Database Query Results : Curcumin, , TGF-β

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


TGF-β, transforming growth factor-beta: Click to Expand ⟱
Source: HalifaxProj(inhibit) CGL-CS TCGA
Type:
Human malignancies frequently exhibit mutations in the TGF-β pathway, and overactivation of this system is linked to tumor growth by promoting angiogenesis and inhibiting the innate and adaptive antitumor immune responses.
Anti-inflammatory cytokine.
In normal tissues, TGF-β plays an essential role in cell cycle regulation, immune function, and tissue remodeling.
- In early carcinogenesis, TGF-β typically acts as a tumor suppressor by inhibiting cell proliferation and inducing apoptosis.

In advanced cancers, cells frequently become resistant to the growth-inhibitory effects of TGF-β.
- TGF-β then switches roles and promotes tumor progression by stimulating epithelial-to-mesenchymal transition (EMT), cell invasion, metastasis, and immune evasion.

Non-canonical (Smad-independent) pathways, such as MAPK, PI3K/Akt, and Rho signaling, also contribute to TGF-β-mediated responses.

Elevated levels of TGF-β have been detected in many advanced-stage cancers, including breast, lung, colorectal, pancreatic, and prostate cancers.
 - The switch from a tumor-suppressive to a tumor-promoting role is often associated with increased TGF-β production and activation in the tumor microenvironment.

High TGF-β expression or signaling activity is frequently correlated with aggressive disease features, resistance to therapy, increased metastasis, and poorer overall survival in many cancer types.


