| Features: |
| Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties. - Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells. - GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells. - Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production - Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant - Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH - Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown -may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog). Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans. • Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability. -Note half-life 6 hrs. BioAv is poor, use piperine or other enhancers Pathways: - induce ROS production at high concentration. Lowers ROS at lower concentrations - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓ but conversely is known as a NRF2↑ activator in cancer - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF">FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
| 147- | AG, | EGCG, | CUR, | Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | MCF-7 |
| 3446- | ALA, | CUR, | The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression |
| - | in-vivo, | Nor, | NA |
| 2635- | Api, | CUR, | Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 1024- | Api, | CUR, | Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects |
| - | vitro+vivo, | Melanoma, | A375 | - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Melanoma, | RPMI-7951 |
| 2703- | BBR, | CUR, | SFN, | UA, | GamB | Naturally occurring anti-cancer agents targeting EZH2 |
| - | Review, | Var, | NA |
| 3754- | BBR, | CUR, | EGCG, | Hup, | Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review |
| 3514- | Bor, | CUR, | Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta |
| - | in-vivo, | AD, | NA |
| 1426- | Bos, | CUR, | Chemo, | Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer |
| - | in-vivo, | CRC, | NA | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vitro, | RCC, | SW-620 | - | in-vitro, | RCC, | HT-29 | - | in-vitro, | CRC, | Caco-2 |
| 145- | CA, | CUR, | The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity |
| - | in-vitro, | NA, | NA |
| 2015- | CAP, | CUR, | urea, | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
| - | Review, | Var, | NA |
| 428- | Chit, | docx, | CUR, | Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer |
| - | vitro+vivo, | Lung, | H460 | - | vitro+vivo, | Lung, | H1299 | - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | PC9 |
| 3628- | Croc, | VitE, | CUR, | Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s Disease |
| - | Review, | AD, | NA |
| 3795- | CUR, | Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence |
| - | Review, | AD, | NA |
| 3585- | CUR, | Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer |
| - | Study, | NA, | NA |
| 3794- | CUR, | Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activities |
| - | Review, | AD, | NA |
| 3793- | CUR, | Curcumin Downregulates GSK3 and Cdk5 in Scopolamine-Induced Alzheimer’s Disease Rats Abrogating Aβ40/42 and Tau Hyperphosphorylation |
| - | in-vivo, | AD, | NA |
| 3760- | CUR, | GI, | CAP, | RosA, | PI | Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessment |
| 3753- | CUR, | Gala, | A Novel Galantamine–Curcumin Hybrid Inhibits Butyrylcholinesterase: A Molecular Dynamics Study |
| - | Study, | AD, | NA |
| 3752- | CUR, | Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor |
| - | in-vivo, | AD, | NA |
| 3751- | CUR, | Gala, | A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders |
| - | in-vivo, | AD, | NA |
| - | in-vitro, | AD, | SH-SY5Y |
| 3748- | CUR, | RES, | Hup, | Riv, | Gala | Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer's disease |
| - | Review, | AD, | NA |
| 3590- | CUR, | The Holy Grail of Curcumin and its Efficacy in Various Diseases: Is Bioavailability Truly a Big Concern? |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3588- | CUR, | The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies |
| - | Review, | AD, | NA |
| 3586- | CUR, | PI, | Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers |
| - | in-vivo, | NA, | NA |
| 4656- | CUR, | EGCG, | Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| - | in-vivo, | AD, | NA |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 4655- | CUR, | Inhibition of Cancer Stem-like Cells by Curcumin and Other Polyphenol Derivatives in MDA-MB-231 TNBC Cells |
| - | in-vitro, | BC, | NA |
| 4654- | CUR, | Stem Cell Therapy: Curcumin Does the Trick |
| - | Review, | Var, | NA |
| 4653- | CUR, | Curcumin: a promising agent targeting cancer stem cells |
| - | Review, | Var, | NA |
