Database Query Results : Curcumin, ,

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


Scientific Papers found: Click to Expand⟱
147- AG,  EGCG,  CUR,    Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, MCF-7
Bax:Bcl2↑, NF-kB↓, PI3K/Akt↓, STAT3↓,
3446- ALA,  CUR,    The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression
- in-vivo, Nor, NA
*hepatoP↑, *α-SMA↓, *COL3A1↓, *ROS↓, *GSH↑, *ALAT↓, *AST↓, *ALP↓, *MDA↓,
2635- Api,  CUR,    Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells
- in-vitro, Cerv, HeLa
TumCD↑, eff↑, TumAuto↑, ER Stress↑, Paraptosis↑, GRP78/BiP↓, Dose↝,
1024- Api,  CUR,    Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects
- vitro+vivo, Melanoma, A375 - in-vitro, Melanoma, A2058 - in-vitro, Melanoma, RPMI-7951
TumCG↓, Apoptosis↑, PD-L1↓, STAT1↓, tumCV↓, T-Cell↑,
2703- BBR,  CUR,  SFN,  UA,  GamB  Naturally occurring anti-cancer agents targeting EZH2
- Review, Var, NA
EZH2↓,
3754- BBR,  CUR,  EGCG,  Hup,    Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review
*AChE↓, *Aβ↓, *LDL↓, *RenoP↑, *BChE↓, *eff↑, *BACE↓, *AChE↓, *eff↑,
3514- Bor,  CUR,    Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta
- in-vivo, AD, NA
*DNAdam↓, *MDA↓, *AChE↓, *neuroP↑, *ROS↓, *NO↓,
1426- Bos,  CUR,  Chemo,    Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer
- in-vivo, CRC, NA - in-vitro, CRC, HCT116 - in-vitro, CRC, RKO - in-vitro, CRC, SW480 - in-vitro, RCC, SW-620 - in-vitro, RCC, HT-29 - in-vitro, CRC, Caco-2
miR-34a↑, miR-27a-3p↓, TumCG↓, BAX↑, Bcl-2↓, PARP1↓, TumCCA↑, Apoptosis↑, cMyc↓, CDK4↓, CDK6↓, cycD1↓, ChemoSen↑, miR-34a↑, miR-27a-3p↓,
145- CA,  CUR,    The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity
- in-vitro, NA, NA
AR↓, ARE/EpRE↑,
2015- CAP,  CUR,  urea,    Anti-cancer Activity of Sustained Release Capsaicin Formulations
- Review, Var, NA
AntiCan↑, TumCG↓, angioG↓, TumMeta↓, BioAv↓, BioAv↓, BioAv↑, selectivity↑, EPR↑, eff↓, ChemoSen↑, Dose∅, Half-Life∅, eff↑,
428- Chit,  docx,  CUR,    Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer
- vitro+vivo, Lung, H460 - vitro+vivo, Lung, H1299 - vitro+vivo, Lung, A549 - vitro+vivo, Lung, PC9
MDSCs↓, TregCell↓, IL10↓, NK cell↑,
3628- Croc,  VitE,  CUR,    Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s Disease
- Review, AD, NA
*antiOx↑, *ROS↓, *lipid-P↓, *Aβ↓, *AChE↓, *cognitive↑, *Inflam↓,
3795- CUR,    Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence
- Review, AD, NA
*antiOx↑, *Inflam↓, *AntiAge↑, *AMPK↑, *SIRT1↑, *NF-kB↓, *mTOR↓, *NLRP3↓, *NADPH↓, *ROS↓, *COX2↓, *MCP1↓, *IL1β↓, *IL17↓, *IL23↓, *TNF-α↓, *MPO↓, *IL10↑, *lipid-P↓, *SOD↑, *Aβ↓, *p‑tau↓, *GSK‐3β↓, *CDK5↓, *TXNIP↓, *NRF2↑, *NQO1↑, *HO-1↑, *OS↑, *memory↑, *BDNF↑, *neuroP↑, *BACE↓, *AChE↓, *LDL↓,
3585- CUR,    Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer
- Study, NA, NA
*BioAv↑,
3794- CUR,    Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activities
- Review, AD, NA
*GSK‐3β↓, *CDK5↓, *p‑tau↓, *IronCh↑, *ROS↓, *HO-1↑, *SOD↑, *Catalase↑, *GSH↑, *TNF-α↓, *IL6↓, *IL12↓, *NRF2↑, *PPARγ↑, *IL4↑, *AChE↓, *Dose↝, *GutMicro↑,
3793- CUR,    Curcumin Downregulates GSK3 and Cdk5 in Scopolamine-Induced Alzheimer’s Disease Rats Abrogating Aβ40/42 and Tau Hyperphosphorylation
- in-vivo, AD, NA
*Aβ↓, *p‑tau↓, *GSK‐3β↓, *CDK5↓, *memory↑,
3760- CUR,  GI,  CAP,  RosA,  PI  Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessment
*AChE↓, *other↓, *other↓, *other↓, *other↓, *other↓, *other↓,
3753- CUR,  Gala,    A Novel Galantamine–Curcumin Hybrid Inhibits Butyrylcholinesterase: A Molecular Dynamics Study
- Study, AD, NA
*BChE↓, *AChE↓, *Ach↑, *cognitive↑, *memory↑, *ROS↓, *Inflam↓, *NF-kB↓, *COX2?,
3752- CUR,    Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor
- in-vivo, AD, NA
*AChE↓,
3751- CUR,  Gala,    A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders
- in-vivo, AD, NA
*AChE↓, *MDA↑, *GSH↑, *BBB↑,
3750- CUR,  PI,    Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in vitro Assay
- in-vitro, AD, SH-SY5Y
*AChE↓, *neuroP↑,
3748- CUR,  RES,  Hup,  Riv,  Gala  Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer's disease
- Review, AD, NA
*AChE↓, *Inflam↓, *Aβ↓, *cognitive↑, *ROS↓,
3590- CUR,    The Holy Grail of Curcumin and its Efficacy in Various Diseases: Is Bioavailability Truly a Big Concern?
- Review, Var, NA - Review, AD, NA
*BioAv↓, *BioAv↑, Dose↑, *Dose↝, *BBB↑, *cognitive↑, *BioAv↑,
3588- CUR,    The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies
- Review, AD, NA
*cognitive↝, *BioAv↑, *Inflam↓, *COX2↓, *iNOS↓, *NF-kB↓, *TNF-α↓, *IL1↓, *IL2↓, *IL6↓, *IL8↓, *IL12↓, *ROS↓, *RNS↓, *antiOx↑, *BBB↑, *BioAv↓, *cognitive↑, *memory↑, *tau↓, *eff↑,
3586- CUR,  PI,    Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers
- in-vivo, NA, NA
*BioAv↑,
4656- CUR,  EGCG,    Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, MCF-7
CSCs↓, CD44↓, p‑STAT3↓, NF-kB↓, TumCI↓,
4176- CUR,    Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling
- in-vivo, AD, NA
*BDNF↑, *CREB↑,
2688- CUR,    Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs
- Review, Var, NA - Review, AD, NA
*ROS↓, *SOD↑, p16↑, JAK2↓, STAT3↓, CXCL12↓, IL6↓, MMP2↓, MMP9↓, TGF-β↓, α-SMA↓, LAMs↓, DNAdam↑, *memory↑, *cognitive↑, *Inflam↓, *antiOx↑, *NO↑, *MDA↓, *ROS↓, DNMT1↓, ROS↑, Casp3↑, Apoptosis↑, miR-21↓, LC3II↓, ChemoSen↑, NF-kB↓, CSCs↓, Nanog↓, OCT4↓, SOX2↓, eff↑, Sp1/3/4↓, miR-27a-3p↓, ZBTB10↑, SOX9?, ChemoSen↑, VEGF↓, XIAP↓, Bcl-2↓, cycD1↓, BioAv↑, Hif1a↓, EMT↓, BioAv↓, PTEN↑, VEGF↓, Akt↑, EZH2↓, NOTCH1↓, TP53↑, NQO1↑, HO-1↑,
4655- CUR,    Inhibition of Cancer Stem-like Cells by Curcumin and Other Polyphenol Derivatives in MDA-MB-231 TNBC Cells
- in-vitro, BC, NA
CSCs↓, *BioAv↓,
4654- CUR,    Stem Cell Therapy: Curcumin Does the Trick
- Review, Var, NA
*antiOx↑, *Inflam↓, AntiCan↑, chemoP↑, *AntiAge↑, *neuroP↑, *Wound Healing↑,
4653- CUR,    Curcumin: a promising agent targeting cancer stem cells
- Review, Var, NA
CSCs↓,
4652- CUR,    Anticancer effect of curcumin on breast cancer and stem cells
- Review, BC, NA
TumCP↓, TumMeta↓, TumCCA↑, Apoptosis↑, CSCs↓, NF-kB↓, Telomerase↓, Cyt‑c↑, Casp9↑, Casp3↑, E-cadherin↑,
4651- CUR,    Targeting cancer stem cells by curcumin and clinical applications
- Review, Var, NA
CSCs↓, *toxicity↓, *BioAv↝, chemoP↑,
4650- CUR,    Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells
- Review, Var, NA
SCD1↓, IL6↓, IL8↓, IL1↓, *selectivity↑, Wnt↝, NOTCH↝, HH↝, FAK↝,
4337- CUR,    Inhibitory effect of curcumin, a food spice from turmeric, on platelet-activating factor- and arachidonic acid-mediated platelet aggregation through inhibition of thromboxane formation and Ca2+ signaling
- in-vitro, NA, NA
*AntiAg↑, *TXA2↓,
3797- CUR,    Curcumin reverses cognitive deficits through promoting neurogenesis and synapse plasticity via the upregulation of PSD95 and BDNF in mice
- in-vitro, NA, NA
*cognitive↑, *BDNF↑, *PSD95↑, *memory↑,
4175- CUR,    Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress
- in-vivo, NA, NA
*BDNF↑, *ERK↑,
4171- CUR,    Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons
- in-vivo, NA, NA
*BDNF↑, *TrkB↑, *CREB↑, *Mood↑, *neuroP↑,
3862- CUR,  RES,    The metalloproteinase ADAM10: A useful therapeutic target?
- Review, AD, NA
*SIRT1↑, *ADAM10↑,
3861- CUR,    Curcumin as a novel therapeutic candidate for cancer: can this natural compound revolutionize cancer treatment?
