↓, 2,   MMP2↓, 48,   MMP2↑, 1,   MMP2⇅, 1,   MMP2∅, 1,   proMMP2↓, 1,   MMP3↓, 3,   MMP7↓, 10,   MMP9↓, 52,   MMP9↑, 2,   MMP9⇅, 1,   MMP9∅, 1,   MMPs↓, 22,   MUC1↑, 1,   MUC4↓, 1,   N-cadherin↓, 15,   NEDD9↓, 1,   PAK1↓, 1,   PDGF↓, 3,   PKA↓, 2,   PKCδ↓, 4,   Rac1↓, 2,   RECK↑, 1,   Rho↓, 7,   RIP3↑, 3,   p‑RIP3↑, 2,   ROCK1↓, 4,   Slug↓, 7,   Smad1↓, 1,   SMAD2↓, 1,   SMAD3↓, 3,   Snail?, 1,   Snail↓, 18,   SOX4↓, 1,   SOX4↑, 1,   SPARC↑, 1,   STAC2↓, 1,   TET1↑, 4,   TGF-β↓, 12,   TGF-β↑, 1,   TGF-β1↓, 1,   TIMP1↓, 1,   TIMP1↑, 3,   TIMP2↑, 4,   Treg lymp↓, 2,   TSC1↑, 1,   TSP-1↑, 3,   TumCA↓, 2,   TumCI?, 1,   TumCI↓, 45,   TumCMig↓, 48,   TumCMig↑, 2,   TumCP↓, 116,   TumCP↑, 5,   TumCP∅, 2,   TumMeta↓, 39,   TumMeta↑, 3,   Twist↓, 13,   Tyro3↓, 1,   uPA↓, 14,   uPAR↓, 2,   VCAM-1↓, 2,   Vim?, 1,   Vim↓, 21,   Vim↑, 1,   Zeb1↓, 12,   Zeb1↑, 1,   ZEB2↓, 2,   ZO-1↑, 2,   α-SMA↓, 1,   α-tubulin↓, 1,   β-catenin/ZEB1↓, 30,   β-catenin/ZEB1↑, 1,  

Angiogenesis & Vasculature

angioG↓, 71,   angioG↑, 3,   ATF4↓, 1,   ATF4↑, 12,   ATF4↝, 1,   ECM/TCF↓, 1,   EGFR↓, 23,   EGFR↑, 1,   EGR1↑, 1,   Endoglin↑, 1,   eNOS↓, 2,   eNOS↑, 1,   EPR↑, 6,   EPR↝, 1,   HIF-1↓, 3,   Hif1a↓, 50,   Hif1a↑, 4,   LOX1↓, 1,   NO↓, 5,   NO↑, 8,   PDGFR-BB↓, 1,   p‑PDGFR-BB↓, 1,   PHDs↓, 1,   VEGF↓, 64,   VEGFR2↓, 11,   ZBTB10↑, 1,  

Barriers & Transport efflux, tissue protection, and" style="cursor:help;color:#555;font-weight:normal;">ⓘ

BBB↑, 6,   CellMemb↓, 1,   CellMemb↑, 3,   CTR1↑, 1,   GLUT1↓, 16,   GLUT1↑, 2,   GLUT3↓, 2,   GLUT3↑, 1,   NHE1↓, 2,   P-gp↓, 11,   SLC12A5↓, 2,   SMCT1∅, 1,   sonoP↑, 2,  

