Database Query Results : Magnetic Field Rotating, ,

MFrot, Magnetic Field Rotating: Click to Expand ⟱
Features:
Rotary Magnetic field can be generated by a spinning magnet or magnets. Or it can be implemented with 2 or more coils, power with a phase shift between them (90 deg for 2 coil implementation) (60deg for 3 coil implementation)
Targets affected are mostly the same as for Magnet fields
Main differences
- may enhance the EPR effect allowing targeting of drugs to cancer cells
- acts as wireless stirrer, especially on magnetic particles(inducing eddy currents in water media)
- research for use in nano surgery, and mechanical destruction of cancer cells
- continue to highlight ability to raise ROS in cancer cell and lower ROS in normal cells
- RMF may be responsible for Ca2+ distribution to pass across the plasma membrane(differental affected for cancer and normal cells)

Pathways:
- induce ROS production in cancer cells, while decreasing ROS in normal cells. Ca2+ is critical and the Ca2+ balance is increased in cancer cells while decreased in normal cells (example for wound healing)
- ROS↑ related: MMP↓(ΔΨm), Ca+2↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓, Prx,
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓,
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, MMPs↓, MMP2↓, MMP9↓, IGF-1↓, RhoA↓, NF-κB↓, TGF-β↓, ERK↓
- cause Cell cycle arrest : TumCCA↑,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, TNF-α↓, ERK↓,
- Others: PI3K↓, AKT↓, Wnt↓, AMPK, ERK↓, JNK,
- Synergies: < Others(review target notes), Neuroprotective, Cognitive,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
3489- MFrot,  MF,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer's disease mice.
- in-vivo, AD, NA
*Aβ↓, *motorD↑, *cognitive↑, *memory↑, *ROS↓,
224- MFrot,  MF,    A pilot study of extremely low-frequency magnetic fields in advanced non-small cell lung cancer: Effects on survival and palliation of general symptoms
- Human, NSCLC, NA
PleEff↓, breath↑, Pain↓, Appetite↑, Strength↑, BowelM↑, OS↑,
225- MFrot,  MF,    Extremely low frequency magnetic fields regulate differentiation of regulatory T cells: Potential role for ROS-mediated inhibition on AKT
- vitro+vivo, Lung, NA
MMP2↓, MMP9↓, FOXP3↓, ROS↑, p‑Akt↓,
226- MFrot,  MF,    Involvement of midkine expression in the inhibitory effects of low-frequency magnetic fields on cancer cells
- in-vitro, NA, A549 - in-vitro, NA, LoVo
TumCP↓, eff↝,
227- MFrot,  MF,    Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway
- in-vivo, Lung, A549 - in-vitro, Lung, A549
TumCG↓, miR-486↑, BCAP↓, Apoptosis↑, ROS↑, TumAuto↑, LC3II↑, ATG5↑, Beclin-1↑, p62↑, TumCP↓,
228- MFrot,  MF,    Rotating magnetic field ameliorates experimental autoimmune encephalomyelitis by promoting T cell peripheral accumulation and regulating the balance of Treg and Th1/Th17
- NA, MS, NA
*CD4+↑, *MCP1↓, RANTES↓, *MIP‑1α↓, *Treg lymp↓, *IFN-γ↓, *IL17↓, *CXCc↓,
229- MFrot,  MF,    Molecular mechanism of effect of rotating constant magnetic field on organisms
- in-vivo, Nor, NA
*NO↑, *5HT↓, *eff↝, *eff↝, *β-Endo↑, *other↓,
230- MFrot,  MF,    Study on the Effect of Rotating Magnetic Field on Cellular Response of Mammalian Cells
- in-vitro, Nor, L929
*ALDH↑,
