Database Query Results : Silymarin (Milk Thistle) silibinin, ,

SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
2607- Ba,  SIL,    Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin Through the Inhibition of Efflux Transporters BCRP and MRP2
- in-vivo, Nor, NA
*BioEnh↑, *hepatoP↑, *antiOx↑, *Inflam↓,
134- CUR,  RES,  MEL,  SIL,    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, ROS↑, Trx1↓,
3578- CUR,  SIL,    Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferation
- in-vitro, CRC, DLD1
eff↑, BioAv↓, TumCG↓,
3330- SIL,    Mechanistic Insights into the Pharmacological Significance of Silymarin
- Review, Var, NA
*neuroP↑, *hepatoP↑, *cardioP↑, *antiOx↓, *NLRP3↓, *NAD↑, ROS↓, NLRP3↓, TumCMig↓, *COX2↓, *iNOS↓, *MPO↓, *AChE↓, *LDH↓, *Telomerase↓, *Fas↓,
3314- SIL,    Silymarin: Unveiling its pharmacological spectrum and therapeutic potential in liver diseases—A comprehensive narrative review
- Review, NA, NA
*antiOx↑, *hepatoP↑, *Half-Life↑, *ROS↓, *GSH↑, *hepatoP↑, *lipid-P↓, *TNF-α↓, *IFN-γ↓, *IL2↓, *IL4↓, *NF-kB↓, *iNOS↓, *OATPs↓, *OCT4↓, *Inflam↓, *PGE2↓, MMPs↓, VEGF↓, angioG↓, STAT3↓, *ALAT↓, *AST↓, Dose↝,
3329- SIL,    Silymarin regulates the HIF-1 and iNOS expression in the brain and Gills of the hypoxic-reoxygenated rainbow trout (Oncorhynchus mykis)
- in-vivo, Nor, NA
*NO↓, *MDA↓, *TAC↑, *Hif1a↓, *iNOS↓,
3328- SIL,    Modulatory effect of silymarin on inflammatory mediators in experimentally induced benign prostatic hyperplasia: emphasis on PTEN, HIF-1α, and NF-κB
- in-vivo, BPH, NA
*NF-kB↓, *Hif1a↓, *PTEN↑, *Weight↓, *NO↓, *IL6↓, *IL8↓, *COX2↓, *iNOS↓,
3327- SIL,    Effects of silymarin on HIF‑1α and MDR1 expression in HepG‑2 cells under hypoxia
- in-vitro, Liver, HepG2
MDR1↓, Hif1a↓, P-gp↓,
3326- SIL,    Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway
- in-vitro, Liver, HepG2 - in-vitro, Liver, Hep3B
*hepatoP↑, chemoPv↑, ChemoSen↑, TumCP↓, TumCMig↓, TumCI↓, Hif1a↓, VEGF↓, angioG↓,
3325- SIL,    Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury
- in-vivo, Nor, NA
*Inflam↓, *ROS↓, *Casp3↑, *Casp9↑, *Hif1a↓, *iNOS↓, *SOD↑, *MDA↓,
3324- SIL,    Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage
*ROS↓, *TAC↑, *NF-kB↓, *IL2↓, *NRF2↑, *HO-1↑, *neuroP↑, *Inflam↓, *NLRP3↓,
3323- SIL,    Anticancer therapeutic potential of silibinin: current trends, scope and relevance
- Review, Var, NA
Inflam↓, angioG↓, antiOx↑, TumMeta↓, TumCP↓, TumCCA↑, TumCD↑, α-SMA↓, p‑Akt↓, p‑STAT3↓, COX2↓, IL6↓, MMP2↓, HIF-1↓, Snail↓, Slug↓, Zeb1↓, NF-kB↓, p‑EGFR↓, JAK2↓, PI3K↓, PD-L1↓, VEGF↓, CDK4↓, CDK2↓, cycD1/CCND1↓, E2Fs↓,
3322- SIL,    Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression
- in-vitro, Lung, A549 - in-vitro, Lung, H1299 - in-vitro, Lung, H460
HDAC↓, HDAC1↓, HDAC2↓, HDAC3↓, HDAC8↓, HATs↑, Zeb1↓, E-cadherin↑, TumCMig↓,
3321- SIL,    Silymarin (Milk thistle)
- Review, AD, NA
*neuroP↝, *Dose↝, *Half-Life?, *BioAv↝, *cognitive↑, *Aβ↓, *Inflam↓, *OS↑, *memory↑,
3320- SIL,    Neuroprotective Potential of Silymarin against CNS Disorders: Insight into the Pathways and Molecular Mechanisms of Action
- Review, AD, NA
*hepatoP↑, *neuroP↑, *ROS↓, *β-Amyloid↓, *Inflam↓, *Aβ↓, *NF-kB↓, *TNF-α↓, *TNF-β↓, *iNOS↓, *NO↓, *COX2↓,
3319- SIL,    Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms
- Review, AD, NA - Review, Park, NA - Review, Stroke, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *BBB?, *tau↓, *NF-kB↓, *IL1β↓, *TNF-α↓, *IL4↓, *MAPK↓, *memory↑, *cognitive↑, *Aβ↓, *ROS↓, *lipid-P↓, *GSH↑, *MDA↓, *SOD↑, *Catalase↑, *AChE↓, *BChE↓, *p‑ERK↓, *p‑JNK↓, *p‑p38↓, *GutMicro↑, *COX2↓, *iNOS↓, *TLR4↓, *neuroP↑, *Strength↑, *AMPK↑, *MMP↑, *necrosis↓, *NRF2↑, *HO-1↑,