Immune & Inflammatory Signaling

ASC↓, 1,   CCR7↓, 1,   CD14↓, 1,   CD4+↓, 1,   CD4+↑, 4,   COX1↓, 3,   COX2↓, 51,   COX2↑, 4,   CR3↝, 1,   CRP↓, 2,   CXCR4↓, 13,   FOXP3↓, 1,   ICAM-1↓, 2,   IFN-γ↓, 1,   IFN-γ↑, 3,   Igs↑, 2,   IKKα↓, 7,   IKKα↑, 3,   p‑IKKα↓, 1,   IL1↓, 3,   IL1↑, 3,   IL10↓, 5,   IL10↑, 3,   IL12↓, 1,   IL1α↓, 1,   IL1β↓, 14,   IL1β↑, 1,   IL2↓, 1,   IL2↑, 5,   IL4↓, 3,   IL4↑, 1,   IL6↓, 29,   IL8↓, 8,   IL8↑, 1,   Imm↑, 4,   INF-γ↑, 1,   Inflam↓, 24,   IRAK4↓, 1,   IκB↑, 2,   p‑IκB↓, 1,   JAK↓, 3,   JAK1?, 1,   p‑JAK1↓, 1,   JAK2↓, 9,   p‑JAK2↓, 3,   pol-M1↑, 1,   M2 MC↓, 3,   pol-M2 MC↓, 1,   MCP1↓, 3,   MIP2↓, 1,   NF-kB↓, 93,   NF-kB↑, 6,   NK cell↑, 9,   p50↓, 1,   p65↓, 8,   p‑p65↓, 1,   PD-1↓, 2,   PD-L1↓, 9,   PD-L1↑, 3,   PDT+↓, 1,   PGE1↓, 1,   PGE2↓, 15,   PSA↓, 10,   PSA∅, 1,   T-Cell↑, 4,   T-Cell↝, 1,   Th1 response↑, 3,   Th2↑, 1,   TLR1↑, 1,   TLR2↓, 1,   TLR4↓, 5,   TNF-α↓, 17,   TNF-α↑, 3,  

Cellular Microenvironment

ADAM17↓, 1,   pH↓, 2,   pH↑, 1,   pH↝, 1,   pH∅, 1,   e-pH↓, 1,   TIM-3↑, 1,  

Synaptic & Neurotransmission

5HT↓, 3,  

Protein Aggregation

NLRP3↓, 2,   NLRP3↑, 1,  

Hormonal & Nuclear Receptors

AR↓, 17,   CDK6↓, 13,   CDK6↑, 3,   COMT↓, 2,   CYP11A1↓, 1,   CYP19↓, 1,   ER(estro)↓, 2,   ERα/ESR1↓, 1,   GR↓, 1,   GR↑, 1,   RANKL↓, 2,   SXR↑, 1,  

Drug Metabolism & Resistance efflux pumps, and resistance mechanisms. It is essential for understandin" style="cursor:help;color:#555;font-weight:normal;">ⓘ

ABC↓, 1,   BioAv↓, 33,   BioAv↑, 45,   BioAv↝, 9,   BioAv∅, 1,   BioEnh?, 1,   BioEnh↑, 8,   chemoR↓, 2,   ChemoSen↓, 5,   ChemoSen↑, 149,   ChemoSen⇅, 2,   ChemoSen↝, 1,   CYP1A2↓, 1,   CYP2C9↓, 1,   Dose?, 12,   Dose↓, 7,   Dose↑, 19,   Dose⇅, 1,   Dose↝, 58,   Dose∅, 38,   eff?, 2,   eff↓, 265,   eff↑, 747,   eff⇅, 2,   eff↝, 84,   eff∅, 9,   Half-Life↓, 11,   Half-Life↑, 2,   Half-Life↝, 12,   Half-Life∅, 3,   MDR1↓, 6,   MRP1↓, 2,   P450↓, 3,   RadioS↓, 1,   RadioS↑, 70,   RadioS∅, 1,   selectivity?, 2,   selectivity↓, 3,   selectivity↑, 152,   selectivity↝, 1,   selectivity∅, 1,   TET2↑, 3,  

Clinical Biomarkers

AFP↓, 2,   ALAT↓, 3,   ALAT∅, 1,   ALP↓, 3,   AR↓, 17,   ascitic↓, 1,   AST↓, 2,   AST∅, 1,   BG↓, 7,   BMD↑, 2,   BP↓, 1,   BRCA1↓, 1,   CA125↓, 1,   CEA↓, 1,   CRP↓, 2,   E6↓, 3,   E7↓, 3,   EGFR↓, 23,   EGFR↑, 1,   ERα/ESR1↓, 1,   EZH2↓, 2,   Ferritin↓, 5,   FOXM1↓, 2,   GutMicro↑, 7,   GutMicro↝, 3,   HER2/EBBR2↓, 8,   hTERT/TERT↓, 12,   IL6↓, 29,   Ki-67↓, 17,   Ki-67↑, 1,   KRAS↓, 1,   LDH?, 1,   LDH↓, 12,   LDH↑, 2,   i-LDH↓, 1,   Myc↓, 4,   Myc↑, 1,   NOS2↓, 1,   NSE↓, 1,   PD-L1↓, 9,   PD-L1↑, 3,   PSA↓, 10,   PSA∅, 1,   TP53↓, 3,   TP53↑, 2,  

