Database Query Results : Silymarin (Milk Thistle) silibinin, , CSCs

SIL, Silymarin (Milk Thistle) silibinin: Click to Expand ⟱
Features:
Silymarin (Milk Thistle) Flowering herb related to daisy and ragweed family.
Silibinin (INN), also known as silybin is the major active constituent of silymarin, a standardized extract of the milk thistle seeds.
-a flavonoid combination of 65–80% of seven flavolignans; the most important of these include silybin, isosilybin, silychristin, isosilychristin, and silydianin. Silybin is the most abundant compound in around 50–70% in isoforms silybin A and silybin B

-Note half-life 6hrs?.
BioAv not soluble in water, low bioA (1%). 240mg yielded only 0.34ug/ml plasma level. oral administration of SM (equivalent to 120 mg silibinin), total (unconjugated + conjugated) silibinin concentration in plasma was 1.1–1.3 μg/mL, so can on acheive levels used in most in-vitro studies.
Pathways:
- results for both inducing and reducing ROS in cancer cells. In normal cell seems to consistently lower ROS. Given low bioavailability seems unlikely one could acheieve levels in vivo to raise ROS(except level in GUT could be much higher (800uM).
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : NLRP3↓, IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, TIMP2, uPA↓, VEGF↓, FAK↓, NF-κB↓, CXCR4↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMTs↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, FAK↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, OXPHOS↓, GRP78↑, Glucose↓, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, PDGF↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, Hh↓, GLi1↓, β-catenin↓, Notch2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, - SREBP (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CSCs, Cancer Stem Cells: Click to Expand ⟱
Source:
Type:
Cancer Stem Cells

Phytochemicals (natural plant-derived compounds) that may affect CSCs:
Curcumin
— suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Resveratrol
— shown to reduce CSC populations and sphere formation in multiple models.
Sulforaphane (from broccoli sprouts)
— reported to inhibit CSC properties and pathways; active in vitro and in vivo.
EGCG (epigallocatechin-3-gallate, green tea)
— reduces CSC markers and sphere formation in several cancer types.
Quercetin
— reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others).
Berberine
— shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models.
Genistein (soy isoflavone)
— decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models.
Honokiol (Magnolia bark)
— shown to eliminate or suppress CSC-like populations in oral, colon, glioma models.
Luteolin
— inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models.
Withaferin A (from Withania somnifera / ashwagandha)
— multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models.

Circadian disruption in cancer and regulation of cancer stem cells by circadian clock genes: An updated review
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy
Can we utilise the circadian clock to target cancer stem cells?


Scientific Papers found: Click to Expand⟱
3301- SIL,    Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid
- Review, Var, NA
Inflam↓, graphical abstract
TumCCA↑,
Apoptosis↓,
TumMeta↓,
TumCG↓,
angioG↓,
chemoP↑, The chemo-protective effects of silymarin and silibinin propose that they could be applied to decrease the side effects and increase the anti-tumor effects of chemotherapy and radiotherapy in different types of cancers.
radioP↑,
p‑ERK↓, fig 2
p‑p38↓,
p‑JNK↓,
P53↑,
Bcl-2↓,
Bcl-xL↓,
TGF-β↓,
MMP2↓,
MMP9↓,
E-cadherin↑,
Wnt↓,
Vim↓,
VEGF↓,
IL6↓,
STAT3↓,
*ROS↓,
IL1β↓,
PGE2↓,
CDK1↓, Causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9,
CycB↓,
survivin↓,
Mcl-1↓,
Casp3↑,
Casp9↑,
cMyc↓, Silibinin treatment diminishes c-MYC
COX2↓, Silibinin considerably down-regulated the expression of COX-2, HIF-1α, VEGF, Ang-2, Ang-4, MMP-2, MMP-9, CCR-2 and CXCR-4
Hif1a↓,
CXCR4↓,
CSCs↓, HCT-116 cells, Induction of apoptosis, suppression of migration, elimination of CSCs. Attenuation of EMT via decreased expression of N- cadherin and vimentin and increased expression of (E-cadherin).
EMT↓,
N-cadherin↓,
PCNA↓, Decrease in PCNA and cyclin D1 level.
cycD1↓,
ROS↑, Hepatocellular carcinoma: Silymarin nanoemulsion reduced the cell viability and increased ROS intensity and chromatin condensation.
eff↑, Silymarin + Curcumin
eff↑, Silibinin + Metformin
eff↑, Silibinin + 1, 25-vitamin D3
HER2/EBBR2↓, Significant down regulation of HER2 by 150 and 250 µM of silybin after 24, 48 and 72 h.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
angioG↓,1,   Apoptosis↓,1,   Bcl-2↓,1,   Bcl-xL↓,1,   Casp3↑,1,   Casp9↑,1,   CDK1↓,1,   chemoP↑,1,   cMyc↓,1,   COX2↓,1,   CSCs↓,1,   CXCR4↓,1,   CycB↓,1,   cycD1↓,1,   E-cadherin↑,1,   eff↑,3,   EMT↓,1,   p‑ERK↓,1,   HER2/EBBR2↓,1,   Hif1a↓,1,   IL1β↓,1,   IL6↓,1,   Inflam↓,1,   p‑JNK↓,1,   Mcl-1↓,1,   MMP2↓,1,   MMP9↓,1,   N-cadherin↓,1,   p‑p38↓,1,   P53↑,1,   PCNA↓,1,   PGE2↓,1,   radioP↑,1,   ROS↑,1,   STAT3↓,1,   survivin↓,1,   TGF-β↓,1,   TumCCA↑,1,   TumCG↓,1,   TumMeta↓,1,   VEGF↓,1,   Vim↓,1,   Wnt↓,1,  
Total Targets: 43

Results for Effect on Normal Cells:
ROS↓,1,  
Total Targets: 1

Scientific Paper Hit Count for: CSCs, Cancer Stem Cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:154  Target#:795  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page