516- MFrot,  immuno,  MF,    Anti-tumor effect of innovative tumor treatment device OM-100 through enhancing anti-PD-1 immunotherapy in glioblastoma growth
- vitro+vivo, GBM, U87MG
TumCP↓, Apoptosis↑, TumCMig↓, ROS↑, PD-L1↑, TumVol↓, eff↑, *toxicity∅, eff↑, *toxicity∅, Dose↝, tumCV↓, TumCI↓,
595- MFrot,  VitC,  MF,    The Effect of Alternating Magnetic Field Exposure and Vitamin C on Cancer Cells
- in-vitro, PC, MIA PaCa-2 - in-vitro, CRC, SW-620 - in-vitro, NA, HT1080 - in-vitro, Pca, PC3 - in-vitro, OS, U2OS - in-vitro, BC, MCF-7 - in-vitro, Nor, CCD-18Co
TumCD↑, eff↑, *TumCG∅,
1737- MFrot,  Fe,  MF,    Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe3O4 Particles for Killing A375 Melanoma Cells
- in-vitro, MB, A375
Dose∅, tumCV↓,
2258- MFrot,  MF,    EXTH-68. ONCOMAGNETIC TREATMENT SELECTIVELY KILLS GLIOMA CANCER CELLS BY INDUCING OXIDATIVE STRESS AND DNA DAMAGE
- in-vitro, GBM, GBM - in-vitro, Nor, SVGp12
TumVol↓, OS↑, γH2AX↑, DNAdam↑, selectivity↑, ROS↑, TumCD↑, eff↑, eff↓,
2259- MFrot,  MF,    Method and apparatus for oncomagnetic treatment
- in-vitro, GBM, NA
MMP↓, Bcl-2↓, BAX↑, Bak↑, Cyt‑c↑, Casp3↑, Casp9↑, DNAdam↑, ROS↑, lactateProd↑, Apoptosis↑, MPT↑, *selectivity↑, eff↑, MMP↓, selectivity↑, TCA?, H2O2↑, eff↑, *antiOx↑, H2O2↑, eff↓, GSH/GSSG↓, *toxicity∅, OS↑,
2262- MFrot,  MF,    Effects of 0.4 T Rotating Magnetic Field Exposure on Density, Strength, Calcium and Metabolism of Rat Thigh Bones
- in-vivo, ostP, NA
*BMD↑, *eff↓, *ALP↑, *other↑,
2311- MFrot,  MF,    Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials
- in-vivo, Nor, HaCaT
*COX2↓, *Inflam↓, *MMP9↑, *GPx↑, *Diff↑,
3488- MFrot,  MF,    Rotating magnetic field improves cognitive and memory impairments in APP/PS1 mice by activating autophagy and inhibiting the PI3K/AKT/mTOR signaling pathway
- in-vivo, AD, NA
*cognitive↑, *memory↑, *neuroP↑, *Aβ↓, *PI3K↓, *Akt↓, *mTOR↓,
223- MFrot,  MF,    The effect of rotating magnetic fields on the growth of Deal's guinea pig sarcoma transplanted subcutaneously in guinea pigs
- in-vivo, NA, NA
TumCG↓,
3491- MFrot,  MF,    Magnetically controlled cyclic microscale deformation of in vitro cancer invasion models
- in-vitro, BC, MDA-MB-231
Ca+2↑, ATF3↑, FOSB↑,
3492- MFrot,  Chemo,  MF,    Synergistic Effect of Chemotherapy and Magnetomechanical Actuation of Fe-Cr-Nb-B Magnetic Particles on Cancer Cells
eff↑, TumCD↑,
3493- MFrot,  MF,    Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes
- in-vivo, GBM, NA
TumCD↑, MMP↓, Cyt‑c↑, Apoptosis↑, OS↑, DNAdam↑,
3494- MFrot,  MF,    Magnetically switchable mechano-chemotherapy for enhancing the death of tumour cells by overcoming drug-resistance
- in-vitro, Var, NA
eff↑, TumCD↑,
3495- MFrot,  MF,    Synthesis of urchin-like nickel nanoparticles with enhanced rotating magnetic field-induced cell necrosis and tumor inhibition
- in-vivo, BC, NA
TumCG↓,
3496- MFrot,  GoldNP,  MF,    Enhancement of chemotherapy effects by non-lethal magneto-mechanical actuation of gold-coated magnetic nanoparticles
- in-vitro, Cerv, HeLa
eff↑, tumCV↓,
3497- MFrot,  MF,    The Effect of a Rotating Magnetic Field on the Regenerative Potential of Platelets
- Human, Nor, NA
*PDGFR-BB↑, *TGF-β↑, *IGF-1↑, *FGF↑, *angioG↑, *Inflam↓, *ROS↓,
3499- MFrot,  MF,    Rotating magnetic field delays human umbilical vein endothelial cell aging and prolongs the lifespan of Caenorhabditis elegans
- in-vitro, Nor, HUVECs