Functional Outcomes effects. It is intentionally mechanism-agnostic and " style="cursor:help;color:#555;font-weight:normal;">ⓘ

AntiAge↑, 1,   AntiCan↓, 2,   AntiCan↑, 60,   AntiCan?, 1,   AntiCan∅, 2,   antiNeop↑, 1,   AntiTum↓, 2,   AntiTum↑, 21,   cachexia↓, 2,   cardioP↑, 8,   CardioT↓, 3,   chemoP↑, 33,   chemoP↝, 1,   ChemoSideEff↓, 20,   cognitive↑, 4,   hepatoP↓, 1,   hepatoP↑, 6,   memory↑, 1,   NDRG1↑, 1,   neuroP↑, 11,   NKG2D↑, 1,   OS↓, 1,   OS↑, 41,   PARP16↓, 1,   PDE4↓, 1,   QoL↑, 7,   QoL∅, 1,   radioP↑, 15,   radioP↝, 1,   Remission↑, 3,   RenoP↑, 5,   Risk↓, 33,   Risk↑, 2,   Risk∅, 1,   Strength∅, 1,   toxicity↓, 17,   toxicity↑, 4,   toxicity↝, 9,   toxicity∅, 11,   TumVol↓, 35,   TumW↓, 16,   Weight↑, 3,   Weight∅, 3,  

Infection & Microbiome effects. It future-proofs the ontology for infectious disease, im" style="cursor:help;color:#555;font-weight:normal;">ⓘ

Bacteria↓, 2,   CD8+↑, 8,   Sepsis↓, 2,  
Total Targets: 1092

Pathway results for Effect on Normal Cells:


NA, unassigned

chemoPv↑, 2,  

Redox & Oxidative Stress

antiOx?, 1,   antiOx↓, 6,   antiOx↑, 84,   mt-antiOx↑, 1,   Bil↓, 1,   Catalase↓, 1,   Catalase↑, 32,   Copper↓, 1,   Fenton↓, 1,   Ferroptosis↓, 4,   GPx↑, 23,   GPx1↑, 2,   GPx4↓, 1,   GPx4↑, 3,   GPx4∅, 1,   GSH↓, 4,   GSH↑, 44,   GSR↑, 5,   GSSG↓, 1,   GSSG∅, 1,   GSTA1↓, 2,   GSTs↑, 9,   H2O2↓, 2,   H2O2↑, 1,   H2O2∅, 1,   HDL↑, 3,   HDL∅, 1,   HNE↓, 1,   HO-1↑, 25,   HO-1↝, 1,   HO-1∅, 1,   Iron↓, 2,   Keap1↓, 3,   lipid-P↓, 24,   lipid-P↑, 1,   mt-lipid-P↓, 1,   MDA↓, 20,   MDA↑, 2,   MDA∅, 1,   Mets↝, 1,   MPO↓, 5,   MPO↑, 1,   NOX4↓, 1,   NQO1↑, 5,   Nrf1↑, 1,   NRF2↓, 3,   NRF2↑, 48,   NRF2⇅, 1,   NRF2∅, 1,   OXPHOS↑, 1,   PARK2↑, 2,   Prx↑, 2,   RNS↓, 1,   ROS?, 3,   ROS↓, 112,   ROS↑, 10,   ROS⇅, 3,   ROS∅, 7,   mt-ROS↑, 2,   SAM-e↑, 1,   selenoP↑, 5,   SOD↓, 2,   SOD↑, 50,   SOD1↑, 2,   SOD2↑, 2,   TAC↑, 2,   TBARS↓, 1,   Trx↑, 3,   TrxR↑, 1,   uricA↓, 1,   VitC↑, 2,   VitE↑, 1,  

Metal & Cofactor Biology

IronCh↑, 8,   NCOA4↝, 1,  

Mitochondria & Bioenergetics

ATP↓, 1,   ATP↑, 8,   ATP↝, 1,   Insulin↓, 2,   Insulin↑, 1,   mitResp↑, 2,   MMP↓, 2,   MMP↑, 8,   MMP∅, 2,   MPT↑, 1,   mtDam↓, 3,   OCR↑, 1,   mt-OCR↑, 1,   PGC-1α↑, 4,   PINK1↑, 1,  