- Review, Var, NA
*antiOx↑, *Inflam↓, PI3K↓, Akt↓, mTOR↓, Wnt↓, β-catenin/ZEB1↓, NF-kB↓, HH↓, NOTCH↓, JAK↓, STAT3↓, ADAM10↓,
3860- CUR,    Curcumin Ameliorates Memory Decline via Inhibiting BACE1 Expression and β-Amyloid Pathology in 5×FAD Transgenic Mice
- in-vivo, AD, NA
*Aβ↓, *BACE↓, *memory↑,
3857- CUR,    Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment
- Review, AD, NA
*Inflam↓, *antiOx↑, *IronCh↑, *BBB↑, *ADAM10↝,
3856- CUR,    Curcumin induces IL-6 receptor shedding via the ADAM10 proteinase
- in-vitro, AD, NA
*ADAM10↑, *Inflam↓,
3831- CUR,    Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease
- Review, AD, NA
*neuroP↑, *ROS↓, *Ca+2↓, *MMP↑,
2816- CUR,    NEUROPROTECTIVE EFFECTS OF CURCUMIN
- Review, AD, NA - Review, Park, NA
*neuroP↑, *Inflam↓, *antiOx↑, *BioAv↓, *AP-1↓, *NF-kB↓, *HATs↓, *HDAC↑, Dose↑, *ROS↓, *cognitive↑, *Aβ↓,
2974- CUR,    Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT29 - in-vitro, CRC, HCT15 - in-vitro, CRC, COLO205 - in-vitro, CRC, SW-620 - in-vivo, NA, NA
TumCMig↓, TumCI↓, TumCG↓, TumMeta↓, Sp1/3/4↓, HDAC4↓, FAK↓, CD24↓, E-cadherin↑, EMT↓, TumCP↓, NF-kB↓, AP-1↝, STAT3↓, P53?, β-catenin/ZEB1↓, NOTCH1↝, Hif1a↝, PPARα↝, Rho↓, MMP2↓, MMP9↓,
2823- CUR,    Binding of curcumin with glyoxalase I: Molecular docking, molecular dynamics simulations, and kinetics analysis
- Study, Nor, NA
GLO-I↓,
2822- CUR,    Identification of curcumin derivatives as human glyoxalase I inhibitors: A combination of biological evaluation, molecular docking, 3D-QSAR and molecular dynamics simulation studies
- Analysis, Nor, NA
GLO-I↓,
2821- CUR,    Antioxidant curcumin induces oxidative stress to kill tumor cells (Review)
- Review, Var, NA
*antiOx↑, *NRF2↑, *ROS↓, *Inflam↓, ROS↑, p‑ERK↑, ER Stress↑, mtDam↑, Apoptosis↑, Akt↓, mTOR↓, HO-1↑, Fenton↑, GSH↓, Iron↑, p‑JNK↑, Cyt‑c↑, ATF6↑, CHOP↑,
2820- CUR,    Hepatoprotective Effect of Curcumin on Hepatocellular Carcinoma Through Autophagic and Apoptic Pathways
- in-vitro, HCC, HepG2
*hepatoP↑, *ROS↓, tumCV↓,
2819- CUR,  Chemo,    Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury
- Review, Var, NA
*hepatoP↑, *Inflam↓, *antiOx↑, *lipid-P↓, *GSH↑, *SOD↑, *Catalase↑, *GPx↑, *GSTs↑, *ROS↓, *ALAT↓, *AST↓, *MDA↓, *NRF2↑, *COX2↑, *NF-kB↓, *ICAM-1↓, *MCP1↓, *HO-1↑, CXCc↓,
2818- CUR,    Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways
- Review, AD, NA
*neuroP↑, *ROS↓, *Inflam↓, *Apoptosis↓, *cognitive↑, *cardioP↑, other↑, *COX2↓, *IL1β↓, *TNF-α↓, NF-kB↓, *PGE2↓, *iNOS↓, *NO↓, *IL2↓, *IL4↓, *IL6↓, *INF-γ↓, *GSK‐3β↓, *STAT↓, *GSH↑, *MDA↓, *lipid-P↓, *SOD↑, *GPx↑, *Catalase↑, *GSR↓, *LDH↓, *H2O2↓, *Casp3↓, *Casp9↓, *NRF2↑, *AIF↓, *ATP↑,
2817- CUR,    Neuroprotection by curcumin: A review on brain delivery strategies
- Review, Nor, NA
*BioAv↝, neuroP↑,
2975- CUR,    Curcumin inhibits proliferation, migration and neointimal formation of vascular smooth muscle via activating miR-22
- in-vivo, Nor, NA
*miR-22↑, *Sp1/3/4↓,
2815- CUR,    Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin
*CK2↑,
2814- CUR,    Curcumin in Cancer and Inflammation: An In-Depth Exploration of Molecular Interactions, Therapeutic Potentials, and the Role in Disease Management
- Review, Var, NA
*BioAv↓, *Inflam↓, *antiOx↑, AntiCan↑, CK2↓, GSK‐3β↓, EGFR↓, TOP1↓, TOP2↓, NF-kB↓, COX2↓, CRP↓,
2813- CUR,    Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases
- Review, NA, NA
TOP2↑,
2812- CUR,    Curcumin Induces High Levels of Topoisomerase I− and II−DNA Complexes in K562 Leukemia Cells
- in-vitro, AML, K562
TOP1↑, TOP2↑, eff↓,
2811- CUR,    Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study
- Human, Pca, NA
*antiOx↑, radioP↑, RadioS∅, *TAC↑, *SOD↓,
2810- CUR,    Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials
- Review, Nor, NA
*SOD↑, *lipid-P↓, *GSH↑, *Catalase↑, *ROS↓,
2809- CUR,    Comparative absorption of curcumin formulations
- in-vivo, Nor, NA
BioAv↑, BioAv↑, BioAv↑, BioAv↑, BioAv↑, BioAv↓, Half-Life↝,
2808- CUR,    Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation
- in-vitro, Liver, HUH7
Ferritin↓, IronCh↑, TumAuto↑, Apoptosis↑, eff↝, Dose↝,
3576- CUR,    Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease
- Review, AD, NA
*Inflam↓, *antiOx↑, *memory↑, *Aβ↓, *BBB↑, *cognitive↑, *tau↓, *LDL↓, *AChE↓, *IL1β↓, *IronCh↑, *neuroP↑, *BioAv↝, *PI3K↑, *Akt↑, *NRF2↑, *HO-1↑, *Ferritin↑, *HO-2↓, *ROS↓, *Ach↑, *GSH↑, *Bcl-2↑, *ChAT↑,
3583- CUR,    Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers
- Review, Arthritis, NA
*TNF-α↓, *IL1β↓, *NF-kB↓, *PGE2↓, *COX2↓, *MMPs↓, *eff↑,
3582- CUR,  PI,    Therapeutic and Preventive Effects of Piperine and its Combination with Curcumin as a Bioenhancer Against Aluminum-Induced Damage in the Astrocyte Cells
*eff↑, *IL6↓, *TGF-β↓, *BioAv↑,
3581- CUR,    Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer's Disease
- NA, AD, NA
*antiOx↑, *Inflam↓, *BBB↑, *NRF2↑, *NF-kB↓, *cognitive↑, *ROS↓, *MDA↓, *SOD↑, *Catalase↑, *INF-γ↓, *IL4↓, *memory↑, *TNF-α↓, *IL1β↓,
3580- CUR,    Curcumin Acts as Post-protective Effects on Rat Hippocampal Synaptosomes in a Neuronal Model of Aluminum-Induced Toxicity
- in-vivo, AD, NA
*ROS↓, *Cyt‑c↓, *Casp3↓, *neuroP↑,
3579- CUR,  SNP,    Metal–Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin
- Review, NA, NA
*IronCh↑, *BioAv↑, *antiOx↑, *Inflam↓, *BioAv↑, ROS↑, *neuroP↑, *eff↑,
3578- CUR,  SIL,    Curcumin, but not its degradation products, in combination with silibinin is primarily responsible for the inhibition of colon cancer cell proliferation
- in-vitro, CRC, DLD1
eff↑, BioAv↓, TumCG↓,
3577- CUR,    Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study
- Trial, AD, NA
*cognitive∅, *BioAv↑,
3584- CUR,    Curcumin in Health and Diseases: Alzheimer’s Disease and Curcumin Analogues, Derivatives, and Hybrids
*AChE↓, *Inflam↓, *antiOx↑, *Aβ↓, *ROS↓,
3575- CUR,    The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse
- in-vivo, AD, NA
*antiOx↑, *ROS↓, *IL1β↓, *Aβ↓, *Inflam↓, *toxicity↓,
3574- CUR,    The effect of curcumin (turmeric) on Alzheimer's disease: An overview
- Review, AD, NA
*antiOx↑, *Inflam↓, *lipid-P↓, *cognitive↑, *memory↑, *Aβ↓, *COX2↓, *ROS↓, *AP-1↓, *NF-kB↓, *TNF-α↓, *IL1β↓, *SOD↑, *GSH↑, *HO-1↑, *IronCh↑, *BioAv↓, *Half-Life↝, *Dose↝, *BBB↑, *BioAv↑, *toxicity∅, *eff↑,
2980- CUR,    Inhibition of NF B and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation
- in-vivo, PC, NA
TumCG↓, p50↓, p65↓, NF-kB↓, Sp1/3/4↓, MMP↓, ROS↑,
2979- CUR,  GB,    Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death
- in-vitro, Lung, H157 - in-vitro, Lung, H1299
EGFR↓, Sp1/3/4↓, ERK↓, MEK↓, Akt↓, S6K↓,
2978- CUR,    N-acetyl cysteine mitigates curcumin-mediated telomerase inhibition through rescuing of Sp1 reduction in A549 cells
- in-vitro, Lung, A549
ROS↑, hTERT↓, Sp1/3/4↓, eff↓,
2977- CUR,    Curcumin Down-Regulates Toll-Like Receptor-2 Gene Expression and Function in Human Cystic Fibrosis Bronchial Epithelial Cells
- in-vitro, CF, NA
*TLR2↓, *Sp1/3/4↓,
2976- CUR,    Curcumin suppresses the proliferation of oral squamous cell carcinoma through a specificity protein 1/nuclear factor‑κB‑dependent pathway
- in-vitro, Oral, HSC3 - in-vitro, HNSCC, CAL33
tumCV↓, Sp1/3/4↓, p65↓, HSF1↓, NF-kB↓,
469- CUR,    The inhibitory effect of curcumin via fascin suppression through JAK/STAT3 pathway on metastasis and recurrence of ovary cancer cells
- in-vitro, Ovarian, SKOV3
fascin↓, STAT3↓, JAK↓,
461- CUR,    Curcumin inhibits prostate cancer progression by regulating the miR-30a-5p/PCLAF axis
