Database Query Results : , , HDAC2

HDAC2, Histone Deacetylase 2: Click to Expand ⟱
Source:
Type:
HDAC2 is a member of the class I histone deacetylase family that removes acetyl groups from lysine residues on histone proteins.

• This deacetylation usually promotes chromatin compaction, leading to transcriptional repression of genes involved in cell differentiation, apoptosis, and cell cycle regulation.
HDAC2, along with its relatives HDAC1 and others, is often found as part of multiprotein corepressor complexes that regulate gene expression in both normal and cancer cells.

2. Role of HDAC2 in Cancer
• Overexpression and Dysregulation:
– In several types of cancer, HDAC2 is overexpressed or dysregulated, contributing to an altered transcriptional profile.
– Elevated HDAC2 levels can lead to the suppression of tumor suppressor genes and genes involved in cell-cycle checkpoints or apoptosis, facilitating tumor progression.

• Impact on the Tumor Microenvironment:
HDAC2 activity influences not only tumor cells but also the surrounding stromal and immune cells, affecting inflammatory responses and immune evasion strategies.


Scientific Papers found: Click to Expand⟱
1224- BA,    Intratumor microbiome-derived butyrate promotes lung cancer metastasis
- in-vivo, Lung, NA
TumCG↑, H19↑, HDAC2↓,
3233- EGCG,    Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways
- in-vitro, Cerv, HeLa
DNMTs↓, DNMT1↓, DNMT3A↓, HDAC2↓, HDAC3↓, HDAC4↓, EZH2↓, PI3K↓, Wnt↓, MAPK↓, hTERT/TERT↓, MMP2↓, MMP7↓, IL6↓, MDM2↓, MMP-10↓, TP53↑, PTEN↑,
1065- GA,    Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression
- vitro+vivo, Pca, NA
tumCV↓, MMP↓, DNAdam↑, HDAC1↓, HDAC2↓, PCNA↓, cycD1/CCND1↓, cycE1↓, P21↑, TumVol↓,
1435- GEN,  SFN,    The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
DNMTs↓, HDAC↓, eff↑, TumCCA↑, HMTs↓, HDAC2↓, HDAC3↓, KLF4↓, hTERT/TERT↓,
4293- LT,    HDAC2-and-Tau?redirectedFrom=fulltext">Regulatory Role of NF-κB on HDAC2 and Tau Hyperphosphorylation in Diabetic Encephalopathy and the Therapeutic Potential of Luteolin
- in-vivo, Diabetic, NA
*Inflam↓, *antiOx↑, *neuroP↑, *cognitive↑, *p‑mTOR↓, *p‑NF-kB↓, *HDAC2↓, *BDNF↑, *other↓, *p‑tau↓,
4643- OLE,  HT,    Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine
- Review, Var, NA
TumCCA↑, Apoptosis↑, ER Stress↑, UPR↑, CHOP↑, ROS↑, Bcl-2↓, NOX4↑, Hif1a↓, MMP2↓, MMP↓, VEGF↓, Akt↓, NF-kB↓, p65↓, SIRT3↓, mTOR↓, Catalase↓, SOD2↓, FASN↓, STAT3↓, HDAC2↓, HDAC3↓, BAD↑, BAX↑, Bak↑, Casp3↑, Casp9↑, PARP↑, P53↑, P21↑, p27↑, Half-Life↝, BioAv↓, BioAv↓, selectivity↑, RadioS↑, *ROS↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *NRF2↑, *chemoP↑, *Inflam↓, PPARγ↑,
1676- PBG,    Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies
- Review, Var, NA
ROS↑, MMP↓, Bcl-2↓, eff↑, tumCV↓, TumCCA↑, angioG↓, PAK1↓, HDAC1↓, HDAC2↓, P53↑, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21?, BAX↑, cl‑Casp3↑, cl‑PARP↑, ChemoSen↑,
3359- QC,    Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells
- in-vitro, Cerv, HeLa
DNMTs↓, HDAC↓, HMTs↓, DNMT3A↓, EZH2↓, HDAC1↓, HDAC2↓, HDAC6↓, HDAC11↓, G9a↓, TIMP3↑, PTEN↑, SOCS1↑,
1748- RosA,    The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity
- Review, Var, NA
AntiCan↑, *BioAv↝, *CardioT↓, *Iron↓, *ROS↓, *SOD↑, *Catalase↑, *GPx↑, *NRF2↑, MARK4↓, MMP9↓, TumCCA↑, Bcl-2↓, BAX↑, Apoptosis↑, E-cadherin↑, N-cadherin↓, Vim↓, Gli1↓, HDAC2↓, Warburg↓, Hif1a↓, miR-155↓, p‑PI3K↑, ROS↑, *IronCh↑,
