Database Query Results : Curcumin, , β-catenin/ZEB1

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


β-catenin/ZEB1, β-catenin/ZEB1: Click to Expand ⟱
Source: HalifaxProj (inactivate)
Type:
β-catenin and ZEB1 are two important proteins that play significant roles in cancer biology, particularly in the processes of cell adhesion, epithelial-mesenchymal transition (EMT), and tumor progression.
β-catenin is a key component of the Wnt signaling pathway, which is crucial for cell proliferation, differentiation, and survival. It also plays a role in cell-cell adhesion by linking cadherins to the actin cytoskeleton.
Role in Cancer: ZEB1 is often upregulated in cancer and is associated with increased invasiveness and metastasis. It can repress epithelial markers (like E-cadherin) and promote mesenchymal markers (like N-cadherin and vimentin), facilitating the transition to a more aggressive cancer phenotype.

(MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis.


Scientific Papers found: Click to Expand⟱
3861- CUR,    Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment?
- Review, Var, NA
*antiOx↑, fig 1
*Inflam↓,
PI3K↓, By inhibiting pro-survival and pro-inflammatory signaling cascades such as PI3K/Akt/mTOR, MAPK, Wnt/β-catenin, NF-κB, Hedgehog, Notch, and JAK/STAT3, curcumin effectively impedes cancer cell growth and promotes apoptosis.
Akt↓,
mTOR↓,
Wnt↓,
β-catenin/ZEB1↓,
NF-kB↓,
HH↓,
NOTCH↓,
JAK↓,
STAT3↓,
ADAM10↓, Curcumin may inhibit the function of the Notch pathway in cancer by inhibiting Notch pathway activators such as gamma secretases, Notch ligands, or ADAM10.

2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo.
TumCI↓,
TumCG↓,
TumMeta↓,
Sp1/3/4↓, curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells.
HDAC4↓,
FAK↓, Curcumin inhibits focal adhesion kinase (FAK) phosphorylation
CD24↓, Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells
E-cadherin↑, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT.
EMT↓,
TumCP↓,
NF-kB↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
AP-1↝,
STAT3↓, downregulation of CD24 reduces STAT and FAK activity, decreases cell proliferation, metastasis in human tumor
P53?,
β-catenin/ZEB1↓, CUR could activate protein kinase D1 (PKD1) suggesting that suppressing of β-catenin transcriptional activity prevents growth of prostate cancer
NOTCH1↝,
Hif1a↝,
PPARα↝,
Rho↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
MMP2↓,
MMP9↓,

449- CUR,    Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a
- vitro+vivo, CRC, SW480
TumCP↓,
β-catenin/ZEB1↓,
TCF↓, TCF4
miR-21↓,
NKD2↑,
miR-130a↓, main target affecting others

442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑,
TumCP↓,
TumCCA↑, block of G0/G1 phase
TET1↑,
NKD2↑,
Wnt↓,
EMT↓,
Vim↑,
E-cadherin↓,
β-catenin/ZEB1↓,
TCF↓, TCF4
AXIN1↓, Axin

455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓,
Gli1↓,
Foxm1↓,
β-catenin/ZEB1↓,
TumCMig↓, induced S phase cell cycle arrest
Apoptosis↑,
TumCCA↑,
Wnt↓,
EMT↓,
E-cadherin↑,
Vim↓,

443- CUR,    Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells
- in-vitro, CRC, SW480
DNMT1↓,
DNMT3A↓,
N-cadherin↓,
Vim↓,
Wnt↓, Wnt3a
Snail↓, Snail1
Twist↓,
β-catenin/ZEB1↓,
E-cadherin↑,
EMT↓, Curcumin incubation inhibited EMT
CDX2↓,

152- CUR,    Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer
- in-vivo, Pca, NA
β-catenin/ZEB1↓,
AR↓,
STAT3↓,
p‑Akt↓,
Mcl-1↓,
Bcl-xL↓,
cl‑PARP↑, cleavage
miR-21↓,
miR-205↑,

12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓,
Shh↓,
Gli1↓,
PTCH1↓,
cMyc↓,
n-MYC↓,
cycD1↓,
Bcl-2↓,
NF-kB↓,
Akt↓,
β-catenin/ZEB1↓,
survivin↓,

15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝,
Akt↝,
AR↝,
Apoptosis↝,
Bcl-2↝,
Casp3↝,
BAX↝,
P21↝,
ROS↝,
Apoptosis↝,
Bcl-xL↝,
JNK↝,
MMP2↝,
P53↝,
PSA↝,
VEGF↝,
COX2↝,
cycD1↝,
EGFR↝,
IL6↝,
β-catenin/ZEB1↝,
mTOR↝,
NRF2↝,
p‑Akt↝,
AP-1↝,
Cyt‑c↝,
PI3K↝,
PTEN↝,
Cyc↝,
TNF-α↝,