*AntiAge↑, *AMPK↑, *mPGES-1↓, *Ca+2↑, *ER Stress↑, *OS↑, *ROS↓,
3535- MFrot,  MF,    Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications
- Review, Nor, NA
*eff↑, *COL2A1↑, *SOX9↑, *Ca+2↑, *FAK↑, *F-actin↑, *Inflam↓, *other↑, *Diff↑, *BMD↑,
3567- MFrot,  MF,    The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
- Review, Stroke, NA
*eff↑, *ROS↓, *Inflam↓, *cognitive↑, *Catalase↑, *SOD↑, *SOD1↑, *SOD2↑, *GPx1↑, *GPx4↑, *IL1β↑, *neuroP↑, *toxicity∅,
3745- MFrot,  MF,    The neurobiological foundation of effective repetitive transcranial magnetic brain stimulation in Alzheimer's disease
- Review, AD, NA
*neuroP↑, *ROS↓, *Inflam↓, *5HT↑, *cFos↑, *Aβ↓, *memory↑, *BDNF↑, *Ach↑, *AChE↓, *cognitive↑, *BDNF↑, *NGF↑, *β-catenin/ZEB1↑, *p‑Akt↓, *mTOR↓, *MMP1↓, *MMP9↓, *MMP-10↓, *TIMP1↑, *TIMP2↑,
4566- MFrot,    On the mitochondrial aspect of reactive oxygen species action in external magnetic fields
- Study, Var, NA
ROS↑, ETC↓, selectivity↑,
4567- MFrot,    Oncogenic pathways and the electron transport chain: a dangeROS liaison
- Review, Var, NA
ROS↑, ETC↓, other↝, Fenton↑, RNS↑,
4569- MFrot,    Case Report: A new noninvasive device-based treatment of a mesencephalic H3 K27M glioma
- Case Report, GBM, NA
Dose↝, Dose↑, Dose↑, OS↑, toxicity↓, ETC↓, ROS↑,
203- MFrot,  MF,    Rotating Magnetic Field Induced Oscillation of Magnetic Particles for in vivo Mechanical Destruction of Malignant Glioma
- vitro+vivo, GBM, U87MG
lysoMP↓, TumVol↓, eff↑, Apoptosis↑, Ca+2↑,
185- MFrot,  MF,    Case Report: End-Stage Recurrent Glioblastoma Treated With a New Noninvasive Non-Contact Oncomagnetic Device
- Human, GBM, NA
TumVol↓, Dose↝, cognitive↑,
186- MFrot,  MF,    Selective induction of rapid cytotoxic effect in glioblastoma cells by oscillating magnetic fields
- in-vitro, GBM, GBM - in-vitro, Lung, NA
mt-ROS↑, Casp3↑, selectivity↑, TumCD↑, ETC↓,
187- MFrot,  MF,    Method for noninvasive whole-body stimulation with spinning oscillating magnetic fields and its safety in mice
- in-vivo, GBM, NA
selectivity↑, ROS↑, *ROS∅, *toxicity∅,
188- MFrot,  MF,    Spinning magnetic field patterns that cause oncolysis by oxidative stress in glioma cells
- in-vitro, GBM, GBM115 - in-vitro, GBM, DIPG
ROS↑, SDH↓, eff↓, RPM↑, eff↓, eff↑, eff↝, eff↝, Casp3↑, eff↝, SOD↓, ETC↓,
189- MFrot,  MF,    Cancer treatment by magneto-mechanical effect of particles, a review
- vitro+vivo, Var, NA
CellMemb↑, lysoMP↑, ERK↑, Apoptosis↑,
190- MFrot,  MF,    The efficacy and safety of low-frequency rotating static magnetic field therapy combined with chemotherapy on advanced lung cancer patients: a randomized, double-blinded, controlled clinical trial
- Human, Lung, NA
*IP-10/CXCL-10↑, *GM-CSF↑, *TREM-1↓,
191- MFrot,  MF,    Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis
- in-vivo, Nor, NA
*EGR4↑, *Netrins↑, *NSE↑, *NPY↑,
193- MFrot,  MF,    Rotating Magnetic Field Mitigates Ankylosing Spondylitis Targeting Osteocytes and Chondrocytes via Ameliorating Immune Dysfunctions
- in-vivo, Arthritis, NA
BMD↑, Cartilage↑, IL17↓, IL22↓, IL23↓, IL28↓, CD4+↓, CD8+↓, LAMB3↑, COL4↓, THBS2↓, ITGA11↓, PPARγ↑, ACAA1↓, PLIN1↓, FABP4↓, PCK1↓, UCP1↓, TNF-α↓,
195- MFrot,  MF,    Application of Rotating Magnetic Fields Increase the Activity of Antimicrobials Against Wound Biofilm Pathogens
- Human, Wounds, NA

