Database Query Results : Honokiol, , CSCs

HNK, Honokiol: Click to Expand ⟱
Features:
Honokiol is a Lignan isolated from bark, seed cones and leaves of trees of Magnolia species. Honokiol was traditionally used for anxiety and stroke treatment, as well as the alleviation of flu symptoms.
-considered to have antioxidant properties
-low oral bioavailability and difficulty in intravenous administration
-the development of various formulations of honokiol, including microemulsion, liposomes, nanoparticles and micelle copolymers have successfully solved the problem of low water solubility.

Pathways:
-Inhibit NF-κB activation
-Downregulate STAT3 signalin
-Inhibiting the PI3K/Akt pathway,
-Inhibition of mTOR
-Influences various MAPK cascades—including ERK, JNK, and p38
-Inhibition of EGFR
-Inhibiting Notch pathway (CSCs)
-GPx4 inhibit
-Can induce ER stress in cancer cells, which contributes to the activation of unfolded protein response (UPR) pathways
-Disrupt the mitochondrial membrane potential in cancer cells.
-Reported to increase ROS production in cancer cells
-Can exhibit antioxidant properties in normal cells. - has some inhibitor activity but Not classified as HDAC inhibitor as weaker and may work more indirectly.
- is well-known in the research community for its role in activating SIRT3

-Note half-life 40–60 minutes
BioAv
Pathways:
- induce ROS production in cancer cells, and typically lowers ROS in normal cells
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, GRP78↑, Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ Prx
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, Pro-Inflammatory Cytokines : IL-1β↓, TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, VEGF↓, ROCK1↓, RhoA↓, NF-κB↓, CXCR4↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, EZH2↓, P53↑, HSP↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, cyclin E↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓,
- inhibits glycolysis and ATP depletion : HIF-1α↓, cMyc↓, GLUT1↓, LDH↓, LDHA↓, HK2↓, PDKs↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, EGFR↓,
- inhibits Cancer Stem Cells : CSC↓, CD133↓, β-catenin↓, sox2↓, nestin↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK, ERK↓, JNK, TrxR**, - Shown to modulate the nuclear translocation of SREBP-2 (related to cholesterol).
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


CSCs, Cancer Stem Cells: Click to Expand ⟱
Source:
Type:
Cancer Stem Cells

Phytochemicals (natural plant-derived compounds) that may affect CSCs:
Curcumin
— suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Resveratrol
— shown to reduce CSC populations and sphere formation in multiple models.
Sulforaphane (from broccoli sprouts)
— reported to inhibit CSC properties and pathways; active in vitro and in vivo.
EGCG (epigallocatechin-3-gallate, green tea)
— reduces CSC markers and sphere formation in several cancer types.
Quercetin
— reported to inhibit CSC proliferation, self-renewal and invasiveness (breast, endometrial, others).
Berberine
— shown to suppress CSC “stemness” and reduce tumorigenic properties in multiple models.
Genistein (soy isoflavone)
— decreases CSC markers, sphere formation and stemness signaling in prostate/breast/other models.
Honokiol (Magnolia bark)
— shown to eliminate or suppress CSC-like populations in oral, colon, glioma models.
Luteolin
— inhibits stemness/EMT and reduces CSC markers and self-renewal in breast, prostate and other models.
Withaferin A (from Withania somnifera / ashwagandha)
— multiple preclinical reports show WA targets CSCs and reduces tumor growth/metastasis in models.

Circadian disruption in cancer and regulation of cancer stem cells by circadian clock genes: An updated review
Potential Role of the Circadian Clock in the Regulation of Cancer Stem Cells and Cancer Therapy
Can we utilise the circadian clock to target cancer stem cells?


Scientific Papers found: Click to Expand⟱
4659- HNK,    Honokiol Eliminates Human Oral Cancer Stem-Like Cells Accompanied with Suppression of Wnt/β-Catenin Signaling and Apoptosis Induction
- in-vitro, Oral, NA
cl‑Casp3↑, Apoptosis of honokiol-treated SP cells was evidenced by increased annexin V staining and cleaved caspase-3 as well as decreased Survivin and Bcl-2.
survivin↓,
Bcl-2↓,
CD44↓, Mechanistically, honokiol inhibited the CD44 and Wnt/β-catenin signaling of SP cells
Wnt↓,
β-catenin/ZEB1↑,
EMT↓, EMT markers such as Slug and Snail were markedly suppressed by honokiol.
Slug↓,
Snail↓,
CSCs↓, Our findings indicate honokiol may be able to eliminate oral cancer stem cells through apoptosis induction, suppression of Wnt/β-catenin signaling, and inhibition of EMT.
Apoptosis↑, Honokiol-Induced Apoptosis of SAS SP Cells

