Database Query Results : Curcumin, , cardioP

CUR, Curcumin: Click to Expand ⟱
Features:
Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties.
- Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells.
- GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells.
- Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production
- Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant
- Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH
- Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown
-may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog).
Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans.
• Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability.

-Note half-life 6 hrs.
BioAv is poor, use piperine or other enhancers
Pathways:
- induce ROS production at high concentration. Lowers ROS at lower concentrations
- ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓
- Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓
but conversely is known as a NRF2↑ activator in cancer
- Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑,
- lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓
- inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓
- reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓,
- cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓,
- inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓,
- inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓
- inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓,
- inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓,
- Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**,
- Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective,

- Selectivity: Cancer Cells vs Normal Cells


cardioP, cardioProtective: Click to Expand ⟱
Source:
Type:
CardioProtective


Scientific Papers found: Click to Expand⟱
2818- CUR,    Novel Insight to Neuroprotective Potential of Curcumin: A Mechanistic Review of Possible Involvement of Mitochondrial Biogenesis and PI3/Akt/ GSK3 or PI3/Akt/CREB/BDNF Signaling Pathways
- Review, AD, NA
*neuroP↑, Curcumin's protective functions against neural cell degeneration due to mitochondrial dysfunction and consequent events such as oxidative stress, inflammation, and apoptosis in neural cells have been documented
*ROS↓, studies show that curcumin exerts neuroprotective effects on oxidative stress.
*Inflam↓,
*Apoptosis↓,
*cognitive↑, cognitive performance to receive the title of neuroprotective
*cardioP↑, Studies have shown that curcumin can induce cell regeneration and defense in multiple organs such as the brain, cardiovascular system,
other↑, It has been shown that chronic use of curcumin in patients with neurodegenerative disorder can cause gray matter volume increase
*COX2↓, Curcumin also decreased the brain protein levels and activity of cyclooxygenase 2 (COX-2)
*IL1β↓, inhibition of IL-1β and TNF-α production, and enhancement of Nf-Kβ inhibition
*TNF-α↓,
NF-kB↓,
*PGE2↓, hronic curcumin therapy has shown a significant decrease in lipopolysaccharide (LPS)-induced elevation of brain prostaglandin E2 (PGE2) synthesis in rats
*iNOS↓, curcumin pretreatment decreased NOS activity in the ischemic rat model
*NO↓, curcumin has been shown to decrease NOS expression and NO production in rat brain tissue
*IL2↓, IL-2 is a cytokine that is anti-inflammatory. Numerous studies have shown that curcumin increases the secretion of IL-2
*IL4↓, curcumin reduced levels of IL-4
*IL6↓, Numerous studies have shown that curcumin in neurodegenerative events attenuates IL-6 production
*INF-γ↓, curcumin reduced the production of INF-γ, as pro-inflammatory cytokine
*GSK‐3β↓, Furthermore, previous findings have confirmed that inhibition of GSK-3β or CREB activation by curcumin has reduced the production of pro-inflammatory mediators under different conditions
*STAT↓, Inhibition of GSK-3β by curcumin has been found to result in reduced STAT activation
*GSH↑, chronic curcumin therapy increased glutathione levels in primary cultivated rat cerebral cortical cells
*MDA↓, multiple doses of 5, 10, 40 and 60 mg/kg) in rodents will inhibit neurodegenerative agent malicious effects, and reduce the amount of MDA and lipid peroxidation in brain tissue
*lipid-P↓,
*SOD↑, Curcumin induces increased production of SOD, glutathione peroxidase (GPx), CAT, and glutathione reductase (GR) activating antioxidant defenses
*GPx↑,
*Catalase↑,
*GSR↓,
*LDH↓, Curcumin decreased lactate dehydrogenase, lipoid peroxidation, ROS, H2O2 and inhibited Caspase 3 and 9
*H2O2↓,
*Casp3↓,
*Casp9↓,
*NRF2↑, ncreased mitochondrial uncoupling protein 2 and increased mitochondrial biogenesis. Nuclear factor-erythroid 2-related factor 2 (Nrf2)
*AIF↓, Curcumin treatment decreased the number of AIF positive nuclei 24 h after treatment in the hippocampus,
*ATP↑, curcumin in hippocampal cells induced an increase in mitochondrial mass leading to increased production of ATP with major improvements in mitochondrial efficiency


* