Database Query Results : Betulinic acid, , CSCs

BetA, Betulinic acid: Click to Expand ⟱
Features:
Betulinic acid "buh-TOO-li-nik acid" is a natural compound with antiretroviral, anti malarial, anti-inflammatory and anticancer properties. It is found in the bark of several plants, such as white birch, ber tree and rosemary, and has a complex mode of action against tumor cells.
-Betulinic acid is a naturally occurring pentacyclic triterpenoid
-vitro concentrations range from 1–100 µM, in vivo studies in rodents have generally used doses from 10–100 mg/kg
-half-life reports vary 3-5 hrs?.
BioAv -hydrophobic molecule with relatively poor water solubility.

Pathways:
- induce ROS production
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: NRF2↓, SOD↓, GSH↓
- Raises AntiOxidant defense in Normal Cells: NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : , MMPs↓, MMP2↓, MMP9↓, TIMP2, IGF-1↓, VEGF↓, ROCK1↓, FAK↓, NF-κB↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, FAK↓, ERK↓, EMT↓, TOP1↓,
- inhibits glycolysis ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, GLi1↓, β-catenin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, β-catenin↓, AMPK↓, ERK↓, JNK,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,
- Selectivity: Cancer Cells vs Normal Cells


CSCs, Cancer Stem Cells: Click to Expand ⟱
Source:
Type:
Cancer Stem Cells

Phytochemicals (natural plant-derived compounds) that may affect CSCs:
Curcumin
— suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Resveratrol
— shown to reduce CSC populations and sphere formation in multiple models.
Sulforaphane (from broccoli sprouts)
— reported to inhibit CSC properties and pathways; active in vitro and in vivo.
EGCG (epigallocatechin-3-gallate, green tea)
— reduces CSC markers and sphere formation in several cancer types.
Quercetin
— reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others).
Berberine
— shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models.
Genistein (soy isoflavone)
— decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models.
Honokiol (Magnolia bark)
— shown to eliminate or suppress CSC-like populations in oral, colon, glioma models.
Luteolin
— inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models.
Withaferin A (from Withania somnifera / ashwagandha)
— multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models.

Circadian disruption in cancer and regulation of cancer stem cells by circadian clock genes: An updated review
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy
Can we utilise the circadian clock to target cancer stem cells?


Scientific Papers found: Click to Expand⟱
2763- BetA,    Betulinic Acid Inhibits the Stemness of Gastric Cancer Cells by Regulating the GRP78-TGF-β1 Signaling Pathway and Macrophage Polarization
- in-vitro, GC, NA
GRP78/BiP↓, The results indicated that BA inhibited not only GRP78-mediated stemness-related protein expression and GRP78-TGF-β-mediated macrophage polarization
TGF-β↓, BA Inhibits the Expression of GRP78, TGF-β1, and Stemness Markers in Human Gastric Cancer Cells
ChemoSen↑, BA is a promising candidate for clinical application in combination-chemotherapy targeting cancer stemness.
CSCs↓,
SMAD2↓, BA inhibited TGF-β/Smad2/3 signaling, TGF-β1 secretion, and OCT4 expression in a dose-dependent manner
SMAD3↓,
OCT4↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
ChemoSen↑,1,   CSCs↓,1,   GRP78/BiP↓,1,   OCT4↓,1,   SMAD2↓,1,   SMAD3↓,1,   TGF-β↓,1,  
Total Targets: 7

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: CSCs, Cancer Stem Cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:42  Target#:795  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page