| 4652- | CUR, | Anticancer effect of curcumin on breast cancer and stem cells |
| - | Review, | BC, | NA |
| 4651- | CUR, | Targeting cancer stem cells by curcumin and clinical applications |
| - | Review, | Var, | NA |
| 4650- | CUR, | Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells |
| - | Review, | Var, | NA |
| - | in-vitro, | NA, | NA |
| 3797- | CUR, | Curcumin reverses cognitive deficits through promoting neurogenesis and synapse plasticity via the upregulation of PSD95 and BDNF in mice |
| - | in-vitro, | NA, | NA |
| 4175- | CUR, | Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress |
| - | in-vivo, | NA, | NA |
| 4171- | CUR, | Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons |
| - | in-vivo, | NA, | NA |
| 3862- | CUR, | RES, | The metalloproteinase ADAM10: A useful therapeutic target? |
| - | Review, | AD, | NA |
| 3861- | CUR, | Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment? |
| - | Review, | Var, | NA |
| 3860- | CUR, | Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic Mice |
| - | in-vivo, | AD, | NA |
| 3857- | CUR, | Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment |
| - | Review, | AD, | NA |
| 3856- | CUR, | Curcumin induces IL-6 receptor shedding via the ADAM10 proteinase |
| - | in-vitro, | AD, | NA |
| 3831- | CUR, | Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease |
| - | Review, | AD, | NA |
| 2816- | CUR, | NEUROPROTECTIVE EFFECTS OF CURCUMIN |
| - | Review, | AD, | NA | - | Review, | Park, | NA |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 2823- | CUR, | Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis |
| - | Study, | Nor, | NA |
| 2822- | CUR, | Identification of curcumin derivatives as human glyoxalase I inhibitors: A combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studies |
| - | Analysis, | Nor, | NA |
| 2821- | CUR, | Antioxidant curcumin induces oxidative stress to kill tumor cells (Review) |
| - | Review, | Var, | NA |
| 2820- | CUR, | Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic Pathways |
| - | in-vitro, | HCC, | HepG2 |
| 2819- | CUR, | Chemo, | Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury |
| - | Review, | Var, | NA |
| 2818- | CUR, | Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways |
| - | Review, | AD, | NA |
| 2817- | CUR, | Neuroprotection by curcumin: A review on brain delivery strategies |
| - | Review, | Nor, | NA |
| 2975- | CUR, | Curcumin inhibits proliferation, migration and neointimal formation of vascular smooth muscle via activating miR-22 |
| - | in-vivo, | Nor, | NA |
| 2815- | CUR, | Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin |
| 2814- | CUR, | Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management |
| - | Review, | Var, | NA |
| 2813- | CUR, | Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases |
| - | Review, | NA, | NA |
| 2812- | CUR, | Curcumin Induces High Levels of Topoisomerase I− and II−DNA Complexes in K562 Leukemia Cells |
| - | in-vitro, | AML, | K562 |
| 2811- | CUR, | Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study |
| - | Human, | Pca, | NA |
| 2810- | CUR, | Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials |
| - | Review, | Nor, | NA |
| 2809- | CUR, | Comparative absorption of curcumin formulations |
| - | in-vivo, | Nor, | NA |
| 2808- | CUR, | Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation |
| - | in-vitro, | Liver, | HUH7 |
| 3576- | CUR, | Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease |
| - | Review, | AD, | NA |
| 3583- | CUR, | Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers |
| - | Review, | Arthritis, | NA |
| 3582- | CUR, | PI, | Therapeutic and Preventive Effects of Piperine and its Combination with Curcumin as a Bioenhancer Against Aluminum-Induced Damage in the Astrocyte Cells |
| 3581- | CUR, | Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's Disease |
| - | NA, | AD, | NA |
| 3580- | CUR, | Curcumin Acts as Post-protective Effects on Rat Hippocampal Synaptosomes in a Neuronal Model of Aluminum-Induced Toxicity |
| - | in-vivo, | AD, | NA |
| 3579- | CUR, | SNP, | Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin |
| - | Review, | NA, | NA |
| 3578- | CUR, | SIL, | Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferation |
| - | in-vitro, | CRC, | DLD1 |
| 3577- | CUR, | Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study |
| - | Trial, | AD, | NA |
| 3584- | CUR, | Curcumin in Health and Diseases: Alzheimer’s Disease and Curcumin Analogues, Derivatives, and Hybrids |
| 3575- | CUR, | The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse |
| - | in-vivo, | AD, | NA |
| 3574- | CUR, | The effect of curcumin (turmeric) on Alzheimer's disease: An overview |