198- MFrot,  MF,    Biological effects of rotating magnetic field: A review from 1969 to 2021
- Review, Var, NA
AntiCan↑, breath↑, Pain↓, Appetite↑, Strength↑, BowelM↑, TumMeta↓, TumCCA↑,
199- MFrot,  MF,    Modulation of Cellular Response to Different Parameters of the Rotating Magnetic Field (RMF)—An In Vitro Wound Healing Study
- in-vivo, Wounds, L929 - NA, NA, HaCaT
*ROS↑, *Ca+2↓, *other↝, *other↝, *other↝, *other↝, *other↝, *other?,
200- MFrot,  MF,    Moderate intensity low frequency rotating magnetic field inhibits breast cancer growth in mice
- in-vivo, BC, MDA-MB-231 - in-vivo, BC, MCF-7
ALAT↓, TumVol↓,
201- MFrot,  MF,    Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, BT549 - in-vitro, BC, MDA-MB-468
CCDC150↓, TGF-β↓, SMAD3↓,
202- MFrot,  MF,    Systematic simulation of tumor cell invasion and migration in response to time-varying rotating magnetic field
- Analysis, Var, MDA-MB-231
TumCG↓, MMPs↓, ECM/TCF↓,
184- MFrot,  MF,    Rotating Magnetic Fields Inhibit Mitochondrial Respiration, Promote Oxidative Stress and Produce Loss of Mitochondrial Integrity in Cancer Cells
- in-vitro, GBM, GBM
ROS↑, mitResp↓, mtDam↑, Dose↝, MMP?, OCR↓, mt-H2O2↑, eff↓, SDH↓, Thiols↓, GSH↓, TumCD↑, Casp3↑, Casp7↑, MPT↑, Cyt‑c↑, selectivity↑, GSH/GSSG↓, ETC↓,
204- MFrot,  MF,    Rotating magnetic field improved cognitive and memory impairments in a sporadic ad model of mice by regulating microglial polarization
- in-vivo, AD, NA
*NF-kB↓, *MAPK↓, *TLR4↓, *memory↑, *cognitive↑, *TGF-β1↑, *ARG↑, *IL4↑, *IL10↑, *IL6↓, *IL1↓, *TNF-α↓, *iNOS↓, *ROS↓, *NO↓, *MyD88↓, *p‑IKKα↓, *p‑IκB↓, *p‑p65↓, *p‑JNK↓, *p‑p38↓, *ERK↓, *neuroP↑, *Aβ↓,
205- MFrot,  MF,    Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis
- vitro+vivo, BC, MDA-MB-231
OS↑, F-actin↓, TumCI↓, TumCMig↓, Rho↓, selectivity↑,
209- MFrot,  MF,    The effect of a rotating magnetic field on the antioxidant system in healthy volunteers - preliminary study
- Human, NA, NA
*SOD↑, *Catalase↑, *ROMO1↑, *MDA↓, *TAC↑, *ROS↓,