3318- SIL,    Pharmaceutical prospects of Silymarin for the treatment of neurological patients: an updated insight
- Review, AD, NA - Review, Park, NA
*hepatoP↑, *neuroP↑, *TLR4↓, *TNF-α↓, *IL1β↓, *NF-kB↓, *memory↑, *cognitive↑, *NRF2↑, *HO-1↑, *ROS↓, *Akt↑, *mTOR↑, *SOD↑, *Catalase↑, *GSH↑, *IL10↑, *IL6↑, *NO↓, *MDA↓, *AChE↓, *MAPK↓, *BDNF↑,
3317- SIL,    Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer's Disease and Other Neurological Disorders
- Review, NA, NA
*neuroP↑,
3316- SIL,  Chemo,    Silymarin Nanoparticles Counteract Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights into Mitochondrial Dysfunction and Nrf2/HO-1 Axis
Inflam↓, antiOx↓, neuroP↑, cognitive↑, NRF2↑, HO-1↑, memory↑, AChE↓, Casp3↓,
3315- SIL,    Silymarin alleviates docetaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats
- in-vivo, Nor, NA
neuroP↑, *NRF2↑, *HO-1↑, *lipid-P↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *NF-kB↓, *TNF-α↓, *JNK↓, *Bcl-2↑, *BAX↑,
4207- SIL,    Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury
*TNF-α↓, *BDNF↑, *cognitive↑,
3652- SIL,    Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus
- in-vivo, NA, NA
*hepatoP↑, *other↑,
109- SIL,    Silibinin induces apoptosis through inhibition of the mTOR-GLI1-BCL2 pathway in renal cell carcinoma
- vitro+vivo, RCC, 769-P - in-vitro, RCC, 786-O - in-vitro, RCC, ACHN - in-vitro, RCC, OS-RC-2
HH↓, Gli1↓, GLI2↓, mTOR↓, Bcl-2↓,
4206- SIL,    Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response
- in-vivo, NA, NA
*BDNF↑, *5HT↑, *antiOx↑, *IL6↓, *TNF-α↓, *Mood↑,
4205- SIL,    The Therapeutic Effect of Silymarin and Silibinin on Depression and Anxiety Disorders and Possible Mechanism in the Brain: A Systematic Review
- Review, AD, NA
*BDNF↑, *5HT↑, *MDA↓, *GSH↑, *SOD↑, *Catalase↑, *IL6↓, *IL1β↓,
4204- SIL,    Silymarin administration after cerebral ischemia improves survival of obese mice by increasing cortical BDNF and IGF1 levels
- NA, Stroke, NA
*OS↑, *BDNF↑, *IGF-1↑,
4203- SIL,    Unlocking the Neuroprotective Potential of Silymarin: A Promising Ally in Safeguarding the Brain from Alzheimer’s Disease and Other Neurological Disorders
- Review, NA, NA
*MAPK↝, *AMPK↝, *NF-kB↓, *mTOR↝, *PI3K↝, *Akt↝, *BioAv↝, *memory↑, *BDNF↑, *TNF-α↓,
3655- SIL,    Protective effect of silymarin on oxidative stress in rat brain
- in-vivo, AD, NA
*GSH↑, *VitC↑, *SOD↑, *lipid-P↓, *ROS↓, *hepatoP↑, *neuroP↑,
3654- SIL,    Effect of silymarin on biochemical parameters of oxidative stress in aged and young rat brain
- in-vivo, AD, NA
*ROS↓, *neuroP↑, *GSH↑, *SOD↑,
3653- SIL,    Silibinin ameliorates Aβ25-35-induced memory deficits in rats by modulating autophagy and attenuating neuroinflammation as well as oxidative stress
- in-vivo, AD, NA
*hepatoP↑, *neuroP↑, *cognitive↑, *memory↑, *Inflam↓, *GSH↑, *MDA↓, *Inflam↓, *antiOx↓,
3331- SIL,    The clinical anti-inflammatory effects and underlying mechanisms of silymarin
- Review, NA, NA
*Inflam↓, *NF-kB↓, *NLRP3↓, *COX2↓, *iNOS↓, *neuroP↑, *p‑ERK↓, *p38↓, *MAPK↓, *EGFR↓, *ROS↓, *lipid-P?, *5LO↓,
3651- SIL,    Aminotransferase levels and silymarin in de novo tacrine-treated patients with Alzheimer's disease
- Trial, NA, NA
*hepatoP↑, *ALAT↓,
3650- SIL,    Silibinin: a novel inhibitor of Aβ aggregation
- in-vitro, AD, SH-SY5Y
*Aβ↓, *H2O2↓,
3649- SIL,    Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis
*Inflam↓, *NF-kB↓, *cJun↓, *Casp↓, *ROS↓, *lipid-P↓,
3648- SIL,    Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years
- Review, NA, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *necrosis↓, *hepatoP↑, *IL1↓, *IL6↓, *TNF-α↓, *IFN-γ↓, MAPK↓, Apoptosis↑, Cyt‑c↑, Casp3↑, Casp9↑, *PPARγ↑, *GLUT4↑, *HSPs↓, *HSP27↑, *Trx↑, *SIRT1↑, *ALAT↓, *GSH↑, *lipid-P↓, *TNF-α↓, TumCG↓, P21↑, CDK4↑,
3647- SIL,    Silymarin Modulates Microbiota in the Gut to Improve the Health of Sow from Late Gestation to Lactation
- in-vivo, NA, NA
*IL1β↓, *GutMicro↝, *Inflam↓,
3646- SIL,    "Silymarin", a promising pharmacological agent for treatment of diseases
- Review, NA, NA
*P-gp↓, *Inflam↓, *hepatoP↑, *antiOx↑, *GSH↑, *BioAv↑, *SOD↑, *IFN-γ↓, *IL4↓, *IL10↓, *Half-Life↓, *TNF-α↓, *ALAT↓, *AST↓, Akt↓, chemoP↑, β-catenin/ZEB1↓, TumCP↓, MMP↓, Cyt‑c↑, *RenoP↑, *BBB↑,
3333- SIL,    Silymarin attenuated nonalcoholic fatty liver disease through the regulation of endoplasmic reticulum stress proteins GRP78 and XBP-1 in mice
- in-vivo, NA, NA
*GRP78/BiP↓, *XBP-1↓,
3332- SIL,    Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2
- in-vitro, Lung, A549
*antiOx↑, *hepatoP↑, MMP2↓, uPA↓, TIMP2↑,
2410- SIL,    Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF
- in-vitro, GBM, U87MG - in-vitro, GBM, U251 - in-vivo, NA, NA
TumAuto↑, ATP↓, Glycolysis↓, H2O2↑, P53↑, GSH↓, xCT↓, BNIP3↝, MMP↑, mt-ROS↑, mtDam↑, HK2↓, PFKP↓, PKM2↓, TumCG↓,
3294- SIL,    Silymarin: a review on paving the way towards promising pharmacological agent
- Review, Nor, NA - Review, Arthritis, NA
*hepatoP↑, *Inflam↓, *chemoP↑, *glucose↓, *antiOx↑, *ROS↓, *ACC↓, *FASN↓, *radioP↑, *NF-kB↓, *TGF-β↓, *AST↓, *α-SMA↝, *eff↑, *neuroP↑, eff↑, ROS↓,
3293- SIL,    Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer
- Review, Var, NA
hepatoP↑, TumMeta↓, Inflam↓, chemoP↑, radioP↑, Half-Life↝, *GSTs↑, p‑JNK↑, BAX↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, eff↑, TumCCA↑, STAT3↓, Mcl-1↓, survivin↓, Bcl-xL↓, Casp3↑, Casp9↑, eff↑, CXCR4↓, Dose↝,
3292- SIL,  Fe,    Anti-tumor activity of silymarin nanoliposomes in combination with iron: In vitro and in vivo study
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
*antiOx↑, ROS↑, OS↑, Weight↑, TumVol↓, eff↑, Fenton↑,
3291- SIL,    Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases
- Review, Nor, NA
*antiOx↑, *ROS↓, *cardioP↑, *BioAv↓, *Half-Life↝, *other↑, IronCh↑,
3290- SIL,    A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents
- Analysis, Var, NA
hepatoP↑, chemoP↑, *lipid-P↓, *antiOx↑, tumCV↓, TumCMig↓, Apoptosis↑, ROS↑, GSH↓, Bcl-2↓, survivin↓, cycD1/CCND1↓, NOTCH1↓, BAX↑, NF-kB↓, COX2↓, LOX1↓, iNOS↓, TNF-α↓, IL1↓, Inflam↓, *toxicity↓, CXCR4↓, EGFR↓, ERK↓, MMP↓, Cyt‑c↑, TumCCA↑, RB1↑, P53↑, P21↑, p27↑, cycE/CCNE↓, CDK4↓, p‑pRB↓, Hif1a↓, cMyc↓, IL1β↓, IFN-γ↓, PCNA↓, PSA↓, CYP1A1↓,
3289- SIL,    Silymarin: a promising modulator of apoptosis and survival signaling in cancer
- Review, Var, NA
*BioAv↝, *BioAv↓, Fas↑, FasL↑, FADD↑, pro‑Casp8↑, Apoptosis↑, DR5↑, Bcl-2↑, BAX↑, Casp3↑, PI3K↓, FOXM1↓, p‑mTOR↓, p‑P70S6K↓, Hif1a↓, Akt↑, angioG↓, STAT3↓, NF-kB↓, lipid-P↓, eff↑, CDK1↓, survivin↓, CycB/CCNB1↓, Mcl-1↓, Casp9↑, AP-1↓, BioAv↑,
3288- SIL,    Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations
- Review, Var, NA
Inflam↓, lipid-P↓, TumMeta↓, angioG↓, chemoP↑, EMT↓, HDAC↓, HATs↑, MMPs↓, uPA↓, PI3K↓, Akt↓, VEGF↓, CD31↓, Hif1a↓, VEGFR2↓, Raf↓, MEK↓, ERK↓, BIM↓, BAX↑, Bcl-2↓, Bcl-xL↓, Casp↑, MAPK↓, P53↑, LC3II↑, mTOR↓, YAP/TEAD↓, *BioAv↓, MMP↓, Cyt‑c↑, PCNA↓, cMyc↓, cycD1/CCND1↓, β-catenin/ZEB1↓, survivin↓, APAF1↑, Casp3↑, MDSCs↓, IL10↓, IL2↑, IFN-γ↑, hepatoP↑, cardioP↑, GSH↑, neuroP↑,
3282- SIL,    Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions
- Review, NA, NA
hepatoP↑, AntiCan↑, TumCMig↓, Hif1a↓, selectivity↑, toxicity∅, *antiOx↑, *Inflam↓, TumCCA↑, P21↑, CDK4↓, NF-kB↓, ERK↓, PSA↓, TumCG↓, p27↑, COX2↓, IL1↓, VEGF↓, IGFBP3↑, AR↓, STAT3↓, Telomerase↓, Cyt‑c↑, Casp↑, eff↝, HDAC↓, HATs↑, Zeb1↓, E-cadherin↑, miR-203↑, NHE1↓, MMP2↓, MMP9↓, PGE2↓, Vim↓, Wnt↓, angioG↓, VEGF↓, *TIMP1↓, EMT↓, TGF-β↓, CD44↓, EGFR↓, PDGF↓, *IL8↓, SREBP1↓, MMP↓, ATP↓, uPA↓, PD-L1↓, NOTCH↓, *SIRT1↑, SIRT1↓, CA↓, Ca+2↑, chemoP↑, cardioP↑, Dose↝, Half-Life↝, BioAv↓, BioAv↓, BioAv↓, toxicity↝, Half-Life↓, ROS↓, FAK↓,
3312- SIL,    Silymarin Alleviates Oxidative Stress and Inflammation Induced by UV and Air Pollution in Human Epidermis and Activates β-Endorphin Release through Cannabinoid Receptor Type 2
- Human, Nor, NA
*antiOx↑, *Inflam↓, *ROS↓, *IL1α↓, *AhR↑, *NRF2↑, *IL8↓,
2306- SIL,  CUR,  RES,  EA,    Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer Treatment
- in-vitro, BC, MDA-MB-231
PKM2↓, Dose↝, Dose↝,
1316- SIL,  Chemo,    Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity
- Analysis, Var, NA
TumCCA↑, p42↓, P450↓, OATPs↓, chemoP↑, ChemoSen↑,
1276- SIL,    Silibinin inhibits TPA-induced cell migration and MMP-9 expression in thyroid and breast cancer cells
- in-vitro, BC, NA - in-vitro, Thyroid, NA
TumCMig↓, MMP9↓, p‑MEK↓, p‑ERK↓,
1140- SIL,    Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth
- in-vitro, PC, AsPC-1 - in-vivo, PC, NA - in-vitro, PC, MIA PaCa-2 - in-vitro, PC, PANC1 - in-vitro, PC, Bxpc-3
TumCG↓, Glycolysis↓, cMyc↓, STAT3↓, TumCP↓, Weight∅, Strength↑, DNAdam↑, Casp3↑, Casp9↑, GLUT1↓, HK2↓, LDHA↓, GlucoseCon↓, lactateProd↓, PPP↓, Ki-67↓, p‑STAT3↓, cachexia↓,
1127- SIL,    Silibinin suppresses epithelial–mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1
- in-vitro, Lung, A549
TumCP↓, TumCMig↓, TumCI↓, EMT↓, RHBDD1↓,
1001- SIL,    Silibinin down-regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism
- in-vitro, NA, NA
TumCG↓, Glycolysis↓, OXPHOS↑, LDHA↓, lactateProd↓, i-citrate↑, Hif1a↓, PD-L1↓,
978- SIL,    A comprehensive evaluation of the therapeutic potential of silibinin: a ray of hope in cancer treatment
- Review, NA, NA
PI3K↓, Akt↓, NF-kB↓, Wnt/(β-catenin)↓, MAPK↓, TumCP↓, TumCCA↑, Apoptosis↑, p‑EGFR↓, JAK2↓, STAT5↓, cycD1/CCND1↓, hTERT/TERT↓, AP-1↓, MMP9↓, miR-21↓, miR-155↓, Casp9↑, BID↑, ERK↓, Akt2↓, DNMT1↓, P53↑, survivin↓, Casp3↑, ROS↑,
964- SIL,    Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics
- vitro+vivo, Pca, LNCaP - in-vitro, Pca, 22Rv1
TumCP↓, Hif1a↓, NADPH↓, angioG↓, FASN↓, ACC↓,
3296- SIL,    Silibinin induces oral cancer cell apoptosis and reactive oxygen species generation by activating the JNK/c-Jun pathway
- in-vitro, Oral, Ca9-22 - in-vivo, Oral, YD10B
TumCP↓, TumCCA↑, ROS↑, SOD1↓, SOD2↓, *JNK↑, toxicity?, TumCMig↓, TumCI↓, N-cadherin↓, Vim↓, E-cadherin↑, EMT↓, P53↑, cl‑Casp3↑, cl‑PARP↑, BAX↑, Bcl-2↓, SOD↓,
3313- SIL,    Silymarin attenuates post-weaning bisphenol A-induced renal injury by suppressing ferroptosis and amyloidosis through Kim-1/Nrf2/HO-1 signaling modulation in male Wistar rats
- in-vivo, NA, NA
*NRF2↑, *HO-1↑, *creat↓, *BUN↓, *RenoP↑, *MDA↓, *TNF-α↓, *IL1β↓, *Cyt‑c↓, *Casp3↓, *GSTs↓, *GSH↑, *GPx4↑, *SOD↑, *GSR↓, *Ferroptosis↓,
3311- SIL,    Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cells
- in-vitro, Nor, PC12
*antiOx↑, *Inflam↓, AntiCan↑, *ROS↓, *MDA↓, *GSH↓, *NRF2↑, *GPx↑, *GCLC↑, *GCLM↑,
3310- SIL,    Silymarin attenuates paraquat-induced lung injury via Nrf2-mediated pathway in vivo and in vitro
- in-vitro, Lung, A549
Inflam↓, MPO↓, NO↓, iNOS↓, ROS↓, MDA↑, SOD↑, Catalase↑, GPx↑, NRF2↑, HO-1↑, NADPH↑,
3309- SIL,    Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives
- Review, NA, NA
*ROS↓, *IronCh↑, *MMP↑, *NRF2↑, *Inflam↓, *hepatoP↑, *HSPs↑, *Trx↑, *SIRT2↑, *GSH↑, *ROS↑, *NADPH↓, *iNOS↓, *NF-kB↓, *BioAv↓, *Dose↝, *BioAv↑,
3308- SIL,    Structural basis of Nrf2 activation by flavonolignans from silymarin
- Analysis, NA, NA
*antiOx↑, *chemoP↑, *NRF2↑,
3307- SIL,    Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications
- Review, Var, NA
*NRF2↑, *antiOx↑, *chemoP↑, *Inflam↓, *BioAv↑, eff↑, *NQO1↑, TNF-α↓, IL6↓, *GSH↑, *ROS↓, *MDA↓, eff↑, *hepatoP↑, *GPx↑, *SOD↑, *Catalase↑, *HO-1↑, *neuroP↑,
3306- SIL,  Rad,    Radioprotective and radiosensitizing properties of silymarin/silibinin in response to ionizing radiation
- Review, Var, NA
radioP↑, RadioS↑, TumCMig↓, TumCI↓, angioG↓, Apoptosis↑, DNAdam↓, ROS↑, *ROS↓, *Inflam↓,
3305- SIL,    Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7 - in-vivo, NA, NA
TumCP↓, tumCV↓, BAX↑, cl‑PARP↑, Casp9↑, p‑JNK↑, Bcl-2↓, p‑p38↓, p‑ERK↓, *toxicity∅, Dose↝, *hepatoP↑, Inflam↓, AntiCan↑,
3304- SIL,    Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells
- in-vitro, GC, AGS - in-vivo, NA, NA
BAX↑, p‑JNK↑, p‑p38↑, cl‑PARP↑, Bcl-2↓, p‑ERK↓, TumVol↓, Apoptosis↑, tumCV↓,
3303- SIL,    Exploring the anti-cancer and antimetastatic effect of Silymarin against lung cancer
- Review, Var, NA
chemoP↑, radioP↑,
3302- SIL,    Protective effects of silymarin in glioblastoma cancer cells through redox system regulation
- in-vitro, GBM, U87MG
NRF2↑, HO-1↑, Trx↑, antiOx↑,
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, TumCCA↑, Apoptosis↓, TumMeta↓, TumCG↓, angioG↓, chemoP↑, radioP↑, p‑ERK↓, p‑p38↓, p‑JNK↓, P53↑, Bcl-2↓, Bcl-xL↓, TGF-β↓, MMP2↓, MMP9↓, E-cadherin↑, Wnt↓, Vim↓, VEGF↓, IL6↓, STAT3↓, *ROS↓, IL1β↓, PGE2↓, CDK1↓, CycB/CCNB1↓, survivin↓, Mcl-1↓, Casp3↑, Casp9↑, cMyc↓, COX2↓, Hif1a↓, CXCR4↓, CSCs↓, EMT↓, N-cadherin↓, PCNA↓, cycD1/CCND1↓, ROS↑, eff↑, eff↑, eff↑, HER2/EBBR2↓,
3300- SIL,    Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy
- Review, Var, NA
*ROS↓, *SOD↑, *hepatoP↑, *AST↓, *ALAT↓, *lipid-P↓, *GSH↑, *Catalase↑, *GSTs↑, *GSR↑, *TNF-α↓, *IFN-γ↓, *IL4↓, *IL2↓, *NF-kB↓, *IL10↑, *Inflam↓, COX2↓, Apoptosis↑, ChemoSen↑, PGE2↓, VEGF↓,
3299- SIL,    Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells
- in-vitro, Colon, HT29
tumCV↓, MMP↓, ROS↑, selectivity↑,
3298- SIL,    Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells
- in-vitro, BC, MCF-7
LC3II↑, Beclin-1↑, Bcl-2↓, ROS↑, MMP↓, ATP↓, eff↓, BNIP3?, TumAuto↑, eff↑,
3297- SIL,  Rad,    Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells
- in-vitro, CRC, HCT15 - in-vitro, CRC, RKO
TumCP↓, RadioS↑, TumCCA↑, DNAdam↓, MMP↓, ROS↓, *radioP↑,
3295- SIL,    Hepatoprotective effect of silymarin
- Review, NA, NA
*hepatoP↑, *ROS↓, *GSH↑, *BioAv↝, ERK↓, NF-kB↓, STAT3↓, COX2↓, Inflam↓, IronCh↑, lipid-P↓, ALAT↓, AST↓, TNF-α↓, *α-SMA↓, *SOD↑,
399- SNP,  SIL,    Cytotoxic potentials of silibinin assisted silver nanoparticles on human colorectal HT-29 cancer cells
- in-vitro, CRC, HT-29
P53↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 76

Pathway results for Effect on Cancer / Diseased Cells:


NA, unassigned

chemoPv↑, 1,  

Redox & Oxidative Stress

antiOx↓, 1,   antiOx↑, 2,   Catalase↑, 1,   CYP1A1↓, 1,   Fenton↑, 1,   GPx↑, 1,   GSH↓, 2,   GSH↑, 1,   H2O2↑, 1,   HO-1↑, 3,   lipid-P↓, 3,   MDA↑, 1,   MPO↓, 1,   NRF2↑, 3,   OXPHOS↑, 1,   ROS↓, 5,   ROS↑, 9,   mt-ROS↑, 1,   SOD↓, 1,   SOD↑, 1,   SOD1↓, 1,   SOD2↓, 1,   Trx↑, 1,   Trx1↓, 1,   xCT↓, 1,  

Metal & Cofactor Biology

IronCh↑, 2,  

Mitochondria & Bioenergetics

ATP↓, 3,   MEK↓, 1,   p‑MEK↓, 1,   MMP↓, 7,   MMP↑, 1,   mtDam↑, 1,   p42↓, 1,   Raf↓, 1,  

Core Metabolism/Glycolysis

ACC↓, 1,   ALAT↓, 1,   i-citrate↑, 1,   cMyc↓, 4,   FASN↓, 1,   GlucoseCon↓, 1,   Glycolysis↓, 3,   HK2↓, 2,   lactateProd↓, 2,   LDHA↓, 2,   NADPH↓, 1,   NADPH↑, 1,   PFKP↓, 1,   PKM2↓, 2,   PPP↓, 1,   SIRT1↓, 1,   SREBP1↓, 1,  

Cell Death

Akt↓, 3,   Akt↑, 1,   p‑Akt↓, 1,   APAF1↑, 1,   Apoptosis↓, 1,   Apoptosis↑, 8,   BAX↑, 7,   Bcl-2↓, 9,   Bcl-2↑, 1,   Bcl-xL↓, 3,   BID↑, 1,   BIM↓, 1,   Casp↑, 2,   Casp3↓, 1,   Casp3↑, 7,   cl‑Casp3↑, 1,   pro‑Casp8↑, 1,   Casp9↑, 7,   Cyt‑c↑, 5,   DR5↑, 1,   FADD↑, 1,   Fas↑, 1,   FasL↑, 1,   hTERT/TERT↓, 1,   iNOS↓, 2,   p‑JNK↓, 1,   p‑JNK↑, 3,   MAPK↓, 3,   Mcl-1↓, 3,   p27↑, 2,   p‑p38↓, 2,   p‑p38↑, 2,   survivin↓, 6,   Telomerase↓, 1,   TumCD↑, 1,   YAP/TEAD↓, 1,  

Kinase & Signal Transduction

HER2/EBBR2↓, 1,  

Transcription & Epigenetics

HATs↑, 3,   miR-21↓, 1,   p‑pRB↓, 1,   tumCV↓, 4,  

Autophagy & Lysosomes

Beclin-1↑, 1,   BNIP3?, 1,   BNIP3↝, 1,   LC3II↑, 2,   TumAuto↑, 2,  

DNA Damage & Repair

DNAdam↓, 2,   DNAdam↑, 1,   DNMT1↓, 1,   P53↑, 7,   cl‑PARP↑, 4,   PCNA↓, 3,  

Cell Cycle & Senescence

CDK1↓, 2,   CDK2↓, 1,   CDK4↓, 3,   CDK4↑, 1,   CycB/CCNB1↓, 2,   cycD1/CCND1↓, 5,   cycE/CCNE↓, 1,   E2Fs↓, 1,   P21↑, 3,   RB1↑, 1,   TumCCA↑, 9,  

Proliferation, Differentiation & Cell State

CD44↓, 1,   CSCs↓, 1,   EMT↓, 5,   ERK↓, 5,   p‑ERK↓, 5,   FOXM1↓, 1,   Gli1↓, 1,   HDAC↓, 3,   HDAC1↓, 1,   HDAC2↓, 1,   HDAC3↓, 1,   HDAC8↓, 1,   HH↓, 1,   IGFBP3↑, 1,   mTOR↓, 2,   p‑mTOR↓, 1,   NOTCH↓, 1,   NOTCH1↓, 1,   p‑P70S6K↓, 1,   PI3K↓, 4,   STAT3↓, 7,   p‑STAT3↓, 2,   STAT5↓, 1,   TumCG↓, 7,   Wnt↓, 2,   Wnt/(β-catenin)↓, 1,  

Migration

Akt2↓, 1,   AP-1↓, 2,   CA↓, 1,   Ca+2↑, 1,   CD31↓, 1,   E-cadherin↑, 4,   FAK↓, 1,   GLI2↓, 1,   Ki-67↓, 1,   miR-155↓, 1,   miR-203↑, 1,   MMP2↓, 4,   MMP9↓, 4,   MMPs↓, 2,   N-cadherin↓, 2,   PDGF↓, 1,   RHBDD1↓, 1,   Slug↓, 1,   Snail↓, 1,   TGF-β↓, 2,   TIMP2↑, 1,   TumCI↓, 4,   TumCMig↓, 9,   TumCP↓, 10,   TumMeta↓, 4,   uPA↓, 3,   Vim↓, 3,   Zeb1↓, 3,   α-SMA↓, 1,   β-catenin/ZEB1↓, 2,  

Angiogenesis & Vasculature

angioG↓, 9,   EGFR↓, 2,   p‑EGFR↓, 2,   HIF-1↓, 1,   Hif1a↓, 9,   LOX1↓, 1,   NO↓, 1,   VEGF↓, 8,   VEGFR2↓, 1,  

Barriers & Transport

GLUT1↓, 1,   NHE1↓, 1,   OATPs↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 6,   CXCR4↓, 3,   IFN-γ↓, 1,   IFN-γ↑, 1,   IL1↓, 2,   IL10↓, 1,   IL1β↓, 2,   IL2↑, 1,   IL6↓, 3,   Inflam↓, 9,   JAK2↓, 2,   MDSCs↓, 1,   NF-kB↓, 6,   PD-L1↓, 3,   PGE2↓, 3,   PSA↓, 2,   TNF-α↓, 3,  

Synaptic & Neurotransmission

AChE↓, 1,  

Protein Aggregation

NLRP3↓, 1,  

Hormonal & Nuclear Receptors

AR↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 1,   ChemoSen↑, 3,   Dose↝, 6,   eff↓, 1,   eff↑, 12,   eff↝, 1,   Half-Life↓, 1,   Half-Life↝, 2,   MDR1↓, 1,   P450↓, 1,   RadioS↑, 2,   selectivity↑, 2,  

Clinical Biomarkers

ALAT↓, 1,   AR↓, 1,   AST↓, 1,   EGFR↓, 2,   p‑EGFR↓, 2,   FOXM1↓, 1,   HER2/EBBR2↓, 1,   hTERT/TERT↓, 1,   IL6↓, 3,   Ki-67↓, 1,   PD-L1↓, 3,   PSA↓, 2,  

Functional Outcomes

AntiCan↑, 3,   cachexia↓, 1,   cardioP↑, 2,   chemoP↑, 8,   cognitive↑, 1,   hepatoP↑, 4,   memory↑, 1,   neuroP↑, 3,   OS↑, 1,   radioP↑, 4,   Strength↑, 1,   toxicity?, 1,   toxicity↝, 1,   toxicity∅, 1,   TumVol↓, 3,   Weight↑, 1,   Weight∅, 1,  
Total Targets: 246