| - | Review, | AD, | NA |
| 2980- | CUR, | Inhibition of NF B and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation |
| - | in-vivo, | PC, | NA |
| 2979- | CUR, | GB, | Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death |
| - | in-vitro, | Lung, | H157 | - | in-vitro, | Lung, | H1299 |
| 2978- | CUR, | N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells |
| - | in-vitro, | Lung, | A549 |
| 2977- | CUR, | Curcumin Down-Regulates Toll-Like Receptor-2 Gene Expression and Function in Human Cystic Fibrosis Bronchial Epithelial Cells |
| - | in-vitro, | CF, | NA |
| 2976- | CUR, | Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway |
| - | in-vitro, | Oral, | HSC3 | - | in-vitro, | HNSCC, | CAL33 |
| 469- | CUR, | The inhibitory effect of curcumin via fascin suppression through JAK/STAT3 pathway on metastasis and recurrence of ovary cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 |
| 461- | CUR, | Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 462- | CUR, | Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress |
| - | in-vitro, | Pca, | PC3 |
| 463- | CUR, | Curcumin induces autophagic cell death in human thyroid cancer cells |
| - | in-vitro, | Thyroid, | K1 | - | in-vitro, | Thyroid, | FTC-133 | - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | 8505C |
| 464- | CUR, | Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis |
| - | in-vitro, | Thyroid, | BCPAP | - | in-vitro, | Thyroid, | TPC-1 |
| 465- | CUR, | Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | HUH7 | - | vitro+vivo, | Liver, | MHCC-97H |
| 466- | CUR, | Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1 |
| - | in-vitro, | Liver, | HepG2 | - | in-vitro, | Liver, | HuT78 |
| 467- | CUR, | Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling |
| - | in-vitro, | Liver, | HepG2 |
| 468- | CUR, | 5-FU, | Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability |
| - | vitro+vivo, | Liver, | HepG2 | - | vitro+vivo, | Liver, | 402 | - | vitro+vivo, | Liver, | Bel7 |
| 458- | CUR, | Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion |
| - | vitro+vivo, | GC, | SGC-7901 |
| 470- | CUR, | Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line |
| - | in-vitro, | Ovarian, | SKOV3 |
| 471- | CUR, | Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells |
| - | in-vitro, | Ovarian, | SKOV3 | - | in-vitro, | Ovarian, | A2780S |
| 472- | CUR, | Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis |
| - | vitro+vivo, | Ovarian, | SKOV3 | - | vitro+vivo, | Ovarian, | A2780S |
| 473- | CUR, | Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade |
| - | in-vitro, | Oral, | HSC4 | - | in-vitro, | Oral, | Ca9-22 |
| 474- | CUR, | Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines |
| - | in-vitro, | PC, | PANC1 | - | in-vitro, | PC, | MIA PaCa-2 |
| 475- | CUR, | Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway |
| - | in-vitro, | PC, | PANC1 |
| 476- | CUR, | The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer |
| - | in-vitro, | PC, | PATU-8988 | - | in-vitro, | PC, | PANC1 |
| 477- | CUR, | Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 478- | CUR, | Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells |
| - | in-vitro, | Cerv, | SiHa |
| 449- | CUR, | Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a |
| - | vitro+vivo, | CRC, | SW480 |
| 438- | CUR, | Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats |
| - | vitro+vivo, | CRC, | CC531 |
| 439- | CUR, | Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway |
| - | in-vitro, | CRC, | LGR5 |
| 440- | CUR, | Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells |
| - | vitro+vivo, | CRC, | SW480 | - | vitro+vivo, | CRC, | HT-29 |
| 441- | CUR, | Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p |
| - | in-vitro, | CRC, | HCT116 |
| 442- | CUR, | 5-FU, | Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress |
| - | in-vitro, | CRC, | HCT116 |
| 9- | CUR, | Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo |
| - | vitro+vivo, | MG, | U87MG | - | vitro+vivo, | MG, | T98G |
| 444- | CUR, | Cisplatin, | LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells |
| - | vitro+vivo, | CRC, | HCT8 |
| 445- | CUR, | Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 | - | in-vitro, | CRC, | SW480 | - | in-vitro, | CRC, | SW-620 |
| - | in-vitro, | CRC, | SW480 |
| 447- | CUR, | OXA, | Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway |
| - | vitro+vivo, | CRC, | HCT116 |
| 448- | CUR, | Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation |
| - | in-vitro, | CRC, | HT-29 |
| 460- | CUR, | Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | TCCSUP | - | in-vitro, | Bladder, | J82 |
