Database Query Results : Curcumin, , TumCMig

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TumCMig, Tumor cell migration: Click to Expand ⟱
Source:
Type:
Tumor cell migration is a critical process in cancer progression and metastasis, which is the spread of cancer cells from the primary tumor to distant sites in the body.


Scientific Papers found: Click to Expand⟱
2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo.
TumCI↓,
TumCG↓,
TumMeta↓,
Sp1/3/4↓, curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells.
HDAC4↓,
FAK↓, Curcumin inhibits focal adhesion kinase (FAK) phosphorylation
CD24↓, Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells
E-cadherin↑, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT.
EMT↓,
TumCP↓,
NF-kB↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
AP-1↝,
STAT3↓, downregulation of CD24 reduces STAT and FAK activity, decreases cell proliferation, metastasis in human tumor
P53?,
β-catenin/ZEB1↓, CUR could activate protein kinase D1 (PKD1) suggesting that suppressing of β-catenin transcriptional activity prevents growth of prostate cancer
NOTCH1↝,
Hif1a↝,
PPARα↝,
Rho↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
MMP2↓,
MMP9↓,

461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓,
TumCMig↓,
TumCI↓,
Apoptosis↑,
miR-30a-5p↑,
PCLAF↓,
Bcl-2↓,
Casp3↓,
BAX↑,
cl‑Casp3↑,

476- CUR,    The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer
- in-vitro, PC, PATU-8988 - in-vitro, PC, PANC1
TumCMig↓,
TumCI↓,
Apoptosis↑,
NEDD9↓,
p‑Akt↓,
p‑mTOR↓,
PTEN↑,
p73↑,
β-TRCP↑,

446- CUR,    The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A Possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells
- in-vitro, CRC, SW480
IR↓,
IGF-1↓,
Myc↓,
TumCMig↓,
TumCP↓,

447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓,
Bcl-2↓,
Casp3↑,
EMT↓,
p‑SMAD2↓,
p‑SMAD3↓,
N-cadherin↓,
TGF-β↓,
E-cadherin↑,
TumVol↓,
TumCMig↓,

450- CUR,    Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8
TumCP↓,
TumCMig↓,
CD44↓, also cellular uptake of curcumin was significantly higher in CD44+ colon cancer cells.
CSCs↓, been suggested that curcumin was effective against colon CSCs by coupling with CD44

451- CUR,    The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer
- vitro+vivo, HNSCC, SCC15 - vitro+vivo, HNSCC, SNU1076 - vitro+vivo, HNSCC, SNU1041
TumCMig↓,
TumCG↓,
PD-L1↓,
PD-L2↓,
Galectin-9↓,
EMT↓,
T-Cell↑,
TILs↑,
PD-1↓,
TIM-3↓,
CD4+↓,
CD25+↓,
FoxP3+↓,
E-cadherin↑,
CD8+↑,
IFN-γ↑,

454- CUR,    Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway
- in-vitro, GC, MGC803
TumCMig↓,
TumCP↓,
ROS↑,
mtDam↑,
DNAdam↑,
Apoptosis↑,
ATR↑,
P21↑,
p‑P53↑,
GADD45A↑,
p‑γH2AX↑,

455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓,
Gli1↓,
Foxm1↓,
β-catenin/ZEB1↓,
TumCMig↓, induced S phase cell cycle arrest
Apoptosis↑,
TumCCA↑,
Wnt↓,
EMT↓,
E-cadherin↑,
Vim↓,

456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑,
TumCP↓,
TumCMig↓,
TumCI↓,
TumCCA↑, inhibited cell cycle progression in G0/G1-S phase
Bcl-2↓,
CDK4/6↓, CDK4
cycD1↓,

480- CUR,    Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells
- in-vitro, GBM, SNB19
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumCCA↑, G2/M phase
NEDD9↓,
NOTCH1↓,
p‑Akt↓,

479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓,
TumCMig↓,
Apoptosis↑,
TumCCA↑, S-phase cell cycle arrest
Bcl-2↓,
BAX↑,
cl‑Casp3↑,

405- CUR,  5-FU,    Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis
- vitro+vivo, CRC, HCT116
Apoptosis↑, more pronounced increase in apoptosis in p53-deficient when compared to p53-proficient cells
TumCMig↓,
NRF2↑,
ROS↑, antioxidant N-acetylcysteine suppressed the induction of apoptosis by curcumin
MET↓,
NA↑,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 13

Results for Effect on Cancer/Diseased Cells:
p‑Akt↓,2,   AP-1↝,1,   Apoptosis↑,7,   ATR↑,1,   BAX↑,2,   Bcl-2↓,4,   Casp3↓,1,   Casp3↑,1,   cl‑Casp3↑,2,   CD24↓,1,   CD25+↓,1,   CD4+↓,1,   CD44↓,1,   CD8+↑,1,   CDK4/6↓,1,   CSCs↓,1,   cycD1↓,1,   DNAdam↑,1,   E-cadherin↑,4,   EMT↓,4,   FAK↓,1,   Foxm1↓,1,   FoxP3+↓,1,   GADD45A↑,1,   Galectin-9↓,1,   Gli1↓,1,   HDAC4↓,1,   Hif1a↝,1,   IFN-γ↑,1,   IGF-1↓,1,   IR↓,1,   MET↓,1,   miR-30a-5p↑,1,   miR-34a↑,1,   MMP2↓,1,   MMP9↓,1,   mtDam↑,1,   p‑mTOR↓,1,   Myc↓,1,   N-cadherin↓,1,   NA↑,1,   NEDD9↓,2,   NF-kB↓,1,   NOTCH1↓,1,   NOTCH1↝,1,   NRF2↑,1,   P21↑,1,   P53?,1,   p‑P53↑,1,   p‑p65↓,1,   p73↑,1,   PCLAF↓,1,   PD-1↓,1,   PD-L1↓,1,   PD-L2↓,1,   PPARα↝,1,   PTEN↑,1,   Rho↓,1,   ROS↑,2,   Shh↓,1,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   Sp1/3/4↓,1,   STAT3↓,1,   T-Cell↑,1,   TGF-β↓,1,   TILs↑,1,   TIM-3↓,1,   TumCCA↑,4,   TumCG↓,2,   TumCI↓,4,   TumCMig↓,13,   TumCP↓,8,   TumMeta↓,1,   TumVol↓,1,   Vim↓,1,   Wnt↓,1,   β-catenin/ZEB1↓,2,   β-TRCP↑,1,   p‑γH2AX↑,1,  
Total Targets: 80

Results for Effect on Normal Cells:

Total Targets: 0

Scientific Paper Hit Count for: TumCMig, Tumor cell migration
13 Curcumin
1 Oxaliplatin
1 5-fluorouracil
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:326  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page