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
TumCP↓, TumCMig↓, TumCI↓, Apoptosis↑, miR-30a-5p↑, PCLAF↓, Bcl-2↓, Casp3↓, BAX↑, cl‑Casp3↑,
462- CUR,    Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress
- in-vitro, Pca, PC3
Bcl-2↓, MMP↓, cl‑Casp3↑, BAX↑, BIM↑, p‑PARP↑, PUMA↑, p‑P53↑, ROS↑, p‑ERK↑, p‑eIF2α↑, CHOP↑, ATF4↑,
463- CUR,    Curcumin induces autophagic cell death in human thyroid cancer cells
- in-vitro, Thyroid, K1 - in-vitro, Thyroid, FTC-133 - in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, 8505C
TumAuto↑, LC3II↑, Beclin-1↑, p‑p38↑, p‑JNK↑, p‑ERK↑, p62↓, p‑PDK1↓, p‑Akt↓, p‑p70S6↓, p‑PIK3R1↓, p‑S6↓, p‑4E-BP1↓,
464- CUR,    Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis
- in-vitro, Thyroid, BCPAP - in-vitro, Thyroid, TPC-1
TumCI↓, TumCI↓, MMP2↓, MMP9↓, EMT↓, STAT3↓, miR-301a-3p↓, STAT↓, N-cadherin↓, Vim↓, Fibronectin↓, p‑JAK↓, p‑JAK2↓, p‑JAK3↓, p‑STAT1↓, p‑STAT2↓, E-cadherin↑,
465- CUR,    Curcumin inhibits the growth of liver cancer by impairing myeloid-derived suppressor cells in murine tumor tissues
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, HUH7 - vitro+vivo, Liver, MHCC-97H
TumCG↓, MDSCs↓, TLR4↓, NF-kB↓, IL6↓, IL1↓, PGE2↓, COX2↓, GM-CSF↓, angioG↓, VEGF↓, CD31↓, GM-CSF↓, α-SMA↓, p‑IKKα↓, MyD88↓,
466- CUR,    Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1
- in-vitro, Liver, HepG2 - in-vitro, Liver, HuT78
GlucoseCon↓, lactateProd↓, pH↑, NO↑, LAR↓, Hif1a↓, LDHA↓, MCT1↓, MDR1↓, STAT3↓, HCAR1↓,
467- CUR,    Curcumin inhibits liver cancer by inhibiting DAMP molecule HSP70 and TLR4 signaling
- in-vitro, Liver, HepG2
TumCP↓, TumCI↓, TumMeta↓, Apoptosis↑, HSP70/HSPA5↓, e-HSP70/HSPA5↓, TLR4↓,
468- CUR,  5-FU,    Gut microbiota enhances the chemosensitivity of hepatocellular carcinoma to 5-fluorouracil in vivo by increasing curcumin bioavailability
- vitro+vivo, Liver, HepG2 - vitro+vivo, Liver, 402 - vitro+vivo, Liver, Bel7
Apoptosis↑, TumCCA↑, PI3k/Akt/mTOR↓, p‑PI3K↓, Bacteria↑, cl‑Casp3↑,
458- CUR,    Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion
- vitro+vivo, GC, SGC-7901
Casp3↑, Apoptosis↑, TumCP↓,
470- CUR,    Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line
- in-vitro, Ovarian, SKOV3
Wnt/(β-catenin)↓, EMT↓, DNMT3A↓, cycD1↓, cMyc↓, Fibronectin↓, Vim↓, E-cadherin↑, SFRP5↑,
471- CUR,    Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells
- in-vitro, Ovarian, SKOV3 - in-vitro, Ovarian, A2780S
Apoptosis↑, TumAuto↑, p62↓, p‑Akt↓, p‑mTOR↓, p‑P70S6K↓, Casp9↑, PARP↑, ATG3↑, Beclin-1↑, LC3‑Ⅱ/LC3‑Ⅰ↑,
472- CUR,    Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis
- vitro+vivo, Ovarian, SKOV3 - vitro+vivo, Ovarian, A2780S
TumCP↓, Apoptosis↑, PCNA↓, miR-320a↓, BAX↑, cl‑Casp3↑, circ‑PLEKHM3↑, SMG1↑,
473- CUR,    Curcumin inhibits epithelial-mesenchymal transition in oral cancer cells via c-Met blockade
- in-vitro, Oral, HSC4 - in-vitro, Oral, Ca9-22
Vim↓, p‑cMET↓, p‑ERK↓, pro‑MMP9↓, E-cadherin↑,
474- CUR,    Modification of radiosensitivity by Curcumin in human pancreatic cancer cell lines
- in-vitro, PC, PANC1 - in-vitro, PC, MIA PaCa-2
TumCD↑, Apoptosis↑, DNAdam↑, γH2AX↑, TumCCA↑,
475- CUR,    Curcumin induces apoptotic cell death in human pancreatic cancer cells via the miR-340/XIAP signaling pathway
- in-vitro, PC, PANC1
Apoptosis↑, cl‑Casp3↑, miR-340↑, cl‑PARP↑, XIAP↓,
476- CUR,    The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer
- in-vitro, PC, PATU-8988 - in-vitro, PC, PANC1
TumCMig↓, TumCI↓, Apoptosis↑, NEDD9↓, p‑Akt↓, p‑mTOR↓, PTEN↑, p73↑, β-TRCP↑,
477- CUR,    Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells
- in-vitro, Cerv, SiHa
TumCP↓, TumCCA↑, Apoptosis↑, TumAuto↑, CycB↓, CDC25↓, ROS↑, p62↑, LC3‑Ⅱ/LC3‑Ⅰ↑, cl‑Casp3↑, cl‑PARP↑, P53↑, P21↑,
478- CUR,    Curcumin decreases epithelial‑mesenchymal transition by a Pirin‑dependent mechanism in cervical cancer cells
- in-vitro, Cerv, SiHa
EMT↓, N-cadherin↓, Vim↓, Slug↓, Zeb1↓, PIR↓, Pirin↓, E-cadherin↑,
449- CUR,    Curcumin Suppresses the Colon Cancer Proliferation by Inhibiting Wnt/β-Catenin Pathways via miR-130a
- vitro+vivo, CRC, SW480
TumCP↓, β-catenin/ZEB1↓, TCF↓, miR-21↓, NKD2↑, miR-130a↓,
438- CUR,    Curcumin Reduces Colorectal Cancer Cell Proliferation and Migration and Slows In Vivo Growth of Liver Metastases in Rats
- vitro+vivo, CRC, CC531
TumCP↓, TumVol↓, Albumin↑, ALP↑, AST↑, ALAT↑, cholinesterase↓,
439- CUR,    Curcumin suppresses LGR5(+) colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway
- in-vitro, CRC, LGR5
Apoptosis↑, TumAuto↑, GP1BB↓, COL9A3↓, COMP↓, AGRN↓, ITGB4↓, LAMA5↓, COL2A1↓, ITGB6↓, LGR5↓, TFAP2A↓, ECM/TCF↓,
440- CUR,    Curcumin Reverses NNMT-Induced 5-Fluorouracil Resistance via Increasing ROS and Cell Cycle Arrest in Colorectal Cancer Cells
- vitro+vivo, CRC, SW480 - vitro+vivo, CRC, HT-29
NNMT↓, p‑STAT3↓, TumCP↓, TumCCA↑, ROS↑,
441- CUR,    Curcumin Regulates ERCC1 Expression and Enhances Oxaliplatin Sensitivity in Resistant Colorectal Cancer Cells through Its Effects on miR-409-3p
- in-vitro, CRC, HCT116
ERCC1↓, Bcl-2↓, GSTP1/GSTπ↓, MRP↓, P-gp↓, miR-409-3p↑, survivin↓,
442- CUR,  5-FU,    Curcumin may reverse 5-fluorouracil resistance on colonic cancer cells by regulating TET1-NKD-Wnt signal pathway to inhibit the EMT progress
- in-vitro, CRC, HCT116
Apoptosis↑, TumCP↓, TumCCA↑, TET1↑, NKD2↑, Wnt↓, EMT↓, Vim↑, E-cadherin↓, β-catenin/ZEB1↓, TCF↓, AXIN1↓,
9- CUR,    Curcumin Suppresses Malignant Glioma Cells Growth and Induces Apoptosis by Inhibition of SHH/GLI1 Signaling Pathway in Vitro and Vivo
- vitro+vivo, MG, U87MG - vitro+vivo, MG, T98G
HH↓, Shh↓, Gli1↓, cycD1↓, Bcl-2↓, Foxm1↓, Bax:Bcl2↑,
444- CUR,  Cisplatin,    LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells
- vitro+vivo, CRC, HCT8
TumVol↓, Apoptosis↑, Bcl-2↓, Cyt‑c↑, BAX↑, cl‑Casp3↑, cl‑PARP1↑, miR-497↑, KCNQ1OT1↓,
445- CUR,    Curcumin Regulates the Progression of Colorectal Cancer via LncRNA NBR2/AMPK Pathway
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8 - in-vitro, CRC, SW480 - in-vitro, CRC, SW-620
p‑AMPK↑, p‑ACC-α↑, NBR2↑, p‑S6K↓, mTOR↓,
446- CUR,    The Influence of Curcumin on the Downregulation of MYC, Insulin and IGF-1 Receptors: A Possible Mechanism Underlying the Anti-Growth and Anti-Migration in Chemoresistant Colorectal Cancer Cells
- in-vitro, CRC, SW480
IR↓, IGF-1↓, Myc↓, TumCMig↓, TumCP↓,
447- CUR,  OXA,    Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway
- vitro+vivo, CRC, HCT116
p‑p65↓, Bcl-2↓, Casp3↑, EMT↓, p‑SMAD2↓, p‑SMAD3↓, N-cadherin↓, TGF-β↓, E-cadherin↑, TumVol↓, TumCMig↓,
448- CUR,    Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation
- in-vitro, CRC, HT-29
Apoptosis↑, TumCCA↑, p‑Akt↓, Akt↓, Bcl-2↓, p‑BAD↓, BAD↑, cl‑PARP↑, ROS↑, HSP27↑, Beclin-1↑, p62↑, GPx1↓, GPx4↓,
460- CUR,    Curcumin Suppresses microRNA-7641-Mediated Regulation of p16 Expression in Bladder Cancer
- in-vitro, Bladder, T24 - in-vitro, Bladder, TCCSUP - in-vitro, Bladder, J82
miR-7641↓, p16↑, Apoptosis↑, TumCI↓,
450- CUR,    Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44
- in-vitro, CRC, HCT116 - in-vitro, CRC, HCT8
TumCP↓, TumCMig↓, CD44↓, CSCs↓,
451- CUR,    The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer
- vitro+vivo, HNSCC, SCC15 - vitro+vivo, HNSCC, SNU1076 - vitro+vivo, HNSCC, SNU1041
TumCMig↓, TumCG↓, PD-L1↓, PD-L2↓, Galectin-9↓, EMT↓, T-Cell↑, TILs↑, PD-1↓, TIM-3↓, CD4+↓, CD25+↓, FoxP3+↓, E-cadherin↑, CD8+↑, IFN-γ↑,