| 450- | CUR, | Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 |
| 451- | CUR, | The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer |
| - | vitro+vivo, | HNSCC, | SCC15 | - | vitro+vivo, | HNSCC, | SNU1076 | - | vitro+vivo, | HNSCC, | SNU1041 |
| 452- | CUR, | Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells |
| - | vitro+vivo, | HNSCC, | SCC9 | - | vitro+vivo, | HNSCC, | FaDu | - | vitro+vivo, | HNSCC, | HaCaT |
| 453- | CUR, | Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells |
| - | in-vitro, | GC, | AGS |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 456- | CUR, | Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells |
| - | vitro+vivo, | GC, | SGC-7901 |
| 457- | CUR, | Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling |
| - | in-vitro, | GC, | SGC-7901 | - | in-vitro, | GC, | BGC-823 |
| 482- | CUR, | PDT, | The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro |
| - | in-vitro, | Bladder, | RT112 | - | in-vitro, | Bladder, | UMUC3 |
| 459- | CUR, | Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells |
| - | in-vitro, | Bladder, | T24 | - | in-vitro, | Bladder, | RT4 |
| 1980- | CUR, | Rad, | Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells |
| - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Laryn, | FaDu |
| 1488- | CUR, | Anti-Cancer and Radio-Sensitizing Effects of Curcumin in Nasopharyngeal Carcinoma |
| 1505- | CUR, | Epigenetic targets of bioactive dietary components for cancer prevention and therapy |
| - | Review, | NA, | NA |
| 1510- | CUR, | Chemo, | Combination therapy in combating cancer |
| - | Review, | NA, | NA |
| 1609- | CUR, | EA, | Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells |
| - | in-vitro, | Cerv, | NA |
| 1616- | CUR, | EA, | Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid |
| - | in-vitro, | Nor, | NA |
| 1792- | CUR, | LEC, | Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism |
| - | in-vitro, | Arthritis, | RAW264.7 | - | NA, | NA, | HCC-38 |
| 1809- | CUR, | Oxy, | Long-term stabilisation of myeloma with curcumin |
| - | Case Report, | Melanoma, | NA |
| 1977- | CUR, | Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Lung, | A549 |
| 1978- | CUR, | Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells |
| - | in-vitro, | Cerv, | HeLa |
| 1979- | CUR, | Rad, | Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase |
| - | in-vitro, | Lung, | A549 |
| 1487- | CUR, | Relationship and interactions of curcumin with radiation therapy |
| - | Review, | Var, | NA |
| 1981- | CUR, | Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity |
| - | in-vitro, | Lung, | NA |
| 1982- | CUR, | Inhibition of thioredoxin reductase by curcumin analogs |
| - | in-vitro, | NA, | NA |
| 2304- | CUR, | Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Cerv, | HeLa | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Nor, | HEK293 |
| 2305- | CUR, | Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN |
| - | in-vitro, | BC, | MCF-7 |
| 2307- | CUR, | Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin |
| - | in-vitro, | Colon, | HT29 | - | in-vitro, | Laryn, | FaDu |
| 2308- | CUR, | Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells |
| - | in-vitro, | Liver, | HepG2 |
| 2312- | CUR, | Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy |
| - | Review, | Var, | NA |
| 2466- | CUR, | Regulatory Effects of Curcumin on Platelets: An Update and Future Directions |
| - | Review, | Nor, | NA |
| 2579- | CUR, | ART/DHA, | Curcumin-Artemisinin Combination Therapy for Malaria |
| - | in-vivo, | NA, | NA |
| 2654- | CUR, | Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence |
| - | Review, | Var, | NA |
| 1034- | CUR, | immuno, | Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3 |
| - | in-vivo, | NA, | NA |
| 480- | CUR, | Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells |
| - | in-vitro, | GBM, | SNB19 |
| 481- | CUR, | CHr, | Api, | Flavonoid-induced glutathione depletion: Potential implications for cancer treatment |
| - | in-vitro, | Liver, | A549 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | AML, | HL-60 |
| 443- | CUR, | Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells |
| - | in-vitro, | CRC, | SW480 |
| 483- | CUR, | PDT, | Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin |
| - | in-vivo, | NA, | A431 |
| 484- | CUR, | PDT, | Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light |
| - | in-vitro, | Melanoma, | NA |
| 485- | CUR, | PDT, | Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin |
| - | in-vitro, | Melanoma, | NA |
| 872- | CUR, | RES, | New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects |
| - | in-vitro, | BC, | TUBO | - | in-vitro, | BC, | SALTO |
| 933- | CUR, | EP, | Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study |
| - | in-vitro, | BC, | NA |
| 990- | CUR, | Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT-29 |
| 1006- | CUR, | The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2) |
| - | in-vitro, | Liver, | HepG2 |
| 479- | CUR, | Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments |
| - | in-vitro, | Tong, | CAL27 |
| 1108- | CUR, | Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition |
| - | Review, | NA, | NA |
| 1383- | CUR, | BBR, | RES, | Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases |
| - | Review, | NA, | NA |
| 1408- | CUR, | Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots |
| - | in-vitro, | Lung, | A549 |
| 1409- | CUR, | Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma |
| - | in-vivo, | CCA, | Walker256 |
| 1410- | CUR, | Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway |
| - | vitro+vivo, | OS, | MG63 |
| 1411- | CUR, | Cisplatin, | Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects |
| - | Review, | Var, | NA |
| 1418- | CUR, | Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis |
| - | Review, | Arthritis, | NA |
| 1485- | CUR, | Chemo, | Rad, | Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs |
| - | Review, | Var, | NA |
| 1486- | CUR, | Curcumin and lung cancer--a review |
| - | Review, | Lung, | NA |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | NA, | DU145 | - | in-vitro, | NA, | LNCaP |
| 132- | CUR, | Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells |
| - | in-vitro, | Pca, | NA |
| 133- | CUR, | Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis |
| - | in-vitro, | Pca, | NA |
| 134- | CUR, | RES, | MEL, | SIL, | Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 135- | CUR, | Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 136- | CUR, | docx, | Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 137- | CUR, | Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling |
| - | in-vitro, | Pca, | DU145 |
| 140- | CUR, | Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling |
| - | in-vitro, | Pca, | PC3 |
| 141- | CUR, | Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer |
| - | in-vivo, | Pca, | PC3 |
| 142- | CUR, | Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts |
| - | in-vivo, | Pca, | LNCaP |
| 143- | CUR, | Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 131- | CUR, | Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer |
| - | vitro+vivo, | Pca, | LNCaP | - | vitro+vivo, | Pca, | 22Rv1 |
| 146- | CUR, | EGCG, | Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | DU145 |
| 151- | CUR, | Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | LNCaP |
| 152- | CUR, | Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer |
| - | in-vivo, | Pca, | NA |
| 153- | CUR, | Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo |
| - | in-vivo, | Pca, | C4-2B |
| 154- | CUR, | Curcumin inhibits expression of inhibitor of DNA binding 1 in PC3 cells and xenografts |
| - | vitro+vivo, | Pca, | PC3 |
| 155- | CUR, | Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 |
| 157- | CUR, | Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 158- | CUR, | Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis |
| - | vitro+vivo, | Pca, | LNCaP |
| 159- | CUR, | Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment |
| - | in-vitro, | Pca, | DU145 |
| 121- | CUR, | Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study |
| - | in-vivo, | Pca, | NA |
| 10- | CUR, | Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 11- | CUR, | Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway |
| - | in-vitro, | PC, | PANC1 |
| 12- | CUR, | Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells |
| - | in-vitro, | MB, | DAOY |
| 13- | CUR, | Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action |
| - | Review, | BC, | NA |
| 14- | CUR, | Curcumin, a Dietary Component, Has Anticancer, Chemosensitization, and Radiosensitization Effects by Down-regulating the MDM2 Oncogene through the PI3K/mTOR/ETS2 Pathway |
| - | vitro+vivo, | Pca, | PC3 |
| 15- | CUR, | UA, | Effects of curcumin and ursolic acid in prostate cancer: A systematic review |
| 117- | CUR, | Increased Intracellular Reactive Oxygen Species Mediates the Anti-Cancer Effects of WZ35 via Activating Mitochondrial Apoptosis Pathway in Prostate Cancer Cells |
| - | in-vivo, | Pca, | RM-1 | - | in-vivo, | Pca, | DU145 |
| 118- | CUR, | Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 120- | CUR, | A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation |
| - | Human, | Pca, | NA |