Core Metabolism/Glycolysis

12LOX↓, 3,   ACC↓, 1,   ACSL4∅, 1,   adiP↓, 1,   adiP↑, 2,   ALAT↓, 7,   AMPK↓, 1,   AMPK↑, 7,   BUN↓, 1,   cAMP↑, 1,   p‑cMyc↑, 1,   CREB↑, 2,   CYP3A2↓, 1,   ECAR↓, 1,   ECAR↑, 1,   mt-FAO↑, 1,   FASN↓, 1,   glucose↓, 4,   glucose↑, 1,   GlucoseCon↑, 5,   Glycolysis↓, 1,   H2S↑, 1,   homoC↓, 1,   KeyT↑, 3,   lactateProd↓, 1,   LDH↓, 5,   LDH↑, 1,   LDH∅, 1,   LDL↓, 7,   lipidLev↓, 1,   NAD↑, 2,   NAD↝, 1,   NADH:NAD↑, 1,   NADPH↓, 1,   NH3↓, 1,   PKM2↓, 2,   PONs↑, 1,   PPARγ↓, 2,   PPARγ↑, 3,   p‑PPARγ↓, 1,   SCD1↓, 1,   SIRT1↓, 1,   SIRT1↑, 9,   SIRT2↑, 1,  

Cell Death

Akt↓, 5,   Akt↑, 5,   e-Akt↑, 1,   Apoptosis↓, 9,   Apoptosis∅, 2,   ASK1↓, 1,   BAX↓, 5,   BAX↑, 3,   Bax:Bcl2↓, 3,   Bcl-2↓, 2,   Bcl-2↑, 1,   Bcl-2∅, 1,   Bcl-xL↓, 1,   BMP2↑, 1,   Casp12↓, 1,   Casp3?, 1,   Casp3↓, 9,   Casp3↑, 2,   Casp3∅, 1,   cl‑Casp3↓, 2,   cl‑Casp8↑, 1,   Casp9↓, 3,   Casp9↑, 1,   Cyt‑c↓, 3,   Cyt‑c↑, 3,   Cyt‑c∅, 3,   Ferroptosis↓, 4,   HEY1↑, 1,   iNOS↓, 11,   iNOS↑, 1,   JNK↓, 2,   JNK↑, 1,   MAPK↓, 7,   MAPK↑, 6,   necrosis↓, 1,   p38↑, 2,  

Kinase & Signal Transduction

AMPKα↑, 1,   SOX9↑, 1,  

Transcription & Epigenetics

Ach?, 1,   Ach↑, 4,   AntiThr↑, 1,   other?, 2,   other↓, 8,   other↑, 27,   other↝, 21,   other∅, 1,   tumCV∅, 1,  

Protein Folding & ER Stress

CHOP↓, 1,   CHOP↑, 1,   cl‑eIF2α↑, 1,   ER Stress↓, 6,   GRP78/BiP↓, 2,   GRP78/BiP↑, 2,   HSF1↑, 2,   HSP70/HSPA5↑, 1,   HSP70/HSPA5↝, 1,   HSPs↑, 2,   IRE1↓, 1,   p‑PERK↑, 1,   UPR↓, 1,   UPR↑, 1,  

Autophagy & Lysosomes

LC3II↑, 1,   MitoP↓, 1,   MitoP↑, 2,   p62↓, 1,   p62↑, 2,  

DNA Damage & Repair

DNAdam↓, 7,   DNArepair↑, 1,   GADD45A↑, 1,   p‑γH2AX↓, 1,  

Cell Cycle & Senescence

E2Fs↑, 1,  

Proliferation, Differentiation & Cell State

Choline↑, 1,   Diff↑, 4,   EMT↑, 1,   ERK↓, 1,   ERK↑, 6,   e-ERK↑, 1,   FGF↑, 1,   FOXO↑, 1,   GSK‐3β↓, 4,   p‑GSK‐3β↑, 1,   HDAC↓, 2,   IGF-1↓, 2,   IGF-1↑, 2,   IGFBP1↑, 1,   IGFBP3↑, 1,   Mst1↓, 1,   mTOR↓, 3,   mTOR↑, 2,   mTOR↝, 1,   p‑mTOR↑, 1,   neuroG↑, 1,   NOTCH↑, 1,   PI3K↓, 5,   PI3K↑, 3,   PTEN↓, 2,   PTEN↑, 1,   RAS↓, 1,   Src↓, 1,   STAT↓, 1,   STAT3↓, 1,   TumCG∅, 1,   VGCC↑, 1,   Wnt↑, 2,  