452- CUR,    Curcumin downregulates the PI3K-AKT-mTOR pathway and inhibits growth and progression in head and neck cancer cells
- vitro+vivo, HNSCC, SCC9 - vitro+vivo, HNSCC, FaDu - vitro+vivo, HNSCC, HaCaT
TumCCA↑, PI3k/Akt/mTOR↓, Casp3↑, EGFR↓, EGF↑, PRKCG↑, p‑Akt↓, p‑mTOR↓, RPS6KA1↓, EIF4E↓, proCasp3↓,
453- CUR,    Cellular uptake and apoptotic properties of gemini curcumin in gastric cancer cells
- in-vitro, GC, AGS
Bcl-2↓, survivin↓, BAX↑, TumCCA↑,
454- CUR,    Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway
- in-vitro, GC, MGC803
TumCMig↓, TumCP↓, ROS↑, mtDam↑, DNAdam↑, Apoptosis↑, ATR↑, P21↑, p‑P53↑, GADD45A↑, p‑γH2AX↑,
455- CUR,    Curcumin Affects Gastric Cancer Cell Migration, Invasion and Cytoskeletal Remodeling Through Gli1-β-Catenin
- in-vitro, GC, SGC-7901
Shh↓, Gli1↓, Foxm1↓, β-catenin/ZEB1↓, TumCMig↓, Apoptosis↑, TumCCA↑, Wnt↓, EMT↓, E-cadherin↑, Vim↓,
456- CUR,    Curcumin Promoted miR-34a Expression and Suppressed Proliferation of Gastric Cancer Cells
- vitro+vivo, GC, SGC-7901
miR-34a↑, TumCP↓, TumCMig↓, TumCI↓, TumCCA↑, Bcl-2↓, CDK4/6↓, cycD1↓,
457- CUR,    Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling
- in-vitro, GC, SGC-7901 - in-vitro, GC, BGC-823
TumCP↓, Apoptosis↑, TumAuto↑, P53↑, PI3K↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, Bcl-xL↓, LC3I↓, BAX↑, Beclin-1↑, cl‑Casp3↑, cl‑PARP↑, LC3II↑, ATG3↑, ATG5↑,
482- CUR,  PDT,    The Antitumor Effect of Curcumin in Urothelial Cancer Cells Is Enhanced by Light Exposure In Vitro
- in-vitro, Bladder, RT112 - in-vitro, Bladder, UMUC3
Apoptosis↑, TumCG↓, TumCP↓,
459- CUR,    Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells
- in-vitro, Bladder, T24 - in-vitro, Bladder, RT4
Trop2↓, Apoptosis↑, cycE1↓, p27↑, TumCCA↑,
1980- CUR,  Rad,    Thioredoxin reductase-1 (TxnRd1) mediates curcumin-induced radiosensitization of squamous carcinoma cells
- in-vitro, Cerv, HeLa - in-vitro, Laryn, FaDu
selectivity↑, RadioS↑, TrxR↓, ROS↑, ERK↑, Dose∅, cl‑PARP↑,
1488- CUR,    Anti-Cancer and Radio-Sensitizing Effects of Curcumin in Nasopharyngeal Carcinoma
RadioS↑, ChemoSen↑,
1505- CUR,    Epigenetic targets of bioactive dietary components for cancer prevention and therapy
- Review, NA, NA
TumCCA↑, Apoptosis↑, DNMTs↓, HDAC↓, HATs↓, TumCP↓, p300↓, HDAC1↓, HDAC3↓, HDAC8↓, NF-kB↓,
1510- CUR,  Chemo,    Combination therapy in combating cancer
- Review, NA, NA
*NRF2↑, *GSH↑, *ROS↓, ChemoSideEff↓, eff↑, OS↓, chemoP↑,
1609- CUR,  EA,    Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells
- in-vitro, Cerv, NA
eff↑, Dose∅, ROS↑, DNAdam↑, P53↑, P21↑, BAX↑, Dose∅,
1616- CUR,  EA,    Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid
- in-vitro, Nor, NA
*MAOA↓, *Dose∅, Dose?,
1792- CUR,  LEC,    Chondroprotective effect of curcumin and lecithin complex in human chondrocytes stimulated by IL-1β via an anti-inflammatory mechanism
- in-vitro, Arthritis, RAW264.7 - NA, NA, HCC-38
*Inflam↓, *NF-kB↓, *iNOS↓, *COX2↓, *NO↓, *PGE2↓, *MMPs↑, *TIMP1↑, *BioEnh↑,
1809- CUR,  Oxy,    Long-term stabilisation of myeloma with curcumin
- Case Report, Melanoma, NA
*OS↑, QoL↑, Dose↑, Dose↑, IL6↓, STAT3↓, NF-kB↓, COX2↓,
1977- CUR,    Synthesis and evaluation of curcumin analogues as potential thioredoxin reductase inhibitors
- in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Lung, A549
TrxR↓, Dose↝, eff↑,
1978- CUR,    Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells
- in-vitro, Cerv, HeLa
TrxR1↓, ROS↑, DNA-PK↑, eff↑, Trx↓, Trx1↓,
1979- CUR,  Rad,    Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase
- in-vitro, Lung, A549
eff↑, ROS↑, GSH/GSSG↓, TrxR↓, selectivity↑,
1487- CUR,    Relationship and interactions of curcumin with radiation therapy
- Review, Var, NA
RadioS↑, ChemoSen↑,
1981- CUR,    Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity
- in-vitro, Lung, NA
eff↑, ROS↑, mt-GSH↓, Bax:Bcl2↑, Cyt‑c↑, MMP↓, Casp3↑, Trx2↓, TrxR↓, mt-DNAdam↑,
1982- CUR,    Inhibition of thioredoxin reductase by curcumin analogs
- in-vitro, NA, NA
eff↑, TrxR↓,
2304- CUR,    Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition
- in-vitro, Lung, H1299 - in-vitro, BC, MCF-7 - in-vitro, Cerv, HeLa - in-vitro, Pca, PC3 - in-vitro, Nor, HEK293
Glycolysis↓, GlucoseCon↓, lactateProd↓, PKM2↓, mTOR↓, Hif1a↓, selectivity↑, Dose↝, tumCV↓,
2305- CUR,    Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN
- in-vitro, BC, MCF-7
BioAv↑, PKM2↓, FASN↓, Glycolysis↓,
2307- CUR,    Cell-Type Specific Metabolic Response of Cancer Cells to Curcumin
- in-vitro, Colon, HT29 - in-vitro, Laryn, FaDu
PKM2↓, Warburg↓, mTOR↓, Hif1a↓, Glycolysis↓,
2308- CUR,    Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells
- in-vitro, Liver, HepG2
GlucoseCon↓, lactateProd↓, ECAR↓, NO↓, ROS↑, HK2↓, PFK1↓, GAPDH↓, PKM2↓, LDHA↓, FASN↓, GLUT1↓, MCT1↓, MCT4↓, HCAR1↓, SDH↑, ChemoSen↑, ROS↑, BioAv↑, P53↑, NF-kB↓, pH↑,
2312- CUR,    Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy
- Review, Var, NA
ROS↑, PKM2↓,
2466- CUR,    Regulatory Effects of Curcumin on Platelets: An Update and Future Directions
- Review, Nor, NA
*AntiAg↑, *antiOx↑, *Inflam↓, *12LOX↑, COX1↓, COX2↓, MMP9↓, NF-kB↓,
2579- CUR,  ART/DHA,    Curcumin-Artemisinin Combination Therapy for Malaria
- in-vivo, NA, NA
OS↑, toxicity↓,
2654- CUR,    Oxidative Stress Inducers in Cancer Therapy: Preclinical and Clinical Evidence
- Review, Var, NA
ROS↑, Catalase↓, SOD1↓, GLO-I↓, NADPH↓, TumCCA↑, Apoptosis↑, Akt↓, ER Stress↑, JNK↑, STAT3↓, BioAv↑,
1034- CUR,  immuno,    Enhanced anti‐tumor effects of the PD‐1 blockade combined with a highly absorptive form of curcumin targeting STAT3
- in-vivo, NA, NA
DCells↑, T-Cell↑,
480- CUR,    Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells
- in-vitro, GBM, SNB19
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, NEDD9↓, NOTCH1↓, p‑Akt↓,
481- CUR,  CHr,  Api,    Flavonoid-induced glutathione depletion: Potential implications for cancer treatment
- in-vitro, Liver, A549 - in-vitro, Pca, PC3 - in-vitro, AML, HL-60
GSH↓, mtDam↑, MMP↓, Cyt‑c↑,
443- CUR,    Reduced Caudal Type Homeobox 2 (CDX2) Promoter Methylation Is Associated with Curcumin’s Suppressive Effects on Epithelial-Mesenchymal Transition in Colorectal Cancer Cells
- in-vitro, CRC, SW480
DNMT1↓, DNMT3A↓, N-cadherin↓, Vim↓, Wnt↓, Snail↓, Twist↓, β-catenin/ZEB1↓, E-cadherin↑, EMT↓, CDX2↓,
483- CUR,  PDT,    Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin
- in-vivo, NA, A431
TumVol↓, TumCP↓, Apoptosis↑,
484- CUR,  PDT,    Low concentrations of curcumin induce growth arrest and apoptosis in skin keratinocytes only in combination with UVA or visible light
- in-vitro, Melanoma, NA
Cyt‑c↑, Casp9↑, Casp8↑, NF-kB↓, EGFR↓,
485- CUR,  PDT,    Red Light Combined with Blue Light Irradiation Regulates Proliferation and Apoptosis in Skin Keratinocytes in Combination with Low Concentrations of Curcumin
- in-vitro, Melanoma, NA
NF-kB↓, Casp8↑, Casp9↑, p‑Akt↓, p‑ERK↓,
872- CUR,  RES,    New Insights into Curcumin- and Resveratrol-Mediated Anti-Cancer Effects
- in-vitro, BC, TUBO - in-vitro, BC, SALTO
TumCP↓, tumCV↓, p62↓, p62↑, TumAuto↑, TumAuto↓, ROS↑, ROS↓, CHOP↑,
933- CUR,  EP,    Effective electrochemotherapy with curcumin in MDA-MB-231-human, triple negative breast cancer cells: A global proteomics study
- in-vitro, BC, NA
Apoptosis↑, ALDOA↓, ENO2↓, LDHA↓, LDHB↓, PFKP↓, PGK1↓, PGM1↓, PGAM1↓, OXPHOS↑, TCA↑,
990- CUR,    Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro
- in-vitro, CRC, HCT116 - in-vitro, CRC, HT-29
HK2↓, Glycolysis↓, Apoptosis↑,