3029- RosA,    Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, tumCV↓, Apoptosis↑, HDAC2↓, PCNA↓, cycD1/CCND1↓, cycE/CCNE↓, P21↑, DNAdam↑, Casp3↑,
3030- RosA,    Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials
- Review, Var, NA
ROS⇅, *NRF2↑, *GSH↑, HDAC2↓,
3001- RosA,    Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review
- Review, Var, NA
TumCP↓, Apoptosis↑, TumMeta↓, Inflam↓, *antiOx↑, *AntiAge↑, *ROS↓, BioAv↑, Dose↝, NRF2↑, P-gp↑, ATP↑, MMPs↓, cl‑PARP↓, Hif1a↓, GlucoseCon↓, lactateProd↓, Warburg↓, TNF-α↓, COX2↓, IL6↓, HDAC2↓, GSH↑, ROS↓, ChemoSen↑, *BG↓, *IL1β↓, *TNF-α↓, *IL6↓, *p‑JNK↓, *p38↓, *Catalase↑, *SOD↑, *GSTs↑, *VitC↑, *VitE↑, *GSH↑, *GutMicro↑, *cardioP↑, *ROS↓, *MMP↓, *lipid-P↓, *NRF2↑, *hepatoP↑, *neuroP↑, *P450↑, *HO-1↑, *AntiAge↑, *motorD↓,
3003- RosA,    Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases
- Review, Var, NA - Review, AD, NA - Review, Park, NA
*Inflam↓, *antiOx↑, *neuroP↑, *IL6↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMP↑, *memory↑, *ROS↓, *Aβ↓, *HMGB1↓, TumCG↓, MARK4↓, Zeb1↓, MDM2↓, BNIP3↑, ASC↑, NLRP3↓, PI3K↓, Akt↓, Casp1↓, E-cadherin↑, STAT3↓, TLR4↓, MMP↓, ICAM-1↓, AMPK↓, IL6↑, MMP2↓, Warburg↓, Bcl-xL↓, Bcl-2↓, TumCCA↑, EMT↓, TumMeta↓, mTOR↓, HSP27↓, Casp3↑, GlucoseCon↓, lactateProd↓, VEGF↓, p‑p65↓, GIT1↓, FOXM1↓, cycD1/CCND1↓, CDK4↓, MMP9↓, HDAC2↓,
4201- SFN,    Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents
- in-vivo, NA, NA
*NRF2↑, *BDNF↑, *HDAC2↓, *Mood↑,
4198- SFN,    Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways
- vitro+vivo, AD, NA
*TrkB↑, *CREB↑, CaMKII ↑, *ERK↑, *ac‑H3↑, *ac‑H4↑, *HDAC↓, *HDAC2↓, *BDNF↑,
3661- SFN,    Beneficial Effects of Sulforaphane Treatment in Alzheimer's Disease May Be Mediated through Reduced HDAC1/3 and Increased P75NTR Expression
- in-vitro, AD, NA
*cognitive↑, *HDAC1↓, *HDAC2↓, *HDAC3↓, *H3↑, *H4↑, *Aβ↓, *BioAv↑, *BBB↑, *neuroP↑,
1437- SFN,    Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition
- Review, NA, NA
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, eff↑, ac‑HSP90↑, DNMT1↓, DNMT3A↓, hTERT/TERT↓, NRF2↑, HO-1↑, NQO1↑, miR-155↓, miR-200c↑, SOX9↓, *toxicity↓,
3322- SIL,    Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression
- in-vitro, Lung, A549 - in-vitro, Lung, H1299 - in-vitro, Lung, H460
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, HATs↑, Zeb1↓, E-cadherin↑, TumCMig↓,
3422- TQ,    Thymoquinone, as a Novel Therapeutic Candidate of Cancers
- Review, Var, NA
selectivity↑, P53↑, PTEN↑, NF-kB↓, PPARγ↓, cMyc↓, Casp↑, *BioAv↓, BioAv↝, eff↑, survivin↓, Bcl-xL↓, Bcl-2↓, Akt↓, BAX↑, cl‑PARP↑, CXCR4↓, MMP9↓, VEGFR2↓, Ki-67↓, COX2↓, JAK2↓, cSrc↓, Apoptosis↑, p‑STAT3↓, cycD1/CCND1↓, Casp3↑, Casp7↑, Casp9↑, N-cadherin↓, Vim↓, Twist↓, E-cadherin↑, ChemoSen↑, eff↑, EMT↓, ROS↑, DNMT1↓, eff↑, EZH2↓, hepatoP↑, Zeb1↓, RadioS↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, *NAD↑, *SIRT1↑, SIRT1↓, *Inflam↓, *CRP↓, *TNF-α↓, *IL6↓, *IL1β↓, *eff↑, *MDA↓, *NO↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, PI3K↓, mTOR↓,
2105- TQ,    Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation
- in-vitro, PC, AsPC-1 - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, Hs766t - in-vivo, NA, NA
tumCV↓, TumCP↓, TumCCA↑, Apoptosis↑, P53↑, Bcl-2↓, P21↑, ac‑H4↑, HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, TumVol↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 20