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↓, 2,   antiOx↑, 15,   Catalase↑, 6,   Ferroptosis↓, 1,   GCLC↑, 1,   GCLM↑, 1,   GPx↑, 3,   GPx4↑, 1,   GSH↓, 1,   GSH↑, 15,   GSR↓, 1,   GSR↑, 1,   GSTs↓, 1,   GSTs↑, 2,   H2O2↓, 1,   HO-1↑, 6,   lipid-P?, 1,   lipid-P↓, 9,   MDA↓, 9,   MPO↓, 1,   NQO1↑, 1,   NRF2↑, 10,   ROS↓, 21,   ROS↑, 1,   SOD↑, 12,   TAC↑, 2,   Trx↑, 2,   VitC↑, 1,  

Metal & Cofactor Biology

IronCh↑, 1,  

Mitochondria & Bioenergetics

MMP↑, 2,  

Core Metabolism/Glycolysis

ACC↓, 1,   ALAT↓, 5,   AMPK↑, 1,   AMPK↝, 1,   BUN↓, 1,   FASN↓, 1,   glucose↓, 1,   LDH↓, 1,   NAD↑, 1,   NADPH↓, 1,   PPARγ↑, 1,   SIRT1↑, 2,   SIRT2↑, 1,  

Cell Death

AhR↑, 1,   Akt↑, 1,   Akt↝, 1,   Apoptosis↓, 1,   BAX↑, 1,   Bcl-2↑, 1,   Casp↓, 1,   Casp3↓, 1,   Casp3↑, 1,   Casp9↑, 1,   Cyt‑c↓, 1,   Fas↓, 1,   Ferroptosis↓, 1,   iNOS↓, 9,   JNK↓, 1,   JNK↑, 1,   p‑JNK↓, 1,   MAPK↓, 3,   MAPK↝, 1,   necrosis↓, 2,   p38↓, 1,   p‑p38↓, 1,   Telomerase↓, 1,  

Transcription & Epigenetics

cJun↓, 1,   other↑, 2,  

Protein Folding & ER Stress

GRP78/BiP↓, 1,   HSP27↑, 1,   HSPs↓, 1,   HSPs↑, 1,   XBP-1↓, 1,  

Proliferation, Differentiation & Cell State

p‑ERK↓, 2,   IGF-1↑, 1,   mTOR↑, 1,   mTOR↝, 1,   OCT4↓, 1,   PI3K↝, 1,   PTEN↑, 1,  

Migration

5LO↓, 1,   TGF-β↓, 1,   TIMP1↓, 1,   α-SMA↓, 1,   α-SMA↝, 1,  

Angiogenesis & Vasculature

EGFR↓, 1,   Hif1a↓, 3,   NO↓, 4,  

Barriers & Transport

BBB?, 1,   BBB↑, 1,   GLUT4↑, 1,   OATPs↓, 1,   P-gp↓, 1,  

Immune & Inflammatory Signaling

COX2↓, 5,   IFN-γ↓, 4,   IL1↓, 1,   IL10↓, 1,   IL10↑, 2,   IL1α↓, 1,   IL1β↓, 5,   IL2↓, 3,   IL4↓, 4,   IL6↓, 4,   IL6↑, 1,   IL8↓, 3,   Inflam↓, 22,   NF-kB↓, 13,   PGE2↓, 1,   TLR4↓, 2,   TNF-α↓, 13,   TNF-β↓, 1,  

Synaptic & Neurotransmission

5HT↑, 2,   AChE↓, 3,   BChE↓, 1,   BDNF↑, 6,   tau↓, 1,  

Protein Aggregation

Aβ↓, 4,   NLRP3↓, 3,   β-Amyloid↓, 1,  

Drug Metabolism & Resistance

BioAv↓, 4,   BioAv↑, 3,   BioAv↝, 4,   BioEnh↑, 1,   Dose↝, 2,   eff↑, 1,   Half-Life?, 1,   Half-Life↓, 1,   Half-Life↑, 1,   Half-Life↝, 1,  

Clinical Biomarkers

ALAT↓, 5,   AST↓, 4,   creat↓, 1,   EGFR↓, 1,   GutMicro↑, 1,   GutMicro↝, 1,   IL6↓, 4,   IL6↑, 1,   LDH↓, 1,  

Functional Outcomes

cardioP↑, 2,   chemoP↑, 3,   cognitive↑, 5,   hepatoP↑, 20,   memory↑, 5,   Mood↑, 1,   neuroP↑, 13,   neuroP↝, 1,   OS↑, 2,   radioP↑, 2,   RenoP↑, 2,   Strength↑, 1,   toxicity↓, 1,   toxicity∅, 1,   Weight↓, 1,  
Total Targets: 153

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page