1006- CUR,    The effect of Curcuma longa extract and its active component (curcumin) on gene expression profiles of lipid metabolism pathway in liver cancer cell line (HepG2)
- in-vitro, Liver, HepG2
TumCP↓, PGC1A↑, CPT1A↑, ACOX1↑, SCD1↓, SREBF2↓, DGAT1↓,
479- CUR,    Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments
- in-vitro, Tong, CAL27
TumCP↓, TumCMig↓, Apoptosis↑, TumCCA↑, Bcl-2↓, BAX↑, cl‑Casp3↑,
1108- CUR,    Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition
- Review, NA, NA
EMT↓,
1383- CUR,  BBR,  RES,    Regulation of GSK-3 activity by curcumin, berberine and resveratrol: Potential effects on multiple diseases
- Review, NA, NA
GSK‐3β↝, ROS↑,
1408- CUR,    Antiproliferative and ROS Regulation Activity of Photoluminescent Curcumin-Derived Nanodots
- in-vitro, Lung, A549
ROS↓, ROS↑,
1409- CUR,    Curcumin analog WZ26 induces ROS and cell death via inhibition of STAT3 in cholangiocarcinoma
- in-vivo, CCA, Walker256
TumCG↓, ROS↑, MMP↓, STAT3↓, TumCCA↑, eff↓,
1410- CUR,    Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway
- vitro+vivo, OS, MG63
tumCV↓, Apoptosis↑, TumCG↓, NRF2↓, GPx4↓, HO-1↓, xCT↓, ROS↑, MDA↑, GSH↓,
1411- CUR,  Cisplatin,    Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects
- Review, Var, NA
ChemoSen↑, *ROS↓, *NF-kB↓, TumCCA↑,
1418- CUR,    Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis
- Review, Arthritis, NA
*COX2↓, *Inflam↓, *5LO↓, *NO↓, *NF-kB↓, *TNF-α↓, *IL1↓, *IL2↑, *IL6↓, *IL8↓, *IL12↓, *MCP1↓, *PGE2↓, *MMP2↓, *MMP3↓, *MMP9↓, *NLRP3↓, *ROS↓,
1485- CUR,  Chemo,  Rad,    Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs
- Review, Var, NA
ChemoSen↑, NF-kB↓, *STAT3↓, *COX2↓, *Akt↓, *NRF2↑, *HO-1↑, *GPx↑, *NADPH↑, *GSH↑, *ROS↓, *p300↓, radioP↑, chemoP↑, RadioS↑,
1486- CUR,    Curcumin and lung cancer--a review
- Review, Lung, NA
RadioS↑, ChemoSen↑,
144- CUR,  Bical,    Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C
- in-vitro, Pca, PC3 - in-vitro, NA, DU145 - in-vitro, NA, LNCaP
p‑ERK↑, p‑JNK↓, MUC1↓, p65↓,
132- CUR,    Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells
- in-vitro, Pca, NA
TumCCA↑, ROS↑, TumAuto↑, UPR↑,
133- CUR,    Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis
- in-vitro, Pca, NA
miR-143↑, PDK1↓, FOXD3↑,
134- CUR,  RES,  MEL,  SIL,    Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
Apoptosis↑, ROS↑, Trx1↓,
135- CUR,    Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
TfR1/CD71↑, IRP1↑,
136- CUR,  docx,    Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
Bcl-2↓, Bcl-xL↓, Mcl-1↓, BAX↑, BID↑, PARP↑, NF-kB↓, CDK1↓, COX2↓, RTK-RAS↓, PI3K/Akt↓, EGFR↓, HER2/EBBR2↓, P53↑,
137- CUR,    Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating Notch signaling
- in-vitro, Pca, DU145
NOTCH1↓, cycD1↓, CDK2↓, P21↑, p27↑, P53↑, Bcl-2↓, Casp3↑, Casp9↑,
140- CUR,    Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling
- in-vitro, Pca, PC3
CAFs/TAFs↓, EMT↓, ROS↓, CXCR4↓, IL6↓, MAOA↓, mTOR↓, HIF-1↓,
141- CUR,    Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer
- in-vivo, Pca, PC3
BAX↑, Bcl-2↓,
142- CUR,    Effect of curcumin on the interaction between androgen receptor and Wnt/β-catenin in LNCaP xenografts
- in-vivo, Pca, LNCaP
AR↓, PSA↓,
143- CUR,    Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species -mediated endoplasmic reticulum stress
- in-vitro, Pca, LNCaP - in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ER Stress↑, CHOP↑, GRP78/BiP↑, ROS↑,
131- CUR,    Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer
- vitro+vivo, Pca, LNCaP - vitro+vivo, Pca, 22Rv1
AKR1C2↓, CYP11A1↓, HSD3B↓, DHT↓, testos↓, StAR↓, SRD5A1↑,
146- CUR,  EGCG,    Synergistic effect of curcumin on epigallocatechin gallate-induced anticancer action in PC3 prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, DU145
P21↑,
151- CUR,    Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, LNCaP
AR↓,
152- CUR,    Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer
- in-vivo, Pca, NA
β-catenin/ZEB1↓, AR↓, STAT3↓, p‑Akt↓, Mcl-1↓, Bcl-xL↓, cl‑PARP↑, miR-21↓, miR-205↑,
153- CUR,    Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo
- in-vivo, Pca, C4-2B
PSA↓, TGF-β↓, BMPs↑,
154- CUR,    Curcumin inhibits expression of inhibitor of DNA binding 1 in PC3 cells and xenografts
- vitro+vivo, Pca, PC3
Id1↓,
155- CUR,    Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells
- in-vitro, Pca, PC3
p‑ERK↓, VEGF↓, angioS↑,
157- CUR,    Curcumin induces cell cycle arrest and apoptosis of prostate cancer cells by regulating the expression of IkappaBalpha, c-Jun and androgen receptor
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
cJun↓, AR↓,
158- CUR,    Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis
- vitro+vivo, Pca, LNCaP
MMP9↓, Matr↓,
159- CUR,    Crosstalk from survival to necrotic death coexists in DU-145 cells by curcumin treatment
- in-vitro, Pca, DU145
ROS↑, p‑Jun↑, p‑p38↑,
121- CUR,    Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study
- in-vivo, Pca, NA
CTC↓,
10- CUR,    Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
HH↓, Wnt/(β-catenin)↓, Shh↓, Smo↓, Gli1↝, GLI2↝,
11- CUR,    Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway
- in-vitro, PC, PANC1
HH↓, Shh↓, Smo↓, Gli1↓, N-cadherin↓, E-cadherin↑, Vim↓,
12- CUR,    Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells
- in-vitro, MB, DAOY
HH↓, Shh↓, Gli1↓, PTCH1↓, cMyc↓, n-MYC↓, cycD1↓, Bcl-2↓, NF-kB↓, Akt↓, β-catenin/ZEB1↓, survivin↓,
13- CUR,    Role of curcumin in regulating p53 in breast cancer: an overview of the mechanism of action
- Review, BC, NA
P53↑, DR5↑, JNK↑, NRF2↑, PPARγ↑, HER2/EBBR2↓, IR↓, ER(estro)↓, Fas↑, PDGF↓, TGF-β↓, FGF↓, EGFR↓, JAK↓, PAK↓, MAPK↓, ATPase↓, COX2↓, MMPs↓, IL1↓, IL2↓, IL5↓, IL6↓, IL8↓, IL12↓, IL18↓, NF-kB↓, NOTCH1↓, STAT1↓, STAT4↓, STAT5↓, STAT3↓,
14- CUR,    Curcumin, a Dietary Component, Has Anticancer, Chemosensitization, and Radiosensitization Effects by Down-regulating the MDM2 Oncogene through the PI3K/mTOR/ETS2 Pathway
- vitro+vivo, Pca, PC3
PI3K/mTOR/ETS2↓, MDM2↓, P21↑,
15- CUR,  UA,    Effects of curcumin and ursolic acid in prostate cancer: A systematic review
NF-kB↝, Akt↝, AR↝, Apoptosis↝, Bcl-2↝, Casp3↝, BAX↝, P21↝, ROS↝, Apoptosis↝, Bcl-xL↝, JNK↝, MMP2↝, P53↝, PSA↝, VEGF↝, COX2↝, cycD1↝, EGFR↝, IL6↝, β-catenin/ZEB1↝, mTOR↝, NRF2↝, p‑Akt↝, AP-1↝, Cyt‑c↝, PI3K↝, PTEN↝, Cyc↝, TNF-α↝,
117- CUR,    Increased Intracellular Reactive Oxygen Species Mediates the Anti-Cancer Effects of WZ35 via Activating Mitochondrial Apoptosis Pathway in Prostate Cancer Cells
- in-vivo, Pca, RM-1 - in-vivo, Pca, DU145
ROS↑,
118- CUR,    Curcumin analog WZ35 induced cell death via ROS-dependent ER stress and G2/M cell cycle arrest in human prostate cancer cells
- in-vitro, Pca, PC3 - in-vitro, Pca, DU145
ROS↑, Bcl-2↓, PARP↑, cDC2↓, CycB↓, MDM2↓,
120- CUR,    A randomized, double-blind, placebo-controlled trial to evaluate the role of curcumin in prostate cancer patients with intermittent androgen deprivation
- Human, Pca, NA
PSA↓,
436- CUR,    Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti‐lung cancer cell invasion
- in-vitro, Lung, A549
miR-25-5p↓, miR-330-5p↑, MAPK↓, Wnt↓,
122- CUR,  isoFl,    Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen
- Human, Pca, LNCaP
PSA↓, AR↓,
123- CUR,    Synthesis of novel 4-Boc-piperidone chalcones and evaluation of their cytotoxic activity against highly-metastatic cancer cells
