Database Query Results : Curcumin, , TumCCA

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCCA, Tumor cell cycle arrest: Click to Expand ⟱
Source:
Type:
Tumor cell cycle arrest refers to the process by which cancer cells stop progressing through the cell cycle, which is the series of phases that a cell goes through to divide and replicate. This arrest can occur at various checkpoints in the cell cycle, including the G1, S, G2, and M phases. S, G1, G2, and M are the four phases of mitosis.


Scientific Papers found: Click to Expand⟱
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, curcumin and AKBA induced upregulation of tumor-suppressive miR-34a and downregulation of miR-27a in CRC cells
miR-27a-3p↓,
TumCG↓,
BAX↑,
Bcl-2↓,
PARP1↓,
TumCCA↑,
Apoptosis↑,
cMyc↓,
CDK4↓,
CDK6↓,
cycD1↓,
ChemoSen↑, combined treatment further increased the inhibitory effects
miR-34a↑, miR-34a expression was upregulated by curcumin and further elevated by concurrent treatment with curcumin and AKBA in HCT116 cell
miR-27a-3p↓,

4652- CUR,    Anticancer effect of curcumin on breast cancer and stem cells
- Review, BC, NA
TumCP↓, inhibiting cancer cell proliferation and metastasis and by inducing cell cycle arrest and apoptosis.
TumMeta↓,
TumCCA↑,
Apoptosis↑,
CSCs↓, curcumin inhibits the proliferation of breast cancer stem cells (BCSC), an important factor that influences cancer recurrence.
NF-kB↓, curcumin exhibited a potent antiproliferation effect by inhibiting the binding activity of NF-KB
Telomerase↓, Curcumin inhibited telomerase activity in human leukemia cells [21,22] and brain tumor cells [23] in a dose-dependent and time-dependent manner.
Cyt‑c↑, curcumin releases cytochrome C and upregulates caspase-9 and caspase-3 expression
Casp9↑,
Casp3↑,
E-cadherin↑, Curcumin inhibits the migratory ability of BSCS by amplifying the E-cadherin/β-catenin negative feedback loop.

468- CUR,  5-FU,    Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, 402 - vitro+vivo, Liver, Bel7
Apoptosis↑,
TumCCA↑, G2/M cell cycle arrest
PI3k/Akt/mTOR↓,
p‑PI3K↓,
Bacteria↑, gut microbiota: Lactobacillus, Epsilonbacteraeota, Helicobacterac-eae, Campylobacterales, Helicobacter, Escherichia-shigella, Bifidobacterium, Campylobacteria
cl‑Casp3↑,

474- CUR,    Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2
TumCD↑,
Apoptosis↑,
DNAdam↑,
γH2AX↑, yH2AX-MFI
TumCCA↑, radiation-sensitive G2/M-phase

477- CUR,    Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells
- in-vitro, Cerv, SiHa
TumCP↓,
TumCCA↑, Inducing G2/M cell cycle arrest
Apoptosis↑,
TumAuto↑,
CycB↓, cyclins B1
CDC25↓,
ROS↑,
p62↑,
LC3‑Ⅱ/LC3‑Ⅰ↑,
cl‑Casp3↑,
cl‑PARP↑,
P53↑,
P21↑,

440- CUR,    Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, HT-29
NNMT↓,
p‑STAT3↓,
TumCP↓,
TumCCA↑, G2/M phase cell cycle arrest
ROS↑,

442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑,
TumCP↓,
TumCCA↑, block of G0/G1 phase
TET1↑,
NKD2↑,
Wnt↓,
EMT↓,
Vim↑,
E-cadherin↓,
β-catenin/ZEB1↓,
TCF↓, TCF4
AXIN1↓, Axin

448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑,
TumCCA↑, G2/M cell cycle arrest
p‑Akt↓,
Akt↓,
Bcl-2↓,
p‑BAD↓,
BAD↑,
cl‑PARP↑,
ROS↑,
HSP27↑,
Beclin-1↑,
p62↑,
GPx1↓,
GPx4↓,

452- CUR,    Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells
- vitro+vivo, HNSCC, SCC9 - vitro+vivo, HNSCC, FaDu - vitro+vivo, HNSCC, HaCaT
TumCCA↑, arrested cell cycle at phase G2 /M
PI3k/Akt/mTOR↓,
Casp3↑,
EGFR↓, 0.18 fold
EGF↑, Curcumin induced a noticeable increase in the expression of EGF (11.3-fold change)
PRKCG↑, 13.2 fold
p‑Akt↓,
p‑mTOR↓,
RPS6KA1↓, 0.17 fold
EIF4E↓, 0.18 fold
proCasp3↓,