4688- HNK,    Honokiol Suppresses Renal Cancer Cells’ Metastasis via Dual-Blocking Epithelial-Mesenchymal Transition and Cancer Stem Cell Properties through Modulating miR-141/ZEB2 Signaling
- vitro+vivo, RCC, A498
CSCs↓, honokiol suppressed renal cancer cells’ metastasis via dual-blocking epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties
EMT↓,
TumCG↓, In addition, honokiol inhibited tumor growth in vivo
PI3K↓, Honokiol was able to attenuate PI3K/Akt/mTOR signaling by down-regulation of Akt phosphorylation and upregulation of PTEN expression
Akt↓,
mTOR↓,
p‑Akt↓,
PTEN↑,
Wnt↓, In oral cancer cells, honokiol eliminated stem-like cells and suppressed Wnt/β-Catenin Signaling
β-catenin/ZEB1↓,

1120- HNK,    Honokiol suppresses renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling
- vitro+vivo, RCC, NA
EMT↓,
CSCs↓, cancer stem cell (CSC) properties
TumCG↓,
miR-141↑,

2864- HNK,    Honokiol: A Review of Its Anticancer Potential and Mechanisms
- Review, Var, NA
TumCCA↑, induction of G0/G1 and G2/M cell cycle arrest
CDK2↓, (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins),
EMT↓, epithelial–mesenchymal transition inhibition via the downregulation of mesenchymal markers
MMPs↓, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases
AMPK↑, (activation of 5′ AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling)
TumCI↓, inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)
TumCMig↓,
TumMeta↓,
VEGFR2↓,
*antiOx↑, diverse biological activities, including anti-arrhythmic, anti-inflammatory, anti-oxidative, anti-depressant, anti-thrombocytic, and anxiolytic activities
*Inflam↓,
*BBB↑, Due to its ability to cross the blood–brain barrier
*neuroP↑, beneficial towards neuronal protection through various mechanism, such as the preservation of Na+/K+ ATPase, phosphorylation of pro-survival factors, preservation of mitochondria, prevention of glucose, reactive oxgen species (ROS), and inflammatory
*ROS↓,
Dose↝, Generally, the concentrations used for the in vitro studies are between 0–150 μM
selectivity↑, Interestingly, honokiol has been shown to exhibit minimal cytotoxicity against on normal cell lines, including human fibroblast FB-1, FB-2, Hs68, and NIH-3T3 cells
Casp3↑, ↑ Caspase-3 & caspase-9
Casp9↑,
NOTCH1↓, Inhibition of Notch signalling: ↓ Notch1 & Jagged-1;
cycD1↓, ↓ cyclin D1 & c-Myc;
cMyc↓,
P21?, ↑ p21WAF1 protein
DR5↑, ↑ DR5 & cleaved PARP
cl‑PARP↑,
P53↑, ↑ phosphorylated p53 & p53
Mcl-1↑, ↓ Mcl-1 protein
p65↓, ↓ p65; ↓ NF-κB
NF-kB↓,
ROS↑, ↑ JNK activation ,Increase ROS activity:
JNK↑,
NRF2↑, ↑ Nrf2 & c-Jun protein activation
cJun↑,
EF-1α↓, ↓ EFGR; ↓ MAPK/PI3K pathway activity
MAPK↓,
PI3K↓,
mTORC1↓, ↓ mTORC1 function; ↑ LKB1 & cytosolic localisation
CSCs↓, Inhibit stem-like characteristics: ↓ Oct4, Nanog & Sox4 protein; ↓ STAT3;
OCT4↓,
Nanog↓,
SOX4↓,
STAT3↓,
CDK4↓, ↓ Cdk2, Cdk4 & p-pRbSer780;
p‑RB1↓,
PGE2↓, ↓ PGE2 production ↓ COX-2 ↑ β-catenin
COX2↓,
β-catenin/ZEB1↑,
IKKα↓, ↓ IKKα
HDAC↓, ↓ class I HDAC proteins; ↓ HDAC activity;
HATs↑, ↑ histone acetyltransferase (HAT) activity; ↑ histone H3 & H4
H3↑,
H4↑,
LC3II↑, ↑ LC3-II
c-Raf↓, ↓ c-RAF
SIRT3↑, ↑ Sirt3 mRNA & protein; ↓ Hif-1α protein
Hif1a↓,
ER Stress↑, ↑ ER stress signalling pathway activation; ↑ GRP78,
GRP78/BiP↑,
cl‑CHOP↑, ↑ cleaved caspase-9 & CHOP;
MMP↓, mitochondrial depolarization
PCNA↓, ↓ cyclin B1, cyclin D1, cyclin D2 & PCNA;
Zeb1↓, ↓ ZEB2 Inhibit
NOTCH3↓, ↓ Notch3/Hes1 pathway
CD133↓, ↓ CD133 & Nestin protein
Nestin↓,
ATG5↑, ↑ Atg7 protein activation; ↑ Atg5;
ATG7↑,
survivin↓, ↓ Mcl-1 & survivin protein
ChemoSen↑, honokiol potentiated the apoptotic effect of both doxorubicin and paclitaxel against human liver cancer HepG2 cells.
SOX2↓, Honokiol was shown to downregulate the expression of Oct4, Nanog, and Sox2 which were known to be expressed in osteosarcoma, breast carcinoma and germ cell tumours
OS↑, Lipo-HNK was also shown to prolong survival and induce intra-tumoral apoptosis in vivo.
P-gp↓, Honokiol was shown to downregulate the expression of P-gp at mRNA and protein levels in MCF-7/ADR, a human breast MDR cancer cell line
Half-Life↓, For i.v. administration, it has been found that there was a rapid rate of distribution followed by a slower rate of elimination (elimination half-life t1/2 = 49.22 min and 56.2 min for 5 mg or 10 mg of honokiol, respectively
Half-Life↝, male and female dogs was assessed. The elimination half-life (t1/2 in hours) was found to be 20.13 (female), 9.27 (female), 7.06 (male), 4.70 (male), and 1.89 (male) after administration of doses of 8.8, 19.8, 3.9, 44.4, and 66.7 mg/kg, respectively.
eff↑, Apart from that, epigallocatechin-3-gallate functionalized chitin loaded with honokiol nanoparticles (CE-HK NP), developed by Tang et al. [224], inhibit HepG2
BioAv↓, extensive biotransformation of honokiol may contribute to its low bioavailability.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 4