Migration

5LO↓, 2,   AntiAg↑, 7,   AP-1↓, 3,   APP↓, 2,   ARG↑, 1,   Ca+2?, 1,   Ca+2↓, 3,   Ca+2↑, 5,   Ca+2↝, 4,   cal2↓, 1,   Cartilage↑, 3,   CLDN1↝, 1,   COL2A1↑, 1,   F-actin↑, 1,   FAK↑, 2,   MMP2↓, 3,   MMP2↑, 2,   MMP9↓, 6,   MMP9↑, 2,   MMPs↓, 4,   PKA↑, 2,   PKCδ?, 1,   PKCδ↓, 3,   PKCδ↑, 2,   RAGE↓, 1,   serineP↓, 1,   SMAD3↓, 1,   TGF-β↓, 3,   TGF-β↑, 3,   TIMP1↓, 1,   TIMP1↑, 1,   TumCP↓, 1,   VCAM-1↓, 3,   ZO-1↝, 1,   α-SMA↝, 1,   β-catenin/ZEB1↑, 2,   β-Endo↑, 1,  

Angiogenesis & Vasculature

angioG↓, 3,   angioG↑, 3,   eNOS↓, 1,   eNOS↑, 1,   Hif1a↓, 2,   Hif1a↑, 1,   Hif1a∅, 1,   NO↓, 8,   NO↑, 5,   VEGF↓, 1,   VEGF↑, 6,  

Barriers & Transport efflux, tissue protection, and" style="cursor:help;color:#555;font-weight:normal;">ⓘ

BBB↓, 2,   BBB↑, 23,   GLUT1↑, 2,   GLUT3↑, 1,   GLUT4↑, 2,  

Immune & Inflammatory Signaling

COX1↓, 1,   COX2↓, 21,   CRP↓, 8,   CTSZ↓, 1,   HMGB1↓, 1,   ICAM-1↓, 2,   IFN-γ↓, 1,   IFN-γ↑, 1,   IL1↓, 3,   IL10↓, 1,   IL10↑, 5,   IL12↓, 1,   IL17↓, 2,   IL18↓, 1,   IL1α↓, 1,   IL1β↓, 23,   IL1β↑, 1,   IL2↓, 4,   IL33↓, 1,   IL4↑, 1,   IL5↑, 1,   IL6↓, 31,   IL6↑, 2,   IL8↓, 5,   Imm↑, 2,   INF-γ↓, 1,   Inflam?, 1,   Inflam↓, 94,   Inflam↑, 3,   MCP1↓, 2,   MCP1↑, 1,   MIP‑1α↓, 1,   MyD88↓, 1,   NF-kB↓, 28,   NF-kB↑, 1,   p65↓, 1,   PGE2↓, 8,   TLR2↓, 2,   TLR4↓, 3,   TLR4↑, 1,   TNF-α↓, 43,   VitD↑, 2,  

Cellular Microenvironment

pH↝, 2,  

Synaptic & Neurotransmission

5HT↓, 1,   5HT↑, 2,   AChE↓, 8,   AChE∅, 1,   ADAM10↑, 1,   BChE↓, 3,   BDNF↑, 14,   BrainVol↑, 1,   ChAT↑, 1,   GABA↑, 3,   GABA↝, 1,   MAOA↓, 1,   tau↓, 3,   p‑tau↓, 8,   TrkB↑, 2,  

Protein Aggregation

AGEs↓, 1,   Aβ↓, 23,   BACE↓, 5,   IDE↑, 1,   NLRP3↓, 4,   PP2A↑, 1,   β-Amyloid↓, 1,  