- in-vitro, Colon, LoVo - in-vitro, Colon, COLO205 - in-vitro, Pca, PC3 - in-vitro, Pca, 22Rv1
NF-kB↓,
124- CUR,    Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells
- in-vitro, Pca, LNCaP - in-vitro, Pca, C4-2B
TGF-β↓, Wnt↓, PI3k/Akt/mTOR↓, NF-kB↓, PTEN↑, Apoptosis↑,
125- CUR,    Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway
- in-vitro, adrenal, H295R
CYP17A1↓, CYP19↓,
126- CUR,    Modulation of miR-34a in curcumin-induced antiproliferation of prostate cancer cells
- in-vitro, Pca, 22Rv1 - in-vitro, Pca, PC3 - in-vitro, Pca, DU145
miR-34a↑, β-catenin/ZEB1↓, cMyc↓, P21↑, cycD1↓, PCNA↓,
127- CUR,    The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis
- in-vitro, Pca, NA
Elvol3↓,
128- CUR,  RES,    Evaluation of biophysical as well as biochemical potential of curcumin and resveratrol during prostate cancer
- in-vivo, Pca, NA
lipid-P↓,
129- CUR,    Curcumin suppressed the prostate cancer by inhibiting JNK pathways via epigenetic regulation
- vitro+vivo, Pca, LNCaP
JNK↓,
130- CUR,    Maspin Enhances the Anticancer Activity of Curcumin in Hormone-refractory Prostate Cancer Cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
BAD↝, BAX↝, eff↑,
423- CUR,    Inhibition of TLR4/TRIF/IRF3 Signaling Pathway by Curcumin in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
TLR4↓, IRF3↓, IFN-γ↓, TRIF↓,
406- CUR,    Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2
- in-vitro, BC, MCF-7 - in-vitro, Hepat, HepG2
GSH↓, Apoptosis↑, Bcl-2↓, cMyc↓,
407- CUR,    Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress
- in-vitro, Melanoma, A375
Apoptosis↑, ROS↑, GSH↓, MMP↓,
160- CUR,    Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2
CXCc↓, IκB↓, NF-kB↓, COX2↓, SPARC↓, EFEMP↓,
409- CUR,    Curcumin Inhibits Glyoxalase 1—A Possible Link to Its Anti-Inflammatory and Anti-Tumor Activity
- in-vitro, Pca, PC3 - in-vitro, BC, MDA-MB-231
GLO-I↓, GSH↓, ATP↓,
410- CUR,    Nrf2 depletion enhanced curcumin therapy effect in gastric cancer by inducing the excessive accumulation of ROS
- vitro+vivo, GC, AGS - vitro+vivo, GC, HGC27
ROS↑, NRF2↑,
411- CUR,    Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway
- in-vitro, BC, MDA-MB-231
HH↓, EMT↓, Gli1↓,
412- CUR,    Curcumin and Its New Derivatives: Correlation between Cytotoxicity against Breast Cancer Cell Lines, Degradation of PTP1B Phosphatase and ROS Generation
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
ROS↑, PTP1B↓,
413- CUR,    Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells
- in-vitro, BC, MCF-7
N-cadherin↓, E-cadherin↑, H19↓,
414- CUR,    Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Ferroptosis↑, Iron↑, ROS↑, lipid-P↑, MDA↑, GSH↓, HO-1↑, NRF2↑, GPx↓, ROS↑, Iron↑, GPx4↓, HSP70/HSPA5↑, ATFs↑, CHOP↑, MDA↑, FTL↑, FTH1↑, BACH1↑, REL↑, USF1↑, NFE2L2↑,
415- CUR,    Curcumin inhibits proteasome activity in triple-negative breast cancer cells through regulating p300/miR-142-3p/PSMB5 axis
- vitro+vivo, BC, MDA-MB-231
PSMB5↓, CT-I↓, miR-142-3p↑, EP300↓,
417- CUR,    Curcumin inhibits the growth of triple‐negative breast cancer cells by silencing EZH2 and restoring DLC1 expression
- vitro+vivo, BC, MCF-7 - vitro+vivo, BC, MDA-MB-231 - vitro+vivo, BC, MDA-MB-468
EZH2↓, DLC1↑, cycA1↓, CDK1↓, Bcl-2↓, Casp9↑, DLC1↑,
420- CUR,    Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Vim↓, Fibronectin↓, β-catenin/ZEB1↓, E-cadherin↓, CD44↑, CD24↓, OCT4↓, Nanog↓, SOX2↓,
422- CUR,    Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines
- in-vitro, BC, HCC-38 - in-vitro, BC, T47D
BRCA1↑, TET1↑, DNMT3A↑, DNMT1↓, SNCG↓, miR-29b↓, miR-29b↑,
408- CUR,    Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system
- in-vitro, BC, MCF-7
Trx1↓,
424- CUR,    Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells
- in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231
Src↓, p‑STAT1↓, p‑Akt↓, p‑p44↓, p‑p42↓, RAS↓, Raf↓, Vim↓, β-catenin/ZEB1↓, P53↓, Bcl-2↓, Mcl-1↓, PIAS-3↑, SOCS-3↑, SOCS1↑, ROS↑, NF-kB↓, PAO↑, SSAT↑, P21↑, Bak↑,
425- CUR,    Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells
- in-vitro, BC, T47D - in-vitro, BC, MCF-7 - in-vitro, BC, MDA-MB-231 - in-vitro, BC, MDA-MB-468
CDC25↓, cDC2↓, P21↑, p‑Akt↓, p‑mTOR↓, Bcl-2↓, BAX↑, Casp3↑,
426- CUR,    Use of cancer chemopreventive phytochemicals as antineoplastic agents
- in-vitro, BC, MDA-MB-231 - in-vitro, BC, CAL51
Bcl-2↓, ROS↑, BAX↑, RAD51↑, γH2AX↑,
427- CUR,    Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the circ-PRKCA/miR-384/ITGB1 pathway
- in-vitro, Lung, H1299 - in-vitro, Lung, H460 - vitro+vivo, Lung, A549
ITGB1↓, circ-PRKCA↓, miR-384↑,
429- CUR,    TAp63α Is Involved in Tobacco Smoke-Induced Lung Cancer EMT and the Anti-cancer Activity of Curcumin via miR-19 Transcriptional Suppression
- in-vitro, Lung, H1299 - in-vitro, Lung, A549
TAp63α↑, E-cadherin↑, ZO-1↑, Vim↓, N-cadherin↓, miR-19b↓,
430- CUR,    Curcumin suppresses tumor growth of gemcitabine-resistant non-small cell lung cancer by regulating lncRNA-MEG3 and PTEN signaling
- vitro+vivo, Lung, A549
PTEN↑, MEG3↑,
431- CUR,    Curcumin suppresses the stemness of non-small cell lung cancer cells via promoting the nuclear-cytoplasm translocation of TAZ
- in-vitro, Lung, A549 - in-vitro, Lung, H1299
ALDH1A1↓, CD133↓, EpCAM↓, OCT4↓, TAZ↓, Hippo↑, p‑TAZ↑,
432- CUR,    Curcumin-Induced Global Profiling of Transcriptomes in Small Cell Lung Cancer Cells
- in-vitro, Lung, H446
Bcl-2↓, cycF↓, LOX1↓, VEGF↓, MRGPRF↓, BAX↑, Cyt‑c↑, miR-548ah-5p↑,
433- CUR,    Curcumin Inhibits the Migration and Invasion of Non-Small-Cell Lung Cancer Cells Through Radiation-Induced Suppression of Epithelial-Mesenchymal Transition and Soluble E-Cadherin Expression
- in-vitro, Lung, A549
E-cadherin↓, Vim↓, Slug↓, N-cadherin↓, Snail↓, MMP9↓, EMT↓,
434- CUR,    Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad
- in-vitro, Lung, A549
14-3-3 proteins↓, p‑BAD↓, p‑Akt↓, Akt↓, cl‑Casp9↑, cl‑PARP↑,
435- CUR,    Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway
- in-vitro, Lung, A549
Apoptosis↑, TumAuto↑, LC3‑Ⅱ/LC3‑Ⅰ↑, Beclin-1↑, p62↓, PI3K↓, Akt↓, mTOR↓, p‑Akt↓, p‑mTOR↓, NA↓,
437- CUR,    Anti-cancer activity of amorphous curcumin preparation in patient-derived colorectal cancer organoids
- vitro+vivo, CRC, TCO1 - vitro+vivo, CRC, TCO2
cycD1↓, cMyc↓, p‑ERK↓, CD44↓, CD133↓, LGR5↓, TumCCA↑, TumVol↓, CSCs↓,
161- CUR,  MeSA,    Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of Mcl-1 and FAK
- in-vitro, BC, MDA-MB-231 - in-vitro, Pca, DU145
Mcl-1↑, Mcl-1↓, MPT↑, AIF↑,
165- CUR,    Curcumin interrupts the interaction between the androgen receptor and Wnt/β-catenin signaling pathway in LNCaP prostate cancer cells
- in-vitro, Pca, LNCaP
AR↓, β-catenin/ZEB1↓, p‑Akt↓, GSK‐3β↓, p‑β-catenin/ZEB1↑, cycD1↓, cMyc↓,
167- CUR,    Curcumin-induced apoptosis in PC3 prostate carcinoma cells is caspase-independent and involves cellular ceramide accumulation and damage to mitochondria
- in-vitro, Pca, PC3
MAPK↑, JNK↑, Casp3↑, Casp8↑, Casp9↑, AIF↑,
164- CUR,    Anti-tumor activity of curcumin against androgen-independent prostate cancer cells via inhibition of NF-κB and AP-1 pathway in vitro
- in-vitro, Pca, PC3
NF-kB↓, AP-1↓,
163- CUR,    Epigenetic CpG Demethylation of the Promoter and Reactivation of the Expression of Neurog1 by Curcumin in Prostate LNCaP Cells
- in-vitro, Pca, LNCaP
MeCP2↓, Neurog1↑, HDAC↓,
168- CUR,    Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism
- in-vitro, Pca, PC3
Akt↓, mTOR↓, AMPK↑, TAp63α↑,
