Database Query Results : Curcumin, , Hif1a

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Hif1a, HIF1α/HIF1a: Click to Expand ⟱
Source:
Type:
Hypoxia-Inducible-Factor 1A (HIF1A gene, HIF1α, HIF-1α protein product)
-Dominantly expressed under hypoxia(low oxygen levels) in solid tumor cells
-HIF1A induces the expression of vascular endothelial growth factor (VEGF)
-High HIF-1α expression is associated with Poor prognosis
-Low HIF-1α expression is associated with Better prognosis

-Functionally, HIF-1α is reported to regulate glycolysis, whilst HIF-2α regulates genes associated with lipoprotein metabolism.
-Cancer cells produce HIF in response to hypoxia in order to generate more VEGF that promote angiogenesis

Key mediators of aerobic glycolysis regulated by HIF-1α.
-GLUT-1 → regulation of the flux of glucose into cells.
-HK2 → catalysis of the first step of glucose metabolism.
-PKM2 → regulation of rate-limiting step of glycolysis.
-Phosphorylation of PDH complex by PDK → blockage of OXPHOS and promotion of aerobic glycolysis.
-LDH (LDHA): Rapid ATP production, conversion of pyruvate to lactate;

HIF-1α Inhibitors:
-Curcumin: disruption of signaling pathways that stabilize HIF-1α (ie downregulate).
-Resveratrol: downregulate HIF-1α protein accumulation under hypoxic conditions.
-EGCG: modulation of upstream signaling pathways, leading to decreased HIF-1α activity.
-Emodin: reduce HIF-1α expression. (under hypoxia).
-Apigenin: inhibit HIF-1α accumulation.


Scientific Papers found: Click to Expand⟱
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, CUR reduced the production of ROS
*SOD↑, CUR also upregulated the expression of superoxide dismutase (SOD) genes
p16↑, The effects of CUR on gene expression in cancer-associated fibroblasts obtained from breast cancer patients has been examined. CUR increased the expression of the p16INK4A and other tumor suppressor proteins
JAK2↓, CUR decreased the activity of the JAK2/STAT3 pathway
STAT3↓,
CXCL12↓, and many molecules involved in cellular growth and metastasis including: stromal cell-derived factor-1 (SDF-1), IL-6, MMP2, MMP9 and TGF-beta
IL6↓,
MMP2↓,
MMP9↓,
TGF-β↓,
α-SMA↓, These effects reduced the levels of alpha-smooth muscle actin (alpha-SMA) which was attributed to decreased migration and invasion of the cells.
LAMs↓, CUR suppressed Lamin B1 and
DNAdam↑, induced DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts in a p16INK4A-dependent manner.
*memory↑, CUR has recently been shown to suppress memory decline by suppressing beta-site amyloid precursor protein cleaving enzyme 1 (BACE1= Beta-secretase 1, an important gene in AD) expression which is implicated in beta-amyoid pathology in 5xFAD transgenic
*cognitive↑, CUR was found to decrease adiposity and improve cognitive function in a similar fashion as CR in 15-month-old mice.
*Inflam↓, The effects of CUR and CR were positively linked with anti-inflammatory or antioxidant actions
*antiOx↑,
*NO↑, CUR treatment increased nNOS expression, acidity and NO concentration
*MDA↓, CUR treatment resulted in decreased levels of MDA
*ROS↓, CUR treatment was determined to cause reduction of ROS in the AMD-RPEs and protected the cells from H2O2-induced cell death by reduction of ROS levels.
DNMT1↓, CUR has been shown to downregulate the expression of DNA methyl transferase I (DNMT1)
ROS↑, induction of ROS and caspase-3-mediated apoptosis
Casp3↑,
Apoptosis↑,
miR-21↓, CUR was determined to decrease both miR-21 and anti-apoptotic protein expression.
LC3II↓, CUR also induced proteins associated with cell death such as LC3-II and other proteins in U251 cells
ChemoSen↑, The combined CUR and temozolomide treatment resulted in enhanced toxicity in U-87 glioblastoma cells.
NF-kB↓, suppression of NF-kappaB activity
CSCs↓, Dendrosomal curcumin increased the expression of miR-145 and decreased the expression of stemness genes including: NANOG, OCT4A, OCT4B1, and SOX2 [113]
Nanog↓,
OCT4↓,
SOX2↓,
eff↑, A synergistic interaction was observed when emodin and CUR were combined in terms of inhibition of cell growth, survival and invasion.
Sp1/3/4↓, CUR inducing ROS which results in suppression of specificity protein expression (SP1, SP3 and SP4) as well as miR-27a.
miR-27a-3p↓,
ZBTB10↑, downregulation of miR-27a by CUR, increased expression of ZBTB10 occurred
SOX9?, This resulted in decreased SOX9 expression.
ChemoSen↑, CUR used in combination with cisplatin resulted in a synergistic cytotoxic effect, while the effects were additive or sub-additive in combination with doxorubicin
VEGF↓, Some of the effects of CUR treatment are inhibition of NF-κB activity and downstream effector proteins, including: VEGF, MMP-9, XIAP, BCL-2 and Cyclin-D1.
XIAP↓,
Bcl-2↓,
cycD1↓,
BioAv↑, Piperine is an alkaloid found in the seeds of black pepper (Piper nigrum) and is known to enhance the bioavailability of several therapeutic agents, including CUR
Hif1a↓, CUR inhibits HIF-1 in certain HCC cell lines and in vivo studies with tumor xenografts. CUR also inhibited EMT by suppressing HIF-1alpha activity in HepG2 cells
EMT↓,
BioAv↓, CUR has a poor solubility in aqueous enviroment, and consequently it has a low bioavailability and therefore low concentrations at the target sites.
PTEN↑, CUR treatment has been shown to result in activation of PTEN, which is a target of miR-21.
VEGF↓, CUR treatment resulted in a decrease of VEGF and activated Akt.
Akt↑,
EZH2↓, CUR also suppressed EZH2 expression by induction of miR-let 7c and miR-101.
NOTCH1↓, The expression of NOTCH1 was inhibited upon EZH2 suppression [
TP53↑, CUR has been shown to activate the TP53/miR-192-5p/miR-215/XIAP pathway in NSCLC.
NQO1↑, CUR can also induce the demethylation of the nuclear factor erythroid-2 (NF-E2) related factor-2 (NRT2) gene which in turn activates (NQO1), heme oxygenase-1 (HO1) and an antioxidant stress pathway which can prevent growth in mouse TRAMP-C1 prostate
HO-1↑,