126- CUR,    Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vitro, Pca, DU145
miR-34a↑,
β-catenin/ZEB1↓,
cMyc↓,
P21↑,
cycD1↓,
PCNA↓,

420- CUR,    Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Vim↓,
Fibronectin↓,
β-catenin/ZEB1↓,
E-cadherin↓,
CD44↑, The CD44+CD24-/low subpopulation was larger in mammospheres when MCF-7 and MDA-MB-231 adherent cells were cultured with SFM.
CD24↓,
OCT4↓,
Nanog↓,
SOX2↓,

424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓,
p‑STAT1↓, pSTAT-1
p‑Akt↓,
p‑p44↓, p-p44
p‑p42↓, p-p42
RAS↓,
Raf↓, c-RAF
Vim↓,
β-catenin/ZEB1↓,
P53↓,
Bcl-2↓,
Mcl-1↓,
PIAS-3↑,
SOCS-3↑,
SOCS1↑,
ROS↑,
NF-kB↓, NF-kB inactivation, ROS generation and PA depletion in MCF-7, MDA-MB-453 and MDA-MB-231 breast can- cer cells
PAO↑,
SSAT↑,
P21↑,
Bak↑,

165- CUR,    Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
AR↓,
β-catenin/ZEB1↓,
p‑Akt↓,
GSK‐3β↓,
p‑β-catenin/ZEB1↑, phosphorylated
cycD1↓,
cMyc↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 13

Results for Effect on Cancer/Diseased Cells:
ADAM10↓,1,   Akt↓,2,   Akt↝,1,   p‑Akt↓,3,   p‑Akt↝,1,   AP-1↝,2,   Apoptosis↑,2,   Apoptosis↝,2,   AR↓,2,   AR↝,1,   AXIN1↓,1,   Bak↑,1,   BAX↝,1,   Bcl-2↓,2,   Bcl-2↝,1,   Bcl-xL↓,1,   Bcl-xL↝,1,   Casp3↝,1,   CD24↓,2,   CD44↑,1,   CDX2↓,1,   cMyc↓,3,   COX2↝,1,   Cyc↝,1,   cycD1↓,3,   cycD1↝,1,   Cyt‑c↝,1,   DNMT1↓,1,   DNMT3A↓,1,   E-cadherin↓,2,   E-cadherin↑,3,   EGFR↝,1,   EMT↓,4,   FAK↓,1,   Fibronectin↓,1,   Foxm1↓,1,   Gli1↓,2,   GSK‐3β↓,1,   HDAC4↓,1,   HH↓,2,   Hif1a↝,1,   IL6↝,1,   JAK↓,1,   JNK↝,1,   Mcl-1↓,2,   miR-130a↓,1,   miR-205↑,1,   miR-21↓,2,   miR-34a↑,1,   MMP2↓,1,   MMP2↝,1,   MMP9↓,1,   mTOR↓,1,   mTOR↝,1,   N-cadherin↓,1,   n-MYC↓,1,   Nanog↓,1,   NF-kB↓,4,   NF-kB↝,1,   NKD2↑,2,   NOTCH↓,1,   NOTCH1↝,1,   NRF2↝,1,   OCT4↓,1,   P21↑,2,   P21↝,1,   p‑p42↓,1,   p‑p44↓,1,   P53?,1,   P53↓,1,   P53↝,1,   PAO↑,1,   cl‑PARP↑,1,   PCNA↓,1,   PI3K↓,1,   PI3K↝,1,   PIAS-3↑,1,   PPARα↝,1,   PSA↝,1,   PTCH1↓,1,   PTEN↝,1,   Raf↓,1,   RAS↓,1,   Rho↓,1,   ROS↑,1,   ROS↝,1,   Shh↓,2,   Snail↓,1,   SOCS-3↑,1,   SOCS1↑,1,   SOX2↓,1,   Sp1/3/4↓,1,   Src↓,1,   SSAT↑,1,   p‑STAT1↓,1,   STAT3↓,3,   survivin↓,1,   TCF↓,2,   TET1↑,1,   TNF-α↝,1,   TumCCA↑,2,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,2,   TumCP↓,3,   TumMeta↓,1,   Twist↓,1,   VEGF↝,1,   Vim↓,4,   Vim↑,1,   Wnt↓,4,   β-catenin/ZEB1↓,12,   β-catenin/ZEB1↝,1,   p‑β-catenin/ZEB1↑,1,  
Total Targets: 114

Results for Effect on Normal Cells:
antiOx↑,1,   Inflam↓,1,  
Total Targets: 2

Scientific Paper Hit Count for: β-catenin/ZEB1, β-catenin/ZEB1
13 Curcumin
1 5-fluorouracil
1 Ursolic acid
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:342  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page