169- CUR,    Curcumin inhibits the expression of vascular endothelial growth factor and androgen-independent prostate cancer cell line PC-3 in vitro
- in-vitro, Pca, PC3
VEGF↓,
162- CUR,  EGCG,  SFN,    Shattering the underpinnings of neoplastic architecture in LNCap: synergistic potential of nutraceuticals in dampening PDGFR/EGFR signaling and cellular proliferation
- in-vitro, Pca, LNCaP
p‑PDGF↓,
170- CUR,    Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis
- vitro+vivo, Pca, PC3
TRAILR↑, BAX↑, P21↑, p27↑, NF-kB↓, cycD1↓, VEGF↓, uPA↓, MMP2↓, MMP9↓, Bcl-2↓, Bcl-xL↓,
181- CUR,    The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo
- vitro+vivo, Pca, DU145
MMP2↓, MMP9↓,
182- CUR,  RES,  GI,    Chemopreventive anti-inflammatory activities of curcumin and other phytochemicals mediated by MAP kinase phosphatase-5 in prostate cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3 - in-vitro, Pca, LNCaP - in-vitro, Pca, LAPC-4
p38↓, MKP5↑,
183- CUR,    Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines
- in-vitro, Pca, LNCaP - in-vitro, Pca, PC3
AR↓, AP-1↓, NF-kB↓, CBP↓,
404- CUR,    Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy
- vitro+vivo, Lung, A549 - vitro+vivo, Lung, H1299
TumAuto↑, TumCG↓, TumCP↓, Iron↑, GSH↓, lipid-P↑, GPx↓, mtDam↑, autolysosome↑, Beclin-1↑, LC3s↑, p62↓, Ferroptosis↑,
405- CUR,  5-FU,    Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis
- vitro+vivo, CRC, HCT116
Apoptosis↑, TumCMig↓, NRF2↑, ROS↑, MET↓, NA↑,
1617- EA,  CUR,    The inhibition of human glutathione S-transferases activity by plant polyphenolic compounds ellagic acid and curcumin
- in-vitro, Nor, NA
Dose∅, GSTs↓,
1619- EA,  CUR,    Antimutagenic Effect of the Ellagic Acid and Curcumin Combinations
- in-vitro, Nor, NA
eff↑,
649- EGCG,  CUR,  PI,    Targeting Cancer Hallmarks with Epigallocatechin Gallate (EGCG): Mechanistic Basis and Therapeutic Targets
- Review, Var, NA
*BioEnh↑, EGFR↓, HER2/EBBR2↓, IGF-1↓, MAPK↓, ERK↓, RAS↓, Raf↓, NF-kB↓, p‑pRB↓, TumCCA↑, Glycolysis↓, Warburg↓, HK2↓, Pyruv↓,
652- EGCG,  VitK2,  CUR,    Case Report of Unexpectedly Long Survival of Patient With Chronic Lymphocytic Leukemia: Why Integrative Methods Matter
- Case Report, CLL, NA
Remission↑,
685- EGCG,  CUR,  SFN,  RES,  GEN  The “Big Five” Phytochemicals Targeting Cancer Stem Cells: Curcumin, EGCG, Sulforaphane, Resveratrol and Genistein
- Analysis, NA, NA
Bcl-2↓, survivin↓, XIAP↓, EMT↓, Apoptosis↑, Nanog↓, cMyc↓, OCT4↓, Snail↓, Slug↓, Zeb1↓, TCF↓,
3715- FA,  CUR,  PS,    The Additive Effects of Low Dose Intake of Ferulic Acid, Phosphatidylserine and Curcumin, Not Alone, Improve Cognitive Function in APPswe/PS1dE9 Transgenic Mice
- in-vivo, AD, NA
*cognitive↑, *IL1β↓, *Ach↑, *Aβ↓, *p‑tau↓, *BDNF↑, *APP↓,
831- GAR,  CUR,    Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells
- in-vitro, AML, HL-60
Apoptosis↑, Casp3↑, MMP↓, Cyt‑c↑, proCasp9↑, Bcl-2↓, BAX↑, PARP↓, DNAdam↑, DFF45↓,
797- GAR,  CUR,    Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells
- in-vitro, BC, MCF-7 - in-vitro, OS, U2OS - in-vitro, OS, SaOS2
TumCP↓, H3K18↓, DNAdam↑,
808- GAR,  CUR,    Synergistic effect of garcinol and curcumin on antiproliferative and apoptotic activity in pancreatic cancer cells
- in-vitro, PC, Bxpc-3 - in-vitro, PC, PANC1
tumCV↓, Apoptosis↑, Casp3↑, Casp9↑,
1998- Myr,  CUR,    Thioredoxin-dependent system. Application of inhibitors
- Review, Var, NA
TrxR↓, ROS↑,
150- NRF,  CUR,  docx,    Subverting ER-Stress towards Apoptosis by Nelfinavir and Curcumin Coexposure Augments Docetaxel Efficacy in Castration Resistant Prostate Cancer Cells
- in-vitro, Pca, C4-2B
p‑Akt↓, p‑eIF2α↑, ER Stress↑, ATFs↑, CHOP↑, TRIB3↑,
138- QC,  CUR,    Sensitization of androgen refractory prostate cancer cells to anti-androgens through re-expression of epigenetically repressed androgen receptor - Synergistic action of quercetin and curcumin
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
DNMTs↓,
873- QC,  RES,  CUR,  PI,    Combination Effects of Quercetin, Resveratrol and Curcumin on In Vitro Intestinal Absorption
- in-vitro, Nor, NA
*BioEnh↑,
918- QC,  CUR,  VitC,    Anti- and pro-oxidant effects of oxidized quercetin, curcumin or curcumin-related compounds with thiols or ascorbate as measured by the induction period method
- Analysis, NA, NA
ROS↑, ROS↑,
156- Ralox,  Tam,  GEN,  CUR,    Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ERβ↑,
103- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- vitro+vivo, BC, 4T1
ROS↑, MMP↓, Bcl-2↓, BAX↑, Casp9↑, T-Cell↑, TGF-β↓,
871- RES,  CUR,  QC,    The effect of resveratrol, curcumin and quercetin combination on immuno-suppression of tumor microenvironment for breast tumor-bearing mice
- in-vitro, BC, 4T1 - in-vivo, BC, 4T1
T-Cell↑, Neut↓, Macrophages↓, ROS↑, MMP↓, other↓, AntiTum↑, TumVol↓,
3755- RosA,  CUR,    Development of Acetylcholinesterase (AChE) Inhibitor
- Study, AD, NA
*AChE↓, *antiOx↑, *Inflam↓,
2306- SIL,  CUR,  RES,  EA,    Identification of Natural Compounds as Inhibitors of Pyruvate Kinase M2 for Cancer Treatment
- in-vitro, BC, MDA-MB-231
PKM2↓, Dose↝, Dose↝,
4415- SNP,  SDT,  CUR,    Examining the Impact of Sonodynamic Therapy With Ultrasound Wave in the Presence of Curcumin-Coated Silver Nanoparticles on the Apoptosis of MCF7 Breast Cancer Cells
- in-vitro, BC, MCF-7
tumCV↓, BAX↑, Casp3↑, Bcl-2↓, eff↑, ROS↑, sonoS↑, eff↑, MMP↓, Cyt‑c↑,
139- Tomatine,  CUR,    Combination of α-Tomatine and Curcumin Inhibits Growth and Induces Apoptosis in Human Prostate Cancer Cells
- in-vitro, Pca, PC3
NF-kB↓, Bcl-2↓, p‑Akt↓, p‑ERK↓,
2133- TQ,  CUR,  Cisplatin,    Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling
- in-vitro, Nor, HEK293 - in-vivo, NA, NA
*creat↓, *TNF-α↓, *IL6↓, *MRP↓, *GFR↑, *mt-ATPase↑, *p‑Akt↑, *NRF2↑, *HO-1↑, *Casp3↓, *NF-kB↓, *RenoP↑,
119- UA,  CUR,  RES,    Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism
- in-vitro, Pca, DU145 - in-vitro, Pca, PC3
ROS⇅, p‑STAT3↓, Src↓, AMPK↑,

* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 268

Results for Effect on Cancer/Diseased Cells:
14-3-3 proteins↓,1,   p‑4E-BP1↓,1,   p‑ACC-α↑,1,   ACOX1↑,1,   ADAM10↓,1,   AGRN↓,1,   AIF↑,2,   AKR1C2↓,1,   Akt↓,9,   Akt↑,1,   Akt↝,1,   p‑Akt↓,16,   p‑Akt↝,1,   ALAT↑,1,   Albumin↑,1,   ALDH1A1↓,1,   ALDOA↓,1,   ALP↑,1,   AMPK↑,2,   p‑AMPK↑,1,   angioG↓,2,   angioS↑,1,   AntiCan↑,3,   AntiTum↑,1,   AP-1↓,2,   AP-1↝,2,   Apoptosis↑,43,   Apoptosis↝,2,   AR↓,8,   AR↝,1,   ARE/EpRE↑,1,   AST↑,1,   ATF4↑,1,   ATF6↑,1,   ATFs↑,2,   ATG3↑,2,   ATG5↑,1,   ATP↓,1,   ATPase↓,1,   ATR↑,1,   autolysosome↑,1,   AXIN1↓,1,   BACH1↑,1,   Bacteria↑,1,   BAD↑,1,   BAD↝,1,   p‑BAD↓,2,   Bak↑,1,   BAX↑,18,   BAX↝,2,   Bax:Bcl2↑,3,   Bcl-2↓,30,   Bcl-2↝,1,   Bcl-xL↓,4,   Bcl-xL↝,1,   Beclin-1↑,6,   BID↑,1,   BIM↑,1,   BioAv↓,5,   BioAv↑,10,   BMPs↑,1,   BRCA1↑,1,   CAFs/TAFs↓,1,   Casp3↓,1,   Casp3↑,12,   Casp3↝,1,   cl‑Casp3↑,9,   proCasp3↓,1,   Casp8↑,3,   Casp9↑,9,   cl‑Casp9↑,1,   proCasp9↑,1,   Catalase↓,1,   CBP↓,1,   CD133↓,2,   CD24↓,2,   CD25+↓,1,   CD31↓,1,   CD4+↓,1,   CD44↓,3,   CD44↑,1,   CD8+↑,1,   cDC2↓,2,   CDC25↓,2,   CDK1↓,2,   CDK2↓,1,   CDK4↓,1,   CDK4/6↓,1,   CDK6↓,1,   CDX2↓,1,   chemoP↑,4,   ChemoSen↑,10,   ChemoSideEff↓,1,   cholinesterase↓,1,   CHOP↑,6,   circ-PRKCA↓,1,   cJun↓,1,   CK2↓,1,   p‑cMET↓,1,   cMyc↓,8,   COL2A1↓,1,   COL9A3↓,1,   COMP↓,1,   COX1↓,1,   COX2↓,7,   COX2↝,1,   CPT1A↑,1,   CRP↓,1,   CSCs↓,8,   CT-I↓,1,   CTC↓,1,   CXCc↓,2,   CXCL12↓,1,   CXCR4↓,1,   Cyc↝,1,   cycA1↓,1,   CycB↓,2,   