Results for Effect on Cancer/Diseased Cells:
Akt↓,1,   p‑Akt↓,1,   AMPK↑,1,   Apoptosis↑,1,   ATG5↑,1,   ATG7↑,1,   Bcl-2↓,1,   BioAv↓,1,   Casp3↑,1,   cl‑Casp3↑,1,   Casp9↑,1,   CD133↓,1,   CD44↓,1,   CDK2↓,1,   CDK4↓,1,   ChemoSen↑,1,   cl‑CHOP↑,1,   cJun↑,1,   cMyc↓,1,   COX2↓,1,   CSCs↓,4,   cycD1↓,1,   Dose↝,1,   DR5↑,1,   EF-1α↓,1,   eff↑,1,   EMT↓,4,   ER Stress↑,1,   GRP78/BiP↑,1,   H3↑,1,   H4↑,1,   Half-Life↓,1,   Half-Life↝,1,   HATs↑,1,   HDAC↓,1,   Hif1a↓,1,   IKKα↓,1,   JNK↑,1,   LC3II↑,1,   MAPK↓,1,   Mcl-1↑,1,   miR-141↑,1,   MMP↓,1,   MMPs↓,1,   mTOR↓,1,   mTORC1↓,1,   Nanog↓,1,   Nestin↓,1,   NF-kB↓,1,   NOTCH1↓,1,   NOTCH3↓,1,   NRF2↑,1,   OCT4↓,1,   OS↑,1,   P-gp↓,1,   P21?,1,   P53↑,1,   p65↓,1,   cl‑PARP↑,1,   PCNA↓,1,   PGE2↓,1,   PI3K↓,2,   PTEN↑,1,   c-Raf↓,1,   p‑RB1↓,1,   ROS↑,1,   selectivity↑,1,   SIRT3↑,1,   Slug↓,1,   Snail↓,1,   SOX2↓,1,   SOX4↓,1,   STAT3↓,1,   survivin↓,2,   TumCCA↑,1,   TumCG↓,2,   TumCI↓,1,   TumCMig↓,1,   TumMeta↓,1,   VEGFR2↓,1,   Wnt↓,2,   Zeb1↓,1,   β-catenin/ZEB1↓,1,   β-catenin/ZEB1↑,2,  
Total Targets: 84

Results for Effect on Normal Cells:
antiOx↑,1,   BBB↑,1,   Inflam↓,1,   neuroP↑,1,   ROS↓,1,  
Total Targets: 5

Scientific Paper Hit Count for: CSCs, Cancer Stem Cells
4 Honokiol
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:94  Target#:795  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page