Hormonal & Nuclear Receptors

GR↑, 2,   testos↑, 2,  

Drug Metabolism & Resistance efflux pumps, and resistance mechanisms. It is essential for understandin" style="cursor:help;color:#555;font-weight:normal;">ⓘ

BioAv?, 1,   BioAv↓, 32,   BioAv↑, 47,   BioAv↝, 16,   BioEnh↑, 6,   Dose↓, 2,   Dose↑, 6,   Dose↝, 38,   Dose∅, 2,   eff?, 1,   eff↓, 26,   eff↑, 194,   eff↝, 18,   Half-Life↓, 3,   Half-Life↑, 5,   Half-Life↝, 9,   Half-Life∅, 3,   P450↓, 2,   selectivity↑, 3,  

Clinical Biomarkers

ALAT↓, 7,   ALP↓, 3,   ALP↑, 1,   AST↓, 9,   BG↓, 1,   Bil↓, 1,   BloodF↑, 1,   BMD↑, 7,   BMPs↑, 1,   BP↓, 8,   BP↝, 1,   BP∅, 1,   Calcium↑, 1,   creat↓, 4,   CRP↓, 8,   GutMicro↑, 9,   GutMicro↝, 1,   hs-CRP↓, 1,   IL6↓, 31,   IL6↑, 2,   LDH↓, 5,   LDH↑, 1,   LDH∅, 1,   Mag↑, 1,   NOS2↓, 1,   RAGE↓, 1,   VitD↑, 2,  

Functional Outcomes effects. It is intentionally mechanism-agnostic and " style="cursor:help;color:#555;font-weight:normal;">ⓘ

AntiAge↑, 5,   AntiCan↑, 6,   AntiDiabetic↑, 3,   AntiTum↑, 1,   BOLD↑, 2,   Bone Healing↑, 1,   cardioP↓, 1,   cardioP↑, 28,   CardioT↓, 3,   chemoP↑, 8,   ChemoSideEff↓, 1,   cognitive?, 1,   cognitive↑, 48,   cognitive↝, 1,   hepatoP↑, 19,   memory↓, 1,   memory↑, 37,   Mood↑, 7,   motorD↓, 1,   motorD↑, 12,   neuroP↓, 1,   neuroP↑, 66,   Obesity↓, 1,   OS↓, 1,   OS↑, 5,   Pain↓, 3,   QoL↑, 2,   radioP↑, 6,   RenoP↑, 13,   Risk↓, 10,   Risk↑, 1,   Sleep↑, 1,   Strength↑, 3,   toxicity?, 2,   toxicity↓, 46,   toxicity↑, 4,   toxicity↝, 8,   toxicity∅, 32,   Weight↓, 3,   Weight∅, 1,   Wound Healing↑, 4,  

Infection & Microbiome effects. It future-proofs the ontology for infectious disease, im" style="cursor:help;color:#555;font-weight:normal;">ⓘ

AntiFungal↑, 1,   AntiViral↑, 2,   Bacteria↓, 13,   Inf↓, 1,   IRF3↓, 1,   Sepsis↓, 5,  
Total Targets: 451

