Database Query Results : Curcumin, , RenoP

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


RenoP, K,Renoprotection: Click to Expand ⟱
Source:
Type:
Protects kidneys
-Same as nephroprotective
Opposite is : Nephrotoxicity is toxicity in the kidneys


Scientific Papers found: Click to Expand⟱
3754- BBR,  CUR,  EGCG,  Hup,    Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review
*AChE↓, Berberine (9) has gained considerable attention due to its wide pharmacological potentials and several biological properties, such as acetylcholinesterase and butyrylcholinesterase inhibitory, antioxidant, monoamine oxidase oxidase,
*Aβ↓, amyloid-b peptide level-reducing, cholesterol- lowering and renoprotective activities
*LDL↓,
*RenoP↑,
*BChE↓,
*eff↑, Above all, the berberine-pyrocatechol hybrid (14) showed a strong AChE inhibitor activity (IC50 of 123 ± 3 nM) [34]
*BACE↓, Curcumin: inhibite the rBACE1 activity [42]. In addition, it has made good inhibitory effect on acetylcholinesterase activity
*AChE↓, EGCG promoted brain health, prevented AD progression, and inhibited the AChE activity [52,53].
*eff↑, EGCG could enhance the effect of huperzine A on inhibiting AChE.

2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, BUN, creatinine, CK and pro-inflammatory cytokines like TNF-α, IL-6 and MRP-1 to be elevated in the cisplatin-treated group while reducing glomerular filtration rate. Tq + Cur treatment significantly improved these conditions.
*TNF-α↓,
*IL6↓,
*MRP↓,
*GFR↑,
*mt-ATPase↑, antioxidant enzyme levels and mitochondrial ATPases were restored upon treatment,
*p‑Akt↑, Tq + Cur treatment increased the expressions of phosphorylated Akt, Nrf2 and HO-1 proteins while decreasing the levels of cleaved caspase 3 and NFκB in kidney homogenates.
*NRF2↑,
*HO-1↑,
*Casp3↓,
*NF-kB↓,
*RenoP↑, In summary, Tq + Cur had protective effects on cisplatin-induced nephrotoxicity and renal injury


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 2

Results for Effect on Cancer/Diseased Cells:

Total Targets: 0

Results for Effect on Normal Cells:
AChE↓,2,   p‑Akt↑,1,   mt-ATPase↑,1,   Aβ↓,1,   BACE↓,1,   BChE↓,1,   Casp3↓,1,   creat↓,1,   eff↑,2,   GFR↑,1,   HO-1↑,1,   IL6↓,1,   LDL↓,1,   MRP↓,1,   NF-kB↓,1,   NRF2↑,1,   RenoP↑,2,   TNF-α↓,1,  
Total Targets: 18

Scientific Paper Hit Count for: RenoP, K,Renoprotection
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:1175  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page