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

Catalase↓, 1,   GSH↑, 1,   HO-1↑, 1,   NOX4↑, 1,   NQO1↑, 1,   NRF2↑, 2,   ROS↓, 1,   ROS↑, 4,   ROS⇅, 1,   SIRT3↓, 1,   SOD2↓, 1,  

Mitochondria & Bioenergetics

ATP↑, 1,   MMP↓, 4,  

Core Metabolism/Glycolysis

AMPK↓, 1,   cMyc↓, 1,   FASN↓, 1,   GlucoseCon↓, 2,   lactateProd↓, 2,   PPARγ↓, 1,   PPARγ↑, 1,   SIRT1↓, 1,   Warburg↓, 3,  

Cell Death

Akt↓, 3,   Apoptosis↑, 6,   BAD↑, 1,   Bak↑, 1,   BAX↑, 4,   Bcl-2↓, 6,   Bcl-xL↓, 2,   Casp↑, 1,   Casp1↓, 1,   Casp3↑, 4,   cl‑Casp3↑, 1,   Casp7↑, 1,   Casp9↑, 2,   hTERT/TERT↓, 3,   MAPK↓, 1,   MDM2↓, 2,   p27↑, 1,   survivin↓, 1,  

Kinase & Signal Transduction

CaMKII ↑, 1,   cSrc↓, 1,   SOX9↓, 1,  

Transcription & Epigenetics

EZH2↓, 3,   H19↑, 1,   ac‑H4↑, 1,   HATs↑, 1,   tumCV↓, 4,  

Protein Folding & ER Stress

CHOP↑, 1,   ER Stress↑, 1,   HSP27↓, 1,   ac‑HSP90↑, 1,   UPR↑, 1,  

Autophagy & Lysosomes

BNIP3↑, 1,  

DNA Damage & Repair

DNAdam↑, 2,   DNMT1↓, 3,   DNMT3A↓, 3,   DNMTs↓, 3,   G9a↓, 1,   P53↑, 4,   PARP↑, 1,   cl‑PARP↓, 1,   cl‑PARP↑, 2,   PCNA↓, 3,   TP53↑, 1,  

Cell Cycle & Senescence

CDK4↓, 1,   cycD1/CCND1↓, 5,   cycE/CCNE↓, 2,   cycE1↓, 1,   P21?, 1,   P21↑, 4,   TumCCA↑, 6,  

Proliferation, Differentiation & Cell State

EMT↓, 2,   FOXM1↓, 1,   Gli1↓, 1,   HDAC↓, 6,   HDAC1↓, 7,   HDAC11↓, 1,   HDAC2↓, 16,   HDAC3↓, 7,   HDAC4↓, 1,   HDAC6↓, 1,   HDAC8↓, 2,   HMTs↓, 2,   KLF4↓, 1,   mTOR↓, 3,   PI3K↓, 3,   p‑PI3K↑, 1,   PTEN↑, 3,   STAT3↓, 2,   p‑STAT3↓, 1,   TumCG↓, 1,   TumCG↑, 1,   Wnt↓, 1,  

Migration

E-cadherin↑, 4,   GIT1↓, 1,   Ki-67↓, 1,   MARK4↓, 2,   miR-155↓, 2,   miR-200c↑, 1,   MMP-10↓, 1,   MMP2↓, 3,   MMP7↓, 1,   MMP9↓, 3,   MMPs↓, 1,   N-cadherin↓, 2,   PAK1↓, 1,   TIMP3↑, 1,   TumCMig↓, 1,   TumCP↓, 3,   TumMeta↓, 2,   Twist↓, 1,   Vim↓, 2,   Zeb1↓, 3,  

Angiogenesis & Vasculature

angioG↓, 1,   Hif1a↓, 3,   VEGF↓, 2,   VEGFR2↓, 1,  

Barriers & Transport

P-gp↑, 1,  

Immune & Inflammatory Signaling

ASC↑, 1,   COX2↓, 2,   CXCR4↓, 1,   ICAM-1↓, 1,   IL6↓, 2,   IL6↑, 1,   Inflam↓, 1,   JAK2↓, 1,   NF-kB↓, 2,   p65↓, 1,   p‑p65↓, 1,   SOCS1↑, 1,   TLR4↓, 1,   TNF-α↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 2,   BioAv↑, 1,   BioAv↝, 1,   ChemoSen↑, 3,   Dose↝, 1,   eff↑, 6,   Half-Life↝, 1,   RadioS↑, 2,   selectivity↑, 2,  

Clinical Biomarkers

EZH2↓, 3,   FOXM1↓, 1,   hTERT/TERT↓, 3,   IL6↓, 2,   IL6↑, 1,   Ki-67↓, 1,   TP53↑, 1,  

Functional Outcomes

AntiCan↑, 1,   hepatoP↑, 1,   TumVol↓, 2,  
Total Targets: 153

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 3,   Catalase↑, 4,   GPx↑, 2,   GSH↑, 4,   GSTs↑, 1,   HO-1↑, 1,   Iron↓, 1,   lipid-P↓, 1,   MDA↓, 2,   NRF2↑, 5,   ROS↓, 5,   SOD↑, 4,   VitC↑, 1,   VitE↑, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

MMP↓, 1,   MMP↑, 1,  

Core Metabolism/Glycolysis

CREB↑, 1,   NAD↑, 1,   SIRT1↑, 1,  

Cell Death

p‑JNK↓, 1,   p38↓, 1,  

Transcription & Epigenetics

H3↑, 1,   ac‑H3↑, 1,   H4↑, 1,   ac‑H4↑, 1,   other↓, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   HDAC↓, 1,   HDAC1↓, 1,   HDAC2↓, 4,   HDAC3↓, 1,   p‑mTOR↓, 1,  

Angiogenesis & Vasculature

NO↓, 1,  

Barriers & Transport

BBB↑, 1,  

Immune & Inflammatory Signaling

COX2↓, 1,   CRP↓, 1,   HMGB1↓, 1,   IL1β↓, 3,   IL6↓, 3,   Inflam↓, 4,   NF-kB↓, 1,   p‑NF-kB↓, 1,   PGE2↓, 1,   TNF-α↓, 2,  

Synaptic & Neurotransmission

BDNF↑, 3,   p‑tau↓, 1,   TrkB↑, 1,  

Protein Aggregation

Aβ↓, 2,  

Drug Metabolism & Resistance

BioAv↓, 1,   BioAv↑, 1,   BioAv↝, 1,   eff↑, 1,   P450↑, 1,  

Clinical Biomarkers

BG↓, 1,   CRP↓, 1,   GutMicro↑, 1,   IL6↓, 3,  

Functional Outcomes

AntiAge↑, 2,   cardioP↑, 1,   CardioT↓, 1,   chemoP↑, 1,   cognitive↑, 2,   hepatoP↑, 1,   memory↑, 1,   Mood↑, 1,   motorD↓, 1,   neuroP↑, 4,   toxicity↓, 1,  
Total Targets: 69

Scientific Paper Hit Count for: HDAC2, Histone Deacetylase 2
5 Sulforaphane (mainly Broccoli)
5 Rosmarinic acid
2 Thymoquinone
1 Butyrate
1 EGCG (Epigallocatechin Gallate)
1 Gallic acid
1 Genistein (soy isoflavone)
1 Luteolin
1 Oleuropein
1 HydroxyTyrosol
1 Propolis -bee glue
1 Quercetin
1 Silymarin (Milk Thistle) silibinin
Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:%  Target#:984  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page