Scientific Papers found: Click to Expand⟱
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, CUR reduced the production of ROS
*SOD↑, CUR also upregulated the expression of superoxide dismutase (SOD) genes
p16↑, The effects of CUR on gene expression in cancer-associated fibroblasts obtained from breast cancer patients has been examined. CUR increased the expression of the p16INK4A and other tumor suppressor proteins
JAK2↓, CUR decreased the activity of the JAK2/STAT3 pathway
STAT3↓,
CXCL12↓, and many molecules involved in cellular growth and metastasis including: stromal cell-derived factor-1 (SDF-1), IL-6, MMP2, MMP9 and TGF-beta
IL6↓,
MMP2↓,
MMP9↓,
TGF-β↓,
α-SMA↓, These effects reduced the levels of alpha-smooth muscle actin (alpha-SMA) which was attributed to decreased migration and invasion of the cells.
LAMs↓, CUR suppressed Lamin B1 and
DNAdam↑, induced DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts in a p16INK4A-dependent manner.
*memory↑, CUR has recently been shown to suppress memory decline by suppressing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1= Beta-secretase 1, an important gene in AD) expression which is implicated in beta-amyoid pathology in 5xFAD transgenic
*cognitive↑, CUR was found to decrease adiposity and improve cognitive function in a similar fashion as CR in 15-month-old mice.
*Inflam↓, The effects of CUR and CR were positively linked with anti-inflammatory or antioxidant actions
*antiOx↑,
*NO↑, CUR treatment increased nNOS expression, acidity and NO concentration
*MDA↓, CUR treatment resulted in decreased levels of MDA
*ROS↓, CUR treatment was determined to cause reduction of ROS in the AMD-RPEs and protected the cells from H2O2-induced cell death by reduction of ROS levels.
DNMT1↓, CUR has been shown to downregulate the expression of DNA methyl transferase I (DNMT1)
ROS↑, induction of ROS and caspase-3-mediated apoptosis
Casp3↑,
Apoptosis↑,
miR-21↓, CUR was determined to decrease both miR-21 and anti-apoptotic protein expression.
LC3II↓, CUR also induced proteins associated with cell death such as LC3-II and other proteins in U251 cells
ChemoSen↑, The combined CUR and temozolomide treatment resulted in enhanced toxicity in U-87 glioblastoma cells.
NF-kB↓, suppression of NF-kappaB activity
CSCs↓, Dendrosomal curcumin increased the expression of miR-145 and decreased the expression of stemness genes including: NANOG, OCT4A, OCT4B1, and SOX2 [113]
Nanog↓,
OCT4↓,
SOX2↓,
eff↑, A synergistic interaction was observed when emodin and CUR were combined in terms of inhibition of cell growth, survival and invasion.
Sp1/3/4↓, CUR inducing ROS which results in suppression of specificity protein expression (SP1, SP3 and SP4) as well as miR-27a.
miR-27a-3p↓,
ZBTB10↑, downregulation of miR-27a by CUR, increased expression of ZBTB10 occurred
SOX9?, This resulted in decreased SOX9 expression.
ChemoSen↑, CUR used in combination with cisplatin resulted in a synergistic cytotoxic effect, while the effects were additive or sub-additive in combination with doxorubicin
VEGF↓, Some of the effects of CUR treatment are inhibition of NF-κB activity and downstream effector proteins, including: VEGF, MMP-9, XIAP, BCL-2 and Cyclin-D1.
XIAP↓,
Bcl-2↓,
cycD1↓,
BioAv↑, Piperine is an alkaloid found in the seeds of black pepper (Piper nigrum) and is known to enhance the bioavailability of several therapeutic agents, including CUR
Hif1a↓, CUR inhibits HIF-1 in certain HCC cell lines and in vivo studies with tumor xenografts. CUR also inhibited EMT by suppressing HIF-1alpha activity in HepG2 cells
EMT↓,
BioAv↓, CUR has a poor solubility in aqueous enviroment, and consequently it has a low bioavailability and therefore low concentrations at the target sites.
PTEN↑, CUR treatment has been shown to result in activation of PTEN, which is a target of miR-21.
VEGF↓, CUR treatment resulted in a decrease of VEGF and activated Akt.
Akt↑,
EZH2↓, CUR also suppressed EZH2 expression by induction of miR-let 7c and miR-101.
NOTCH1↓, The expression of NOTCH1 was inhibited upon EZH2 suppression [
TP53↑, CUR has been shown to activate the TP53/miR-192-5p/miR-215/XIAP pathway in NSCLC.
NQO1↑, CUR can also induce the demethylation of the nuclear factor erythroid-2 (NF-E2) related factor-2 (NRT2) gene which in turn activates (NQO1), heme oxygenase-1 (HO1) and an antioxidant stress pathway which can prevent growth in mouse TRAMP-C1 prostate
HO-1↑,

3582- CUR,  PI,    Therapeutic and Preventive Effects of Piperine and its Combination with Curcumin as a Bioenhancer Against Aluminum-Induced Damage in the Astrocyte Cells
*eff↑, In conclusion, the results of the study showed that the use of different concentrations of piperine, curcumin, and their combination had significantly higher % cell viability on aluminum-induced damage in astrocyte cells compared to the damaged contr
*IL6↓, decrease in the amount of IL-6 and TGF-β cytokines also supported that piperine increased the effectiveness of curcumin.
*TGF-β↓,
*BioAv↑, bioavailability-enhancing property of piperine on curcumin was shown for the first time in the literature.

447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓,
Bcl-2↓,
Casp3↑,
EMT↓,
p‑SMAD2↓,
p‑SMAD3↓,
N-cadherin↓,
TGF-β↓,
E-cadherin↑,
TumVol↓,
TumCMig↓,

153- CUR,    Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo
- in-vivo, Pca, C4-2B
PSA↓,
TGF-β↓,
BMPs↑, BMP2,7