cycD1↓,11,   cycD1↝,1,   cycE1↓,1,   cycF↓,1,   CYP11A1↓,1,   CYP17A1↓,1,   CYP19↓,1,   Cyt‑c↑,9,   Cyt‑c↝,1,   DCells↑,1,   DFF45↓,1,   DGAT1↓,1,   DHT↓,1,   DLC1↑,2,   DNA-PK↑,1,   DNAdam↑,6,   mt-DNAdam↑,1,   DNMT1↓,3,   DNMT3A↓,2,   DNMT3A↑,1,   DNMTs↓,2,   Dose?,1,   Dose↑,4,   Dose↝,6,   Dose∅,5,   DR5↑,1,   E-cadherin↓,3,   E-cadherin↑,13,   ECAR↓,1,   ECM/TCF↓,1,   EFEMP↓,1,   eff↓,4,   eff↑,15,   eff↝,1,   EGF↑,1,   EGFR↓,7,   EGFR↝,1,   p‑eIF2α↑,2,   EIF4E↓,1,   Elvol3↓,1,   EMT↓,15,   ENO2↓,1,   EP300↓,1,   EpCAM↓,1,   EPR↑,1,   ER Stress↑,5,   ER(estro)↓,1,   ERCC1↓,1,   ERK↓,2,   ERK↑,1,   p‑ERK↓,5,   p‑ERK↑,4,   ERβ↑,1,   EZH2↓,3,   FAK↓,1,   FAK↝,1,   Fas↑,1,   fascin↓,1,   FASN↓,2,   Fenton↑,1,   Ferritin↓,1,   Ferroptosis↑,2,   FGF↓,1,   Fibronectin↓,3,   FOXD3↑,1,   Foxm1↓,2,   FoxP3+↓,1,   FTH1↑,1,   FTL↑,1,   GADD45A↑,1,   Galectin-9↓,1,   GAPDH↓,1,   Gli1↓,5,   Gli1↝,1,   GLI2↝,1,   GLO-I↓,4,   GlucoseCon↓,3,   GLUT1↓,1,   Glycolysis↓,5,   GM-CSF↓,2,   GP1BB↓,1,   GPx↓,2,   GPx1↓,1,   GPx4↓,3,   GRP78/BiP↓,1,   GRP78/BiP↑,1,   GSH↓,8,   mt-GSH↓,1,   GSH/GSSG↓,1,   GSK‐3β↓,2,   GSK‐3β↝,1,   GSTP1/GSTπ↓,1,   GSTs↓,1,   H19↓,1,   H3K18↓,1,   Half-Life↝,1,   Half-Life∅,1,   HATs↓,1,   HCAR1↓,2,   HDAC↓,2,   HDAC1↓,1,   HDAC3↓,1,   HDAC4↓,1,   HDAC8↓,1,   HER2/EBBR2↓,3,   HH↓,6,   HH↝,1,   HIF-1↓,1,   Hif1a↓,4,   Hif1a↝,1,   Hippo↑,1,   HK2↓,3,   HO-1↓,1,   HO-1↑,3,   HSD3B↓,1,   HSF1↓,1,   HSP27↑,1,   HSP70/HSPA5↓,1,   HSP70/HSPA5↑,1,   e-HSP70/HSPA5↓,1,   hTERT↓,1,   Id1↓,1,   IFN-γ↓,1,   IFN-γ↑,1,   IGF-1↓,2,   p‑IKKα↓,1,   IL1↓,3,   IL10↓,1,   IL12↓,1,   IL18↓,1,   IL2↓,1,   IL5↓,1,   IL6↓,6,   IL6↝,1,   IL8↓,2,   IR↓,2,   IRF3↓,1,   Iron↑,4,   IronCh↑,1,   IRP1↑,1,   ITGB1↓,1,   ITGB4↓,1,   ITGB6↓,1,   IκB↓,1,   JAK↓,3,   p‑JAK↓,1,   JAK2↓,1,   p‑JAK2↓,1,   p‑JAK3↓,1,   JNK↓,1,   JNK↑,3,   JNK↝,1,   p‑JNK↓,1,   p‑JNK↑,2,   p‑Jun↑,1,   KCNQ1OT1↓,1,   lactateProd↓,3,   LAMA5↓,1,   LAMs↓,1,   LAR↓,1,   LC3‑Ⅱ/LC3‑Ⅰ↑,3,   LC3I↓,1,   LC3II↓,1,   LC3II↑,2,   LC3s↑,1,   LDHA↓,3,   LDHB↓,1,   LGR5↓,2,   lipid-P↓,1,   lipid-P↑,2,   LOX1↓,1,   Macrophages↓,1,   MAOA↓,1,   MAPK↓,3,   MAPK↑,1,   Matr↓,1,   Mcl-1↓,4,   Mcl-1↑,1,   MCT1↓,2,   MCT4↓,1,   MDA↑,3,   MDM2↓,2,   MDR1↓,1,   MDSCs↓,2,   MeCP2↓,1,   MEG3↑,1,   MEK↓,1,   MET↓,1,   miR-130a↓,1,   miR-142-3p↑,1,   miR-143↑,1,   miR-19b↓,1,   miR-205↑,1,   miR-21↓,3,   miR-25-5p↓,1,   miR-27a-3p↓,3,   miR-29b↓,1,   miR-29b↑,1,   miR-301a-3p↓,1,   miR-30a-5p↑,1,   miR-320a↓,1,   miR-330-5p↑,1,   miR-340↑,1,   miR-34a↑,4,   miR-384↑,1,   miR-409-3p↑,1,   miR-497↑,1,   miR-548ah-5p↑,1,   miR-7641↓,1,   MKP5↑,1,   MMP↓,10,   MMP2↓,5,   MMP2↝,1,   MMP9↓,8,   pro‑MMP9↓,1,   MMPs↓,1,   MPT↑,1,   MRGPRF↓,1,   MRP↓,1,   mtDam↑,4,   mTOR↓,8,   mTOR↝,1,   p‑mTOR↓,6,   MUC1↓,1,   Myc↓,1,   MyD88↓,1,   N-cadherin↓,8,   n-MYC↓,1,   NA↓,1,   NA↑,1,   NADPH↓,1,   Nanog↓,3,   NBR2↑,1,   NEDD9↓,2,   Neurog1↑,1,   neuroP↑,1,   Neut↓,1,   NF-kB↓,30,   NF-kB↝,1,   NFE2L2↑,1,   NK cell↑,1,   NKD2↑,2,   NNMT↓,1,   NO↓,1,   NO↑,1,   NOTCH↓,1,   NOTCH↝,1,   NOTCH1↓,4,   NOTCH1↝,1,   NQO1↑,1,   NRF2↓,1,   NRF2↑,4,   NRF2↝,1,   OCT4↓,4,   OS↓,1,   OS↑,1,   other↓,1,   other↑,1,   OXPHOS↑,1,   P-gp↓,1,   p16↑,2,   P21↑,11,   P21↝,1,   p27↑,3,   p300↓,1,   p38↓,1,   p‑p38↑,2,   p‑p42↓,1,   p‑p44↓,1,   p50↓,1,   P53?,1,   P53↓,1,   P53↑,7,   P53↝,1,   p‑P53↑,2,   p62↓,5,   p62↑,3,   p65↓,3,   p‑p65↓,1,   p‑p70S6↓,1,   p‑P70S6K↓,1,   p73↑,1,   PAK↓,1,   PAO↑,1,   Paraptosis↑,1,   PARP↓,1,   PARP↑,3,   p‑PARP↑,1,   cl‑PARP↑,7,   PARP1↓,1,   cl‑PARP1↑,1,   PCLAF↓,1,   PCNA↓,2,   PD-1↓,1,   PD-L1↓,2,   PD-L2↓,1,   PDGF↓,1,   p‑PDGF↓,1,   PDK1↓,1,   p‑PDK1↓,1,   PFK1↓,1,   PFKP↓,1,   PGAM1↓,1,   PGC1A↑,1,   PGE2↓,1,   PGK1↓,1,   PGM1↓,1,   pH↑,2,   PI3K↓,3,   PI3K↝,1,   p‑PI3K↓,1,   PI3K/Akt↓,2,   PI3k/Akt/mTOR↓,3,   PI3K/mTOR/ETS2↓,1,   PIAS-3↑,1,   p‑PIK3R1↓,1,   PIR↓,1,   Pirin↓,1,   PKM2↓,6,   circ‑PLEKHM3↑,1,   PPARα↝,1,   PPARγ↑,1,   p‑pRB↓,1,   PRKCG↑,1,   PSA↓,4,   PSA↝,1,   PSMB5↓,1,   PTCH1↓,1,   PTEN↑,4,   PTEN↝,1,   PTP1B↓,1,   PUMA↑,1,   Pyruv↓,1,   QoL↑,1,   RAD51↑,1,   radioP↑,2,   RadioS↑,5,   RadioS∅,1,   Raf↓,2,   RAS↓,2,   REL↑,1,   Remission↑,1,   Rho↓,1,   ROS↓,3,   ROS↑,44,   ROS⇅,1,   ROS↝,1,   RPS6KA1↓,1,   RTK-RAS↓,1,   p‑S6↓,1,   S6K↓,1,   p‑S6K↓,1,   SCD1↓,2,   SDH↑,1,   selectivity↑,4,   SFRP5↑,1,   Shh↓,5,   Slug↓,3,   p‑SMAD2↓,1,   p‑SMAD3↓,1,   SMG1↑,1,   Smo↓,2,   Snail↓,3,   SNCG↓,1,   SOCS-3↑,1,   SOCS1↑,1,   SOD1↓,1,   sonoS↑,1,   SOX2↓,2,   SOX9?,1,   Sp1/3/4↓,6,   SPARC↓,1,   Src↓,2,   SRD5A1↑,1,   SREBF2↓,1,   SSAT↑,1,   StAR↓,1,   STAT↓,1,   STAT1↓,2,   p‑STAT1↓,2,   p‑STAT2↓,1,   STAT3↓,12,   p‑STAT3↓,3,   STAT4↓,1,   STAT5↓,1,   survivin↓,4,   T-Cell↑,5,   TAp63α↑,2,   TAZ↓,1,   p‑TAZ↑,1,   TCA↑,1,   TCF↓,3,   Telomerase↓,1,   testos↓,1,   TET1↑,2,   TFAP2A↓,1,   TfR1/CD71↑,1,   TGF-β↓,6,   TILs↑,1,   TIM-3↓,1,   TLR4↓,3,   TNF-α↝,1,   TOP1↓,1,   TOP1↑,1,   TOP2↓,1,   TOP2↑,2,   toxicity↓,1,   TP53↑,1,   TRAILR↑,1,   TregCell↓,1,   TRIB3↑,1,   TRIF↓,1,   Trop2↓,1,   Trx↓,1,   Trx1↓,3,   Trx2↓,1,   TrxR↓,6,   TrxR1↓,1,   TumAuto↓,1,   TumAuto↑,11,   TumCCA↑,22,   TumCD↑,2,   TumCG↓,12,   TumCI↓,9,   TumCMig↓,13,   TumCP↓,25,   tumCV↓,8,   TumMeta↓,4,   TumVol↓,6,   Twist↓,1,   uPA↓,1,   UPR↑,1,   USF1↑,1,   VEGF↓,7,   VEGF↝,1,   Vim↓,11,   Vim↑,1,   Warburg↓,2,   Wnt↓,6,   Wnt↝,1,   Wnt/(β-catenin)↓,2,   xCT↓,1,   XIAP↓,3,   ZBTB10↑,1,   Zeb1↓,2,   ZO-1↑,1,   α-SMA↓,2,   β-catenin/ZEB1↓,12,   β-catenin/ZEB1↝,1,   p‑β-catenin/ZEB1↑,1,   β-TRCP↑,1,   γH2AX↑,2,   p‑γH2AX↑,1,  
Total Targets: 570

Results for Effect on Normal Cells:
12LOX↑,1,   5LO↓,1,   Ach↑,3,   AChE↓,15,   ADAM10↑,2,   ADAM10↝,1,   AIF↓,1,   Akt↓,1,   Akt↑,1,   p‑Akt↑,1,   ALAT↓,2,   ALP↓,1,   AMPK↑,1,   AntiAg↑,2,   AntiAge↑,2,   antiOx↑,20,   AP-1↓,2,   Apoptosis↓,1,   APP↓,1,   AST↓,2,   ATP↑,1,   mt-ATPase↑,1,   Aβ↓,12,   BACE↓,3,   BBB↑,7,   BChE↓,2,   Bcl-2↑,1,   BDNF↑,6,   BioAv↓,6,   BioAv↑,10,   BioAv↝,3,   BioEnh↑,3,   Ca+2↓,1,   cardioP↑,1,   Casp3↓,3,   Casp9↓,1,   Catalase↑,5,   CDK5↓,3,   ChAT↑,1,   CK2↑,1,   cognitive↑,13,   cognitive↝,1,   cognitive∅,1,   COL3A1↓,1,   COX2?,1,   COX2↓,8,   COX2↑,1,   creat↓,1,   CREB↑,2,   Cyt‑c↓,1,   DNAdam↓,1,   Dose↝,3,   Dose∅,1,   eff↑,7,   ERK↑,1,   Ferritin↑,1,   GFR↑,1,   GPx↑,3,   GSH↑,10,   GSK‐3β↓,4,   GSR↓,1,   GSTs↑,1,   GutMicro↑,1,   H2O2↓,1,   Half-Life↝,1,   HATs↓,1,   HDAC↑,1,   hepatoP↑,3,   HO-1↑,7,   HO-2↓,1,   ICAM-1↓,1,   IL1↓,2,   IL10↑,1,   IL12↓,3,   IL17↓,1,   IL1β↓,8,   IL2↓,2,   IL2↑,1,   IL23↓,1,   IL4↓,2,   IL4↑,1,   IL6↓,6,   IL8↓,2,   INF-γ↓,2,   Inflam↓,25,   iNOS↓,3,   IronCh↑,5,   LDH↓,1,   LDL↓,3,   lipid-P↓,6,   MAOA↓,1,   MCP1↓,3,   MDA↓,6,   MDA↑,1,   memory↑,10,   miR-22↑,1,   MMP↑,1,   MMP2↓,1,   MMP3↓,1,   MMP9↓,1,   MMPs↓,1,   MMPs↑,1,   Mood↑,1,   MPO↓,1,   MRP↓,1,   mTOR↓,1,   NADPH↓,1,   NADPH↑,1,   neuroP↑,11,   NF-kB↓,12,   NLRP3↓,2,   NO↓,4,   NO↑,1,   NQO1↑,1,   NRF2↑,10,   OS↑,2,   other↓,6,   p300↓,1,   PGE2↓,4,   PI3K↑,1,   PPARγ↑,1,   PSD95↑,1,   RenoP↑,2,   RNS↓,1,   ROS↓,27,   selectivity↑,1,   SIRT1↑,2,   SOD↓,1,   SOD↑,8,   Sp1/3/4↓,2,   STAT↓,1,   STAT3↓,1,   TAC↑,1,   tau↓,2,   p‑tau↓,4,   TGF-β↓,1,   TIMP1↑,1,   TLR2↓,1,   TNF-α↓,9,   toxicity↓,2,   toxicity∅,1,   TrkB↑,1,   TXA2↓,1,   TXNIP↓,1,   Wound Healing↑,1,   α-SMA↓,1,  
Total Targets: 146

Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:%  State#:%  Dir#:%
wNotes=0 sortOrder:rid,rpid

 

Home Page