212- MFrot,  MF,    Rotating magnetic field inhibits Aβ protein aggregation and alleviates cognitive impairment in Alzheimer’s disease mice
- in-vivo, AD, SH-SY5Y
*β-Amyloid↓, *cognitive↑, *motorD↑, *ROS↓, *memory↑, *Aβ?,
213- MFrot,  MF,    Rotating Magnetic Field-Assisted Reactor Enhances Mechanisms of Phage Adsorption on Bacterial Cell Surface
- in-vitro, NA, NA
CellMemb↑,
214- MFrot,  MF,    Modification of bacterial cellulose through exposure to the rotating magnetic field
- in-vitro, Nor, NA
CellMemb↑, GlucoseCon↓,
215- MFrot,  MF,    Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields
- in-vitro, PC, CAF
TumVol↓, lysoMP↑, CAFs/TAFs↓, eff↑,
216- MFrot,  MF,    Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field
- in-vitro, GBM, U87MG
lysoMP↓, CellMemb↑,
217- MFrot,  MF,    Effect of low-frequency rotary magnetic fields on advanced gastric cancer
- in-vivo, GC, HL-60 - in-vivo, GC, SK-HEP-1
OS↑, Pain↓, ChemoSideEff↓, Weight↑, Strength↑, Sleep↑,
218- MFrot,  MF,    Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells
- in-vitro, Nor, NA
*PPARγ↓, *p‑JNK↑, *Wnt↑, *ALP∅, *COL1∅, *RUNX2∅, *OCN∅, *FABP4↓, *p‑JNK↑, *Diff↓,
219- MFrot,  MF,    The expression and intranuclear distribution of nucleolin in HL-60 and K-562 cells after repeated, short-term exposition to rotating magnetic fields
- in-vitro, AML, HL-60 - in-vitro, AML, K562
nucleolin↑,
220- MFrot,  MF,    Effect of low frequency magnetic fields on melanoma: tumor inhibition and immune modulation
- in-vitro, Melanoma, B16-F10
OS↑, DCells↑, T-Cell↑, Apoptosis↑, IL1↑, IFN-γ↓, IL10↑, TumCG↓, ROS↑,
221- MFrot,  MF,    Low Frequency Magnetic Fields Enhance Antitumor Immune Response against Mouse H22 Hepatocellular Carcinoma
- in-vivo, Liver, NA
OS↑, TumCG↓, IL6↓, GM-CSF↓, CXCc↓, Macrophages↑, DCells↑, CD4+↑, CD8+↑, IL12↑,
222- MFrot,  MF,    LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway
- in-vitro, Lung, A549
TumCG↓, OS↑, miR-34a↑, E2Fs↓, P53↑, TfR1/CD71↓, Ferritin↓,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 61