453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓,
survivin↓,
BAX↑,
TumCCA↑, Gemini-Cur compound induced G2/M cell cycle arrest

455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓,
Gli1↓,
Foxm1↓,
β-catenin/ZEB1↓,
TumCMig↓, induced S phase cell cycle arrest
Apoptosis↑,
TumCCA↑,
Wnt↓,
EMT↓,
E-cadherin↑,
Vim↓,

456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑,
TumCP↓,
TumCMig↓,
TumCI↓,
TumCCA↑, inhibited cell cycle progression in G0/G1-S phase
Bcl-2↓,
CDK4/6↓, CDK4
cycD1↓,

459- CUR,    Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells
- in-vitro, Bladder, T24 - in-vitro, Bladder, RT4
Trop2↓,
Apoptosis↑,
cycE1↓,
p27↑,
TumCCA↑, curcumin induced G2/M cell cycle arrest

1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑,
Apoptosis↑,
DNMTs↓, curcumin also inhibits DNMT activities and histone modification such as HDAC inhibition in tumorigenesis
HDAC↓,
HATs↓, inhibitory activity against HDACs and HATs in several in vitro cancer models
TumCP↓,
p300↓, Significant decreases in the amounts of p300, HDAC1, HDAC3, and HDAC8
HDAC1↓,
HDAC3↓,
HDAC8↓,
NF-kB↓, inhibition of nuclear translocation of the NF-κB/p65 subunit

2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, ROS induction has been implicated as one of the mechanisms of the anticancer activity of curcumin and its derivatives in various cancers
Catalase↓, Curcumin induces ROS by inhibiting the activity of various ROS-related metabolic enzymes, such as CAT, SOD1, glyoxalase 1, and NAD(P)H dehydrogenase [quinone] 1 [146,149]
SOD1↓,
GLO-I↓,
NADPH↓,
TumCCA↑, ROS accumulation further mediates G1 or G2/M cell cycle arrest [146,147,150,154], senescence [146], and apoptosis.
Apoptosis↑,
Akt↓, downregulation of AKT phosphorylation [145
ER Stress↑, endoplasmic reticulum stress (namely through the PERK–ATF4–CHOP axis)
JNK↑, activation of the JNK pathway [151],
STAT3↓, and inhibition of STAT3 [155].
BioAv↑, Additionally, the combination of curcumin and piperine, a pro-oxidative phytochemical that drastically increases the bioavailability of curcumin in humans

480- CUR,    Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells
- in-vitro, GBM, SNB19
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumCCA↑, G2/M phase
NEDD9↓,
NOTCH1↓,
p‑Akt↓,

479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumCCA↑, S-phase cell cycle arrest
Bcl-2↓,
BAX↑,
cl‑Casp3↑,

1409- CUR,    Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma
- in-vivo, CCA, Walker256
TumCG↓,
ROS↑,
MMP↓,
STAT3↓,
TumCCA↑, G2/M cell cycle
eff↓, Pretreatment of N-acetyl cysteine (NAC), an antioxidant agent, could fully reverse the WZ26-induced ROS-mediated changes in CCA cells

1411- CUR,  Cisplatin,    Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects
- Review, Var, NA
ChemoSen↑, decreasing CP's adverse impacts and improving its antitumor
*ROS↓, Curcumin administration reduces ROS levels to prevent apoptosis in normal cells.
*NF-kB↓, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs.
TumCCA↑,

132- CUR,    Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells
- in-vitro, Pca, NA
TumCCA↑,
ROS↑,
TumAuto↑,
UPR↑,

437- CUR,    Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids
- vitro+vivo, CRC, TCO1 - vitro+vivo, CRC, TCO2
cycD1↓,
cMyc↓,
p‑ERK↓,
CD44↓,
CD133↓,
LGR5↓,
TumCCA↑, proportion of cells in the G0/G1 phase in CRC organoids significantly increased at 24 h
TumVol↓,
CSCs↓, Expressions of CSC markers, CD44, LGR5, and CD133, were declined in the AC-treated CRC organoids.