| 436- | CUR, | Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti‐lung cancer cell invasion |
| - | in-vitro, | Lung, | A549 |
| 122- | CUR, | isoFl, | Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen |
| - | Human, | Pca, | LNCaP |
| 123- | CUR, | Synthesis of novel 4-Boc-piperidone chalcones and evaluation of their cytotoxic activity against highly-metastatic cancer cells |
| - | in-vitro, | Colon, | LoVo | - | in-vitro, | Colon, | COLO205 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | 22Rv1 |
| 124- | CUR, | Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | C4-2B |
| 125- | CUR, | Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway |
| - | in-vitro, | adrenal, | H295R |
| 126- | CUR, | Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells |
| - | in-vitro, | Pca, | 22Rv1 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 127- | CUR, | The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis |
| - | in-vitro, | Pca, | NA |
| 128- | CUR, | RES, | Evaluation of biophysical as well as biochemical potential of curcumin and resveratrol during prostate cancer |
| - | in-vivo, | Pca, | NA |
| 129- | CUR, | Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation |
| - | vitro+vivo, | Pca, | LNCaP |
| 130- | CUR, | Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 423- | CUR, | Inhibition of TLR4/TRIF/IRF3 Signaling Pathway by Curcumin in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 406- | CUR, | Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2 |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | Hepat, | HepG2 |
| 407- | CUR, | Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress |
| - | in-vitro, | Melanoma, | A375 |
| 160- | CUR, | Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2 |
| 409- | CUR, | Curcumin Inhibits Glyoxalase 1—A Possible Link to Its Anti-Inflammatory and Anti-Tumor Activity |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | BC, | MDA-MB-231 |
| 410- | CUR, | Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROS |
| - | vitro+vivo, | GC, | AGS | - | vitro+vivo, | GC, | HGC27 |
| 411- | CUR, | Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway |
| - | in-vitro, | BC, | MDA-MB-231 |
| 412- | CUR, | Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 413- | CUR, | Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells |
| - | in-vitro, | BC, | MCF-7 |
| 414- | CUR, | Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 415- | CUR, | Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axis |
| - | vitro+vivo, | BC, | MDA-MB-231 |
| 417- | CUR, | Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression |
| - | vitro+vivo, | BC, | MCF-7 | - | vitro+vivo, | BC, | MDA-MB-231 | - | vitro+vivo, | BC, | MDA-MB-468 |
| 420- | CUR, | Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 422- | CUR, | Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines |
| - | in-vitro, | BC, | HCC-38 | - | in-vitro, | BC, | T47D |
| 408- | CUR, | Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system |
| - | in-vitro, | BC, | MCF-7 |
| 424- | CUR, | Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 |
| 425- | CUR, | Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells |
| - | in-vitro, | BC, | T47D | - | in-vitro, | BC, | MCF-7 | - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MDA-MB-468 |
| 426- | CUR, | Use of cancer chemopreventive phytochemicals as antineoplastic agents |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | CAL51 |
| 427- | CUR, | Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | H460 | - | vitro+vivo, | Lung, | A549 |
| 429- | CUR, | TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression |
| - | in-vitro, | Lung, | H1299 | - | in-vitro, | Lung, | A549 |
| 430- | CUR, | Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling |
| - | vitro+vivo, | Lung, | A549 |
| 431- | CUR, | Curcumin suppresses the stemness of non-small cell lung cancer cells via promoting the nuclear-cytoplasm translocation of TAZ |
| - | in-vitro, | Lung, | A549 | - | in-vitro, | Lung, | H1299 |
| 432- | CUR, | Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells |
| - | in-vitro, | Lung, | H446 |
| 433- | CUR, | Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression |
| - | in-vitro, | Lung, | A549 |
| 434- | CUR, | Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad |
| - | in-vitro, | Lung, | A549 |
| 435- | CUR, | Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway |
| - | in-vitro, | Lung, | A549 |
| 437- | CUR, | Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids |
| - | vitro+vivo, | CRC, | TCO1 | - | vitro+vivo, | CRC, | TCO2 |
| 161- | CUR, | MeSA, | Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | Pca, | DU145 |