Pathway results for Effect on Cancer / Diseased Cells:


Redox & Oxidative Stress

ATF3↑, 1,   Fenton↑, 1,   GSH↓, 1,   GSH/GSSG↓, 2,   H2O2↑, 2,   mt-H2O2↑, 1,   RNS↑, 1,   ROS↑, 12,   mt-ROS↑, 1,   RPM↑, 1,   SOD↓, 1,   Thiols↓, 1,  

Metal & Cofactor Biology

Ferritin↓, 1,   TfR1/CD71↓, 1,  

Mitochondria & Bioenergetics

ETC↓, 6,   mitResp↓, 1,   MMP?, 1,   MMP↓, 3,   MPT↑, 2,   mtDam↑, 1,   OCR↓, 1,   PleEff↓, 1,   SDH↓, 2,   UCP1↓, 1,  

Core Metabolism/Glycolysis

ACAA1↓, 1,   ALAT↓, 1,   BCAP↓, 1,   FABP4↓, 1,   GlucoseCon↓, 1,   lactateProd↑, 1,   PCK1↓, 1,   PLIN1↓, 1,   PPARγ↑, 1,   TCA?, 1,  

Cell Death

p‑Akt↓, 1,   Apoptosis↑, 7,   Bak↑, 1,   BAX↑, 1,   Bcl-2↓, 1,   Casp3↑, 4,   Casp7↑, 1,   Casp9↑, 1,   Cyt‑c↑, 3,   lysoMP↓, 2,   lysoMP↑, 2,   TumCD↑, 7,  

Transcription & Epigenetics

BowelM↑, 2,   other↝, 1,   tumCV↓, 3,  

Autophagy & Lysosomes

ATG5↑, 1,   Beclin-1↑, 1,   LC3II↑, 1,   p62↑, 1,   TumAuto↑, 1,  

DNA Damage & Repair

DNAdam↑, 3,   P53↑, 1,   γH2AX↑, 1,  

Cell Cycle & Senescence

E2Fs↓, 1,   TumCCA↑, 1,  

Proliferation, Differentiation & Cell State

ERK↑, 1,   miR-34a↑, 1,   TumCG↓, 7,  

Migration

Ca+2↑, 2,   CAFs/TAFs↓, 1,   Cartilage↑, 1,   CCDC150↓, 1,   COL4↓, 1,   F-actin↓, 1,   FOSB↑, 1,   ITGA11↓, 1,   LAMB3↑, 1,   miR-486↑, 1,   MMP2↓, 1,   MMP9↓, 1,   MMPs↓, 1,   Rho↓, 1,   SMAD3↓, 1,   TGF-β↓, 1,   THBS2↓, 1,   TumCI↓, 2,   TumCMig↓, 2,   TumCP↓, 3,   TumMeta↓, 1,  

Angiogenesis & Vasculature

ECM/TCF↓, 1,   nucleolin↑, 1,  

Barriers & Transport

CellMemb↑, 4,  

Immune & Inflammatory Signaling

CD4+↓, 1,   CD4+↑, 1,   CXCc↓, 1,   DCells↑, 2,   FOXP3↓, 1,   GM-CSF↓, 1,   IFN-γ↓, 1,   IL1↑, 1,   IL10↑, 1,   IL12↑, 1,   IL17↓, 1,   IL22↓, 1,   IL23↓, 1,   IL28↓, 1,   IL6↓, 1,   Macrophages↑, 1,   PD-L1↑, 1,   RANTES↓, 1,   T-Cell↑, 1,   TNF-α↓, 1,  

Drug Metabolism & Resistance

Dose↑, 2,   Dose↝, 4,   Dose∅, 1,   eff↓, 5,   eff↑, 12,   eff↝, 4,   selectivity↑, 7,  

Clinical Biomarkers

ALAT↓, 1,   BMD↑, 1,   Ferritin↓, 1,   IL6↓, 1,   PD-L1↑, 1,  

Functional Outcomes

AntiCan↑, 1,   Appetite↑, 2,   breath↑, 2,   ChemoSideEff↓, 1,   cognitive↑, 1,   OS↑, 10,   Pain↓, 3,   Sleep↑, 1,   Strength↑, 3,   toxicity↓, 1,   TumVol↓, 6,   Weight↑, 1,  

Infection & Microbiome

CD8+↓, 1,   CD8+↑, 1,  
Total Targets: 132

Pathway results for Effect on Normal Cells:


Redox & Oxidative Stress

antiOx↑, 1,   Catalase↑, 2,   GPx↑, 1,   GPx1↑, 1,   GPx4↑, 1,   MDA↓, 1,   ROMO1↑, 1,   ROS↓, 8,   ROS↑, 1,   ROS∅, 1,   SOD↑, 2,   SOD1↑, 1,   SOD2↑, 1,   TAC↑, 1,  

Core Metabolism/Glycolysis

AMPK↑, 1,   FABP4↓, 1,   PPARγ↓, 1,  

Cell Death

Akt↓, 1,   p‑Akt↓, 1,   iNOS↓, 1,   p‑JNK↓, 1,   p‑JNK↑, 2,   MAPK↓, 1,   p‑p38↓, 1,  

Kinase & Signal Transduction

OCN∅, 1,   SOX9↑, 1,  

Transcription & Epigenetics

Ach↑, 1,   other?, 1,   other↓, 1,   other↑, 2,   other↝, 5,   TREM-1↓, 1,  

Protein Folding & ER Stress

ER Stress↑, 1,  

Proliferation, Differentiation & Cell State

ALDH↑, 1,   cFos↑, 1,   Diff↓, 1,   Diff↑, 2,   ERK↓, 1,   FGF↑, 1,   IGF-1↑, 1,   mTOR↓, 2,   PI3K↓, 1,   RUNX2∅, 1,   TumCG∅, 1,   Wnt↑, 1,  

Migration

ARG↑, 1,   Ca+2↓, 1,   Ca+2↑, 2,   COL1∅, 1,   COL2A1↑, 1,   F-actin↑, 1,   FAK↑, 1,   MMP-10↓, 1,   MMP1↓, 1,   MMP9↓, 1,   MMP9↑, 1,   Netrins↑, 1,   TGF-β↑, 1,   TGF-β1↑, 1,   TIMP1↑, 1,   TIMP2↑, 1,   Treg lymp↓, 1,   β-catenin/ZEB1↑, 1,   β-Endo↑, 1,  

Angiogenesis & Vasculature

angioG↑, 1,   EGR4↑, 1,   NO↓, 1,   NO↑, 1,   NPY↑, 1,   PDGFR-BB↑, 1,  

Immune & Inflammatory Signaling

CD4+↑, 1,   COX2↓, 1,   CXCc↓, 1,   GM-CSF↑, 1,   IFN-γ↓, 1,   p‑IKKα↓, 1,   IL1↓, 1,   IL10↑, 1,   IL17↓, 1,   IL1β↑, 1,   IL4↑, 1,   IL6↓, 1,   Inflam↓, 5,   IP-10/CXCL-10↑, 1,   p‑IκB↓, 1,   MCP1↓, 1,   MIP‑1α↓, 1,   mPGES-1↓, 1,   MyD88↓, 1,   NF-kB↓, 1,   p‑p65↓, 1,   TLR4↓, 1,   TNF-α↓, 1,  

Synaptic & Neurotransmission

5HT↓, 1,   5HT↑, 1,   AChE↓, 1,   BDNF↑, 2,   NGF↑, 1,  

Protein Aggregation

Aβ?, 1,   Aβ↓, 4,   β-Amyloid↓, 1,  

Drug Metabolism & Resistance

eff↓, 1,   eff↑, 2,   eff↝, 2,   selectivity↑, 1,  

Clinical Biomarkers

ALP↑, 1,   ALP∅, 1,   BMD↑, 2,   IL6↓, 1,   NSE↑, 1,  

Functional Outcomes

AntiAge↑, 1,   cognitive↑, 6,   memory↑, 5,   motorD↑, 2,   neuroP↑, 4,   OS↑, 1,   toxicity∅, 5,  
Total Targets: 117

Query results interpretion may depend on "conditions" listed in the research papers.
Such Conditions may include : 
  -low or high Dose
  -format for product, such as nano of lipid formations
  -different cell line effects
  -synergies with other products 
  -if effect was for normal or cancerous cells
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:192  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page