13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, upregulated other targets including p53, death receptor (DR-5), JN-kinase, Nrf-2, and peroxisome proliferator-activated receptor γ (PPARγ) factors
DR5↑,
JNK↑,
NRF2↑,
PPARγ↑,
HER2/EBBR2↓, (Her-2, IR, ER-a, and Fas receptor)
IR↓,
ER(estro)↓,
Fas↑,
PDGF↓, (PDGF, TGF, FGF, and EGF)
TGF-β↓,
FGF↓,
EGFR↓,
JAK↓,
PAK↓,
MAPK↓,
ATPase↓, (ATPase, COX-2, and matrix metalloproteinase enzyme [MMP])
COX2↓,
MMPs↓,
IL1↓, inflammatory cytokines (IL-1, IL-2, IL-5, IL-6, IL-8, IL-12, and IL-18)
IL2↓,
IL5↓,
IL6↓,
IL8↓,
IL12↓,
IL18↓,
NF-kB↓,
NOTCH1↓,
STAT1↓,
STAT4↓,
STAT5↓,
STAT3↓,

124- CUR,    Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TGF-β↓,
Wnt↓,
PI3k/Akt/mTOR↓,
NF-kB↓,
PTEN↑,
Apoptosis↑,

103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑,
MMP↓,
Bcl-2↓,
BAX↑,
Casp9↑,
T-Cell↑, (CD4+CD8+)
TGF-β↓,


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 7

Results for Effect on Cancer/Diseased Cells:
Akt↑,1,   Apoptosis↑,2,   ATPase↓,1,   BAX↑,1,   Bcl-2↓,3,   BioAv↓,1,   BioAv↑,1,   BMPs↑,1,   Casp3↑,2,   Casp9↑,1,   ChemoSen↑,2,   COX2↓,1,   CSCs↓,1,   CXCL12↓,1,   cycD1↓,1,   DNAdam↑,1,   DNMT1↓,1,   DR5↑,1,   E-cadherin↑,1,   eff↑,1,   EGFR↓,1,   EMT↓,2,   ER(estro)↓,1,   EZH2↓,1,   Fas↑,1,   FGF↓,1,   HER2/EBBR2↓,1,   Hif1a↓,1,   HO-1↑,1,   IL1↓,1,   IL12↓,1,   IL18↓,1,   IL2↓,1,   IL5↓,1,   IL6↓,2,   IL8↓,1,   IR↓,1,   JAK↓,1,   JAK2↓,1,   JNK↑,1,   LAMs↓,1,   LC3II↓,1,   MAPK↓,1,   miR-21↓,1,   miR-27a-3p↓,1,   MMP↓,1,   MMP2↓,1,   MMP9↓,1,   MMPs↓,1,   N-cadherin↓,1,   Nanog↓,1,   NF-kB↓,3,   NOTCH1↓,2,   NQO1↑,1,   NRF2↑,1,   OCT4↓,1,   p16↑,1,   P53↑,1,   p‑p65↓,1,   PAK↓,1,   PDGF↓,1,   PI3k/Akt/mTOR↓,1,   PPARγ↑,1,   PSA↓,1,   PTEN↑,2,   ROS↑,2,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   SOX2↓,1,   SOX9?,1,   Sp1/3/4↓,1,   STAT1↓,1,   STAT3↓,2,   STAT4↓,1,   STAT5↓,1,   T-Cell↑,1,   TGF-β↓,6,   TP53↑,1,   TumCMig↓,1,   TumVol↓,1,   VEGF↓,2,   Wnt↓,1,   XIAP↓,1,   ZBTB10↑,1,   α-SMA↓,1,  
Total Targets: 85

Results for Effect on Normal Cells:
antiOx↑,1,   BioAv↑,1,   cognitive↑,1,   eff↑,1,   IL6↓,1,   Inflam↓,1,   MDA↓,1,   memory↑,1,   NO↑,1,   ROS↓,2,   SOD↑,1,   TGF-β↓,1,  
Total Targets: 12

Scientific Paper Hit Count for: TGF-β, transforming growth factor-beta
7 Curcumin
1 Piperine
1 Oxaliplatin
1 Resveratrol
1 Quercetin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:304  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page