| 165- | CUR, | Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells |
| - | in-vitro, | Pca, | LNCaP |
| 167- | CUR, | Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria |
| - | in-vitro, | Pca, | PC3 |
| 164- | CUR, | Anti-tumor activity of curcumin against androgen-independent prostate cancer cells via inhibition of NF-κB and AP-1 pathway in vitro |
| - | in-vitro, | Pca, | PC3 |
| 163- | CUR, | Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells |
| - | in-vitro, | Pca, | LNCaP |
| 168- | CUR, | Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism |
| - | in-vitro, | Pca, | PC3 |
| 169- | CUR, | Curcumin inhibits the expression of vascular endothelial growth factor and androgen-independent prostate cancer cell line PC-3 in vitro |
| - | in-vitro, | Pca, | PC3 |
| 162- | CUR, | EGCG, | SFN, | Shattering the underpinnings of neoplastic architecture in LNCap: synergistic potential of nutraceuticals in dampening PDGFR/EGFR signaling and cellular proliferation |
| - | in-vitro, | Pca, | LNCaP |
| 170- | CUR, | Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis |
| - | vitro+vivo, | Pca, | PC3 |
| 181- | CUR, | The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo |
| - | vitro+vivo, | Pca, | DU145 |
| 182- | CUR, | RES, | GI, | Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | LAPC-4 |
| 183- | CUR, | Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | PC3 |
| 404- | CUR, | Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy |
| - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | H1299 |
| 405- | CUR, | 5-FU, | Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis |
| - | vitro+vivo, | CRC, | HCT116 |
| 1617- | EA, | CUR, | The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin |
| - | in-vitro, | Nor, | NA |
| 1619- | EA, | CUR, | Antimutagenic Effect of the Ellagic Acid and Curcumin Combinations |
| - | in-vitro, | Nor, | NA |
| 649- | EGCG, | CUR, | PI, | Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets |
| - | Review, | Var, | NA |
| 652- | EGCG, | VitK2, | CUR, | Case Report of Unexpectedly Long Survival of Patient With Chronic Lymphocytic Leukemia: Why Integrative Methods Matter |
| - | Case Report, | CLL, | NA |
| 685- | EGCG, | CUR, | SFN, | RES, | GEN | The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein |
| - | Analysis, | NA, | NA |
| 3715- | FA, | CUR, | PS, | The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic Mice |
| - | in-vivo, | AD, | NA |
| 831- | GAR, | CUR, | Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells |
| - | in-vitro, | AML, | HL-60 |
| 797- | GAR, | CUR, | Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells |
| - | in-vitro, | BC, | MCF-7 | - | in-vitro, | OS, | U2OS | - | in-vitro, | OS, | SaOS2 |
| 808- | GAR, | CUR, | Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells |
| - | in-vitro, | PC, | Bxpc-3 | - | in-vitro, | PC, | PANC1 |
| 1998- | Myr, | CUR, | Thioredoxin-dependent system. Application of inhibitors |
| - | Review, | Var, | NA |
| 150- | NRF, | CUR, | docx, | Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells |
| - | in-vitro, | Pca, | C4-2B |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 873- | QC, | RES, | CUR, | PI, | Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption |
| - | in-vitro, | Nor, | NA |
| 918- | QC, | CUR, | VitC, | Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method |
| - | Analysis, | NA, | NA |
| 156- | Ralox, | Tam, | GEN, | CUR, | Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
| 103- | RES, | CUR, | QC, | The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice |
| - | vitro+vivo, | BC, | 4T1 |
| 871- | RES, | CUR, | QC, | The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice |
| - | in-vitro, | BC, | 4T1 | - | in-vivo, | BC, | 4T1 |
| 3755- | RosA, | CUR, | Development of Acetylcholinesterase (AChE) Inhibitor |
| - | Study, | AD, | NA |
| 2306- | SIL, | CUR, | RES, | EA, | Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer Treatment |
| - | in-vitro, | BC, | MDA-MB-231 |
| 4415- | SNP, | SDT, | CUR, | Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells |
| - | in-vitro, | BC, | MCF-7 |
| 139- | Tomatine, | CUR, | Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells |
| - | in-vitro, | Pca, | PC3 |
| 2133- | TQ, | CUR, | Cisplatin, | Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling |
| - | in-vitro, | Nor, | HEK293 | - | in-vivo, | NA, | NA |
| 119- | UA, | CUR, | RES, | Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism |
| - | in-vitro, | Pca, | DU145 | - | in-vitro, | Pca, | PC3 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:65 Target#:% State#:% Dir#:%
wNotes=on sortOrder:rid,rpid