Database Query Results : Curcumin, , HDAC

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


HDAC, Histone deacetylases: Click to Expand ⟱
Source:
Type:
Enzymes involved in regulating gene expression by removing acetyl groups from histones, the proteins around which DNA is wrapped.
-Many cancers exhibit altered expression levels of HDACs, which can contribute to the dysregulation of genes involved in cell growth, survival, and differentiation.
-HDACs can repress the expression of tumor suppressor genes, leading to uncontrolled cell proliferation and survival. This repression can be a key factor in the development and progression of cancer.
-HDAC inhibitors (HDACi) have been developed and are being investigated for their ability to reactivate silenced genes, induce cell cycle arrest, and promote apoptosis in cancer cells.
-HDAC1, HDAC2): Often overexpressed in various cancers, including breast, prostate, and colorectal cancers. Their overexpression is associated with poor prognosis.
-HDAC4, HDAC5): These may have both oncogenic and tumor-suppressive roles depending on the context and cancer type.
-While HDACs are not classified as traditional oncogenes, their overexpression and activity can contribute to oncogenic processes.
-HDAC inhibitor works by preventing the removal of acetyl groups from histones, thereby modulating gene expression, influencing cell behavior, and potentially reversing aberrant gene silencing seen in various diseases.
-HDAC inhibitors can help reactivate these genes, thereby inhibiting growth and inducing apoptosis in cancer cells.


Scientific Papers found: Click to Expand⟱
2816- CUR,    NEUROPROTECTIVE EFFECTS OF CURCUMIN
- Review, AD, NA - Review, Park, NA
*neuroP↑, Curcumin has an outstanding safety profile and a number of pleiotropic actions with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and anti-protein-aggregate activities.
*Inflam↓,
*antiOx↑,
*BioAv↓, despite concerns about poor oral bioavailability, curcumin has at least 10 known neuroprotective action
*AP-1↓, Curcumin inhibition of AP-1 and NF-κB-mediated transcription occurs at relatively low (<100 nM) doses and might be due to inhibition of histone acetylase (HAT) or activation of histone deacetylase (HDAC) activity
*NF-kB↓,
*HATs↓,
*HDAC↑,
Dose↑, At high doses (>3 µM) that are relevant to colon cancer but unlikely achievable with oral delivery in plasma and tissues outside of the gut, curcumin can act as an alkylating agent,10 a phase II enzyme inducer,11 and stimulate antioxidant response el
*ROS↓, We also found that curcmin reduced oxidative damage, inflammation, and cognitive deficits in rats receiving CNS infusions of toxic Aβ
*cognitive↑,
*Aβ↓, dose-dependently blocked Aβ aggregation at submicromolar concentrations

1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑,
Apoptosis↑,
DNMTs↓, curcumin also inhibits DNMT activities and histone modification such as HDAC inhibition in tumorigenesis
HDAC↓,
HATs↓, inhibitory activity against HDACs and HATs in several in vitro cancer models
TumCP↓,
p300↓, Significant decreases in the amounts of p300, HDAC1, HDAC3, and HDAC8
HDAC1↓,
HDAC3↓,
HDAC8↓,
NF-kB↓, inhibition of nuclear translocation of the NF-κB/p65 subunit

163- CUR,    Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells
- in-vitro, Pca, LNCaP
MeCP2↓, decreased the MeCP2-Neurog1 binding dramatically
Neurog1↑, our present study provides evidence on the CpG demethylation ability of CUR on Neurog1 while activating its expression
HDAC↓, CUR Treatment Decreases the Total HDAC Activity (50%)


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 3

Results for Effect on Cancer/Diseased Cells:
Apoptosis↑,1,   DNMTs↓,1,   Dose↑,1,   HATs↓,1,   HDAC↓,2,   HDAC1↓,1,   HDAC3↓,1,   HDAC8↓,1,   MeCP2↓,1,   Neurog1↑,1,   NF-kB↓,1,   p300↓,1,   TumCCA↑,1,   TumCP↓,1,  
Total Targets: 14

Results for Effect on Normal Cells:
antiOx↑,1,   AP-1↓,1,   Aβ↓,1,   BioAv↓,1,   cognitive↑,1,   HATs↓,1,   HDAC↑,1,   Inflam↓,1,   neuroP↑,1,   NF-kB↓,1,   ROS↓,1,  
Total Targets: 11

Scientific Paper Hit Count for: HDAC, Histone deacetylases
3 Curcumin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:140  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page