649- EGCG,  CUR,  PI,    Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
*BioEnh↑, increase EGCG bioavailability is using other natural products such as curcumin and piperine
EGFR↓,
HER2/EBBR2↓,
IGF-1↓,
MAPK↓,
ERK↓, reduction in ERK1/2 phosphorylation
RAS↓,
Raf↓, Raf-1
NF-kB↓, Numerous investigations have proven that EGCG has an inhibitory effect on NF-κB
p‑pRB↓, EGCG were displayed to reduce the phosphorylation of Rb, and as a result, cells were arrested in G1 phase
TumCCA↑, arrested in G1 phase
Glycolysis↓, EGCG has been found to inhibit key enzymes involved in glycolysis, such as hexokinase and pyruvate kinase, thereby disrupting the Warburg effect and inhibiting tumor cell growth
Warburg↓,
HK2↓,
Pyruv↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 22

Results for Effect on Cancer/Diseased Cells:
Akt↓,2,   p‑Akt↓,3,   Apoptosis↑,13,   AXIN1↓,1,   Bacteria↑,1,   BAD↑,1,   p‑BAD↓,1,   BAX↑,3,   Bcl-2↓,5,   Beclin-1↑,1,   BioAv↑,1,   Casp3↑,2,   cl‑Casp3↑,3,   proCasp3↓,1,   Casp9↑,1,   Catalase↓,1,   CD133↓,1,   CD44↓,1,   CDC25↓,1,   CDK4↓,1,   CDK4/6↓,1,   CDK6↓,1,   ChemoSen↑,2,   cMyc↓,2,   CSCs↓,2,   CycB↓,1,   cycD1↓,3,   cycE1↓,1,   Cyt‑c↑,1,   DNAdam↑,1,   DNMTs↓,1,   E-cadherin↓,1,   E-cadherin↑,2,   eff↓,1,   EGF↑,1,   EGFR↓,2,   EIF4E↓,1,   EMT↓,2,   ER Stress↑,1,   ERK↓,1,   p‑ERK↓,1,   Foxm1↓,1,   Gli1↓,1,   GLO-I↓,1,   Glycolysis↓,1,   GPx1↓,1,   GPx4↓,1,   HATs↓,1,   HDAC↓,1,   HDAC1↓,1,   HDAC3↓,1,   HDAC8↓,1,   HER2/EBBR2↓,1,   HK2↓,1,   HSP27↑,1,   IGF-1↓,1,   JNK↑,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,1,   LGR5↓,1,   MAPK↓,1,   miR-27a-3p↓,2,   miR-34a↑,3,   MMP↓,1,   p‑mTOR↓,1,   NADPH↓,1,   NEDD9↓,1,   NF-kB↓,3,   NKD2↑,1,   NNMT↓,1,   NOTCH1↓,1,   P21↑,1,   p27↑,1,   p300↓,1,   P53↑,1,   p62↑,2,   cl‑PARP↑,2,   PARP1↓,1,   p‑PI3K↓,1,   PI3k/Akt/mTOR↓,2,   p‑pRB↓,1,   PRKCG↑,1,   Pyruv↓,1,   Raf↓,1,   RAS↓,1,   ROS↑,6,   RPS6KA1↓,1,   Shh↓,1,   SOD1↓,1,   STAT3↓,2,   p‑STAT3↓,1,   survivin↓,1,   TCF↓,1,   Telomerase↓,1,   TET1↑,1,   Trop2↓,1,   TumAuto↑,2,   TumCCA↑,22,   TumCD↑,1,   TumCG↓,2,   TumCI↓,1,   TumCMig↓,4,   TumCP↓,8,   TumMeta↓,1,   TumVol↓,1,   UPR↑,1,   Vim↓,1,   Vim↑,1,   Warburg↓,1,   Wnt↓,2,   β-catenin/ZEB1↓,2,   γH2AX↑,1,  
Total Targets: 111

Results for Effect on Normal Cells:
BioEnh↑,1,   NF-kB↓,1,   ROS↓,1,  
Total Targets: 3

Scientific Paper Hit Count for: TumCCA, Tumor cell cycle arrest
22 Curcumin
2 5-fluorouracil
1 Boswellia (frankincense)
1 Chemotherapy
1 Cisplatin
1 EGCG (Epigallocatechin Gallate)
1 Piperine
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:322  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page