2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo.
TumCI↓,
TumCG↓,
TumMeta↓,
Sp1/3/4↓, curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells.
HDAC4↓,
FAK↓, Curcumin inhibits focal adhesion kinase (FAK) phosphorylation
CD24↓, Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells
E-cadherin↑, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT.
EMT↓,
TumCP↓,
NF-kB↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
AP-1↝,
STAT3↓, downregulation of CD24 reduces STAT and FAK activity, decreases cell proliferation, metastasis in human tumor
P53?,
β-catenin/ZEB1↓, CUR could activate protein kinase D1 (PKD1) suggesting that suppressing of β-catenin transcriptional activity prevents growth of prostate cancer
NOTCH1↝,
Hif1a↝,
PPARα↝,
Rho↓, CUR prevents cancer cells migration, invasion, and metastasis through inhibition of PKC, FAK, NF-κB, p65, RhoA, MMP-2, and MMP-7 gene expressions
MMP2↓,
MMP9↓,

466- CUR,    Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1
- in-vitro, Liver, HepG2 - in-vitro, Liver, HuT78
GlucoseCon↓,
lactateProd↓,
pH↑,
NO↑,
LAR↓,
Hif1a↓, gene and protein
LDHA↓,
MCT1↓,
MDR1↓,
STAT3↓,
HCAR1↓,

2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, curcumin inhibits glucose uptake and lactate production (Warburg effect) in a variety of cancer cell lines
GlucoseCon↓,
lactateProd↓,
PKM2↓, by down-regulating PKM2 expression, via inhibition of mTOR-HIF1α axis.
mTOR↓,
Hif1a↓,
selectivity↑, however, no appreciable decrease in Warburg effect was observed in HEK 293 cells
Dose↝, Dose-dependent decrease in Warburg effect started at 2.5 μM with maximal decrease at 20 μM curcumin.
tumCV↓, Curcumin decreases viability of cancer cells

2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Siddiqui et al. have recently reported that curcumin downregulates PKM2 expression in cancer cells, consequently decreasing the Warburg effect.
Warburg↓,
mTOR↓, pKM2 downregulation coincided with the inhibition of the mammalian target of rapamycin (mTOR) pathway and consequential downregulation of hypoxia-inducible factor 1-alpha HIF1α
Hif1a↓,
Glycolysis↓, showed that a decrease of PKM2 (mediated by curcumin or by targeted PKM2 silencing) significantly reduces aerobic glycolysis and is also consequential for cell survival.


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 5

Results for Effect on Cancer/Diseased Cells:
Akt↑,1,   AP-1↝,1,   Apoptosis↑,1,   Bcl-2↓,1,   BioAv↓,1,   BioAv↑,1,   Casp3↑,1,   CD24↓,1,   ChemoSen↑,2,   CSCs↓,1,   CXCL12↓,1,   cycD1↓,1,   DNAdam↑,1,   DNMT1↓,1,   Dose↝,1,   E-cadherin↑,1,   eff↑,1,   EMT↓,2,   EZH2↓,1,   FAK↓,1,   GlucoseCon↓,2,   Glycolysis↓,2,   HCAR1↓,1,   HDAC4↓,1,   Hif1a↓,4,   Hif1a↝,1,   HO-1↑,1,   IL6↓,1,   JAK2↓,1,   lactateProd↓,2,   LAMs↓,1,   LAR↓,1,   LC3II↓,1,   LDHA↓,1,   MCT1↓,1,   MDR1↓,1,   miR-21↓,1,   miR-27a-3p↓,1,   MMP2↓,2,   MMP9↓,2,   mTOR↓,2,   Nanog↓,1,   NF-kB↓,2,   NO↑,1,   NOTCH1↓,1,   NOTCH1↝,1,   NQO1↑,1,   OCT4↓,1,   p16↑,1,   P53?,1,   pH↑,1,   PKM2↓,2,   PPARα↝,1,   PTEN↑,1,   Rho↓,1,   ROS↑,1,   selectivity↑,1,   SOX2↓,1,   SOX9?,1,   Sp1/3/4↓,2,   STAT3↓,3,   TGF-β↓,1,   TP53↑,1,   TumCG↓,1,   TumCI↓,1,   TumCMig↓,1,   TumCP↓,1,   tumCV↓,1,   TumMeta↓,1,   VEGF↓,2,   Warburg↓,1,   XIAP↓,1,   ZBTB10↑,1,   α-SMA↓,1,   β-catenin/ZEB1↓,1,  
Total Targets: 75

Results for Effect on Normal Cells:
antiOx↑,1,   cognitive↑,1,   Inflam↓,1,   MDA↓,1,   memory↑,1,   NO↑,1,   ROS↓,2,   SOD↑,1,  
Total Targets: 8

Scientific Paper Hit Count for: Hif1a, HIF1α/HIF1a
5 Curcumin
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:143  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page