| Features: |
| Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties. - Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells. - GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells. - Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production - Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant - Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH - Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown -may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog). Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans. • Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability. -Note half-life 6 hrs. BioAv is poor, use piperine or other enhancers Pathways: - induce ROS production at high concentration. Lowers ROS at lower concentrations - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓ but conversely is known as a NRF2↑ activator in cancer - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
| Source: |
| Type: |
| Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body. |
| 2974- | CUR, | Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HT29 | - | in-vitro, | CRC, | HCT15 | - | in-vitro, | CRC, | COLO205 | - | in-vitro, | CRC, | SW-620 | - | in-vivo, | NA, | NA |
| 461- | CUR, | Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis |
| - | in-vitro, | Pca, | PC3 | - | in-vitro, | Pca, | DU145 |
| 476- | CUR, | The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer |
| - | in-vitro, | PC, | PATU-8988 | - | in-vitro, | PC, | PANC1 |
| - | in-vitro, | CRC, | SW480 |
| 447- | CUR, | OXA, | Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway |
| - | vitro+vivo, | CRC, | HCT116 |
| 450- | CUR, | Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44 |
| - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | HCT8 |
| 451- | CUR, | The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer |
| - | vitro+vivo, | HNSCC, | SCC15 | - | vitro+vivo, | HNSCC, | SNU1076 | - | vitro+vivo, | HNSCC, | SNU1041 |
| 454- | CUR, | Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway |
| - | in-vitro, | GC, | MGC803 |
| 455- | CUR, | Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin |
| - | in-vitro, | GC, | SGC-7901 |
| 456- | CUR, | Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells |
| - | vitro+vivo, | GC, | SGC-7901 |
| 480- | CUR, | Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells |
| - | in-vitro, | GBM, | SNB19 |
| 479- | CUR, | Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments |
| - | in-vitro, | Tong, | CAL27 |
| 405- | CUR, | 5-FU, | Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis |
| - | vitro+vivo, | CRC, | HCT116 |
Filter Conditions: Pro/AntiFlg:% IllCat:% CanType:% Cells:% prod#:65 Target#:326 State#:% Dir#:%
wNotes=on sortOrder:rid,rpid