Scientific Paper Hit Count for: eff, efficacy
59 Silver-NanoParticles
54 Magnetic Fields
43 Sulforaphane (mainly Broccoli)
40 Selenium
35 Vitamin C (Ascorbic Acid)
31 Thymoquinone
29 Curcumin
25 Chemotherapy
25 Piperlongumine
25 Shikonin
21 Baicalein
21 EGCG (Epigallocatechin Gallate)
20 Resveratrol
20 Copper and Cu NanoParticlex
19 Berberine
18 Ashwagandha(Withaferin A)
17 Phenylbutyrate
16 Apigenin (mainly Parsley)
16 Dichloroacetate
16 diet FMD Fasting Mimicking Diet
16 Quercetin
16 Magnetic Field Rotating
15 Artemisinin
15 Lycopene
14 Radiotherapy/Radiation
14 Propolis -bee glue
13 Gambogic Acid
12 Citric Acid
12 Exercise
11 Folic Acid
11 immunotherapy
11 salinomycin
11 Fisetin
11 Phenethyl isothiocyanate
11 Rosmarinic acid
10 Alpha-Lipoic-Acid
10 Luteolin
10 Metformin
10 Betulinic acid
10 chitosan
10 Vitamin K2
10 Honokiol
10 VitK3,menadione
9 Boron
9 Ellagic acid
9 SonoDynamic Therapy UltraSound
9 Silymarin (Milk Thistle) silibinin
9 Disulfiram
9 Hydrogen Gas
9 Urolithin
8 Melatonin
8 Vitamin D3
8 Chrysin
8 diet Methionine-Restricted Diet
8 doxorubicin
8 Parthenolide
7 Gold NanoParticles
7 Capsaicin
6 5-fluorouracil
6 Coenzyme Q10
6 Vitamin B12
6 Allicin (mainly Garlic)
6 Photodynamic Therapy
6 Caffeic acid
6 Fenbendazole
6 HydroxyCitric Acid
5 Atorvastatin
5 Boswellia (frankincense)
5 Piperine
5 diet Plant based
5 MCToil
5 Magnolol
5 Moringa oleifera
4 Andrographis
4 Dipyridamole
4 Cisplatin
4 Juglone
4 Hyperthermia
4 Propyl gallate
4 Pterostilbene
4 Whole Body Vibration
3 2-DeoxyGlucose
3 Anthocyanins
3 Anti-oxidants
3 Aspirin -acetylsalicylic acid
3 Auranofin
3 Lutein
3 Zeaxanthin
3 Bortezomib
3 Chlorogenic acid
3 diet Short Term Fasting
3 Ginseng
3 Lecithin
3 Naringin
3 Plumbagin
3 Radio Frequency
3 Spermidine
3 Taurine
3 Vitamin B1/Thiamine
2 3-bromopyruvate
2 5-Aminolevulinic acid
2 Gemcitabine (Gemzar)
2 Aromatherapy
2 Docetaxel
2 Astaxanthin
2 Butyrate
2 Baicalin
2 beta-carotene(VitA)
2 Caffeine
2 Choline
2 Oxygen, Hyperbaric
2 Emodin
2 erastin
2 ferumoxytol
2 temozolomide
2 Kaempferol
2 hydroxychloroquine
2 Genistein (soy isoflavone)
2 γ-linolenic acid (Borage Oil)
2 Orlistat
2 Potassium
2 Methylene blue
2 metronomic chemo
2 Methylsulfonylmethane
2 Mushroom Lion’s Mane
2 nicotinamide adenine dinucleotide
2 Nimbolide
2 Phosphatidylserine
2 Glucose
2 Zinc
1 Serotonin, 5-hydroxytryptamine
1 dietMediterranean
1 Amodiaquine
1 Vitamin A, Retinoic Acid
1 Sorafenib (brand name Nexavar)
1 almonertinib
1 D-limonene
1 Huperzine A/Huperzia serrata
1 Biochanin A
1 Rutin
1 urea
1 Carnosine
1 Cinnamon
1 chemodynamic therapy
1 Black phosphorus
1 Dichloroacetophenone(2,2-)
1 Date Fruit Extract
1 diet Fermented Foods
1 diet Ketogenic
1 Calorie Restriction Mimetics
1 PXD, phenoxodiol
1 Ferulic acid
1 Vitamin E
1 flavonoids
1 Flickering Light Stimulation
1 verapamil
1 Garcinol
1 tamoxifen
1 Hydroxycinnamic-acid
1 HydroxyTyrosol
1 itraconazole
1 Laetrile B17 Amygdalin
1 lambertianic acid
1 Docosahexaenoic Acid
1 Matrine
1 Methyl Jasmonate
1 capecitabine
1 methotrexate
1 Magnesium
1 Methylglyoxal
1 Mushroom Reishi
1 Myricetin
1 Oleocanthal
1 sericin
1 Paclitaxel
1 borneol
1 Psoralidin
1 Oxaliplatin
1 Scoulerine
1 polyethylene glycol
1 Formononetin
1 acetaminophen
1 acetazolamide
1 Iron
1 Resiquimod
1 Trichostatin A
1 Anzaroot, Astragalus fasciculifolius Bioss
1 Squalene
1 statins
1 triptolide
1 Tumor Treating Fields
1 Ursolic acid
1 Vitamin B3,Niacin
1 Vitamin B5,Pantothenic Acid
1 Vitamin B6,pyridoxine
1 Arsenic trioxide
1 Wogonin
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:961  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page