| Source: |
| Type: |
| HDAC2 is a member of the class I histone deacetylase family that removes acetyl groups from lysine residues on histone proteins. • This deacetylation usually promotes chromatin compaction, leading to transcriptional repression of genes involved in cell differentiation, apoptosis, and cell cycle regulation. • HDAC2, along with its relatives HDAC1 and others, is often found as part of multiprotein corepressor complexes that regulate gene expression in both normal and cancer cells. 2. Role of HDAC2 in Cancer • Overexpression and Dysregulation: – In several types of cancer, HDAC2 is overexpressed or dysregulated, contributing to an altered transcriptional profile. – Elevated HDAC2 levels can lead to the suppression of tumor suppressor genes and genes involved in cell-cycle checkpoints or apoptosis, facilitating tumor progression. • Impact on the Tumor Microenvironment: – HDAC2 activity influences not only tumor cells but also the surrounding stromal and immune cells, affecting inflammatory responses and immune evasion strategies. |
| 1224- | BA, | Intratumor microbiome-derived butyrate promotes lung cancer metastasis |
| - | in-vivo, | Lung, | NA |
| 3233- | EGCG, | Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways |
| - | in-vitro, | Cerv, | HeLa |
| 1065- | GA, | Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression |
| - | vitro+vivo, | Pca, | NA |
| 1435- | GEN, | SFN, | The Effects of Combinatorial Genistein and Sulforaphane in Breast Tumor Inhibition: Role in Epigenetic Regulation |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| 4293- | LT, | HDAC2-and-Tau?redirectedFrom=fulltext">Regulatory Role of NF-κB on HDAC2 and Tau Hyperphosphorylation in Diabetic Encephalopathy and the Therapeutic Potential of Luteolin |
| - | in-vivo, | Diabetic, | NA |
| 4643- | OLE, | HT, | Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine |
| - | Review, | Var, | NA |
| 1676- | PBG, | Use of Stingless Bee Propolis and Geopropolis against Cancer—A Literature Review of Preclinical Studies |
| - | Review, | Var, | NA |
| 3359- | QC, | Quercetin modifies 5′CpG promoter methylation and reactivates various tumor suppressor genes by modulating epigenetic marks in human cervical cancer cells |
| - | in-vitro, | Cerv, | HeLa |
| 1748- | RosA, | The Role of Rosmarinic Acid in Cancer Prevention and Therapy: Mechanisms of Antioxidant and Anticancer Activity |
| - | Review, | Var, | NA |
| 3029- | RosA, | Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 3030- | RosA, | Anticancer Activity of Rosmarinus officinalis L.: Mechanisms of Action and Therapeutic Potentials |
| - | Review, | Var, | NA |
| 3001- | RosA, | Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review |
| - | Review, | Var, | NA |
| 3003- | RosA, | Comprehensive Insights into Biological Roles of Rosmarinic Acid: Implications in Diabetes, Cancer and Neurodegenerative Diseases |
| - | Review, | Var, | NA | - | Review, | AD, | NA | - | Review, | Park, | NA |
| 4201- | SFN, | Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents |
| - | in-vivo, | NA, | NA |
| 4198- | SFN, | Sulforaphane epigenetically enhances neuronal BDNF expression and TrkB signaling pathways |
| - | vitro+vivo, | AD, | NA |
| 3661- | SFN, | Beneficial Effects of Sulforaphane Treatment in Alzheimer's Disease May Be Mediated through Reduced HDAC1/3 and Increased P75NTR Expression |
| - | in-vitro, | AD, | NA |
| 1437- | SFN, | Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition |
| - | Review, | NA, | NA |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 |
| 3422- | TQ, | Thymoquinone, as a Novel Therapeutic Candidate of Cancers |
| - | Review, | Var, | NA |
| 2105- | TQ, | Thymoquinone Promotes Pancreatic Cancer Cell Death and Reduction of Tumor Size through Combined Inhibition of Histone Deacetylation and Induction of Histone Acetylation |
| - | in-vitro, | PC, | AsPC-1 | - | in-vitro, | PC, | MIA PaCa-2 | - | in-vitro, | PC, | Hs766t | - | in-vivo, | NA, | NA |
Query results interpretion may depend on "conditions" listed in the research papers. Such Conditions may include : -low or high Dose -format for product, such as nano of lipid formations -different cell line effects -synergies with other products -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:% Target#:984 State#:% Dir#:%
wNotes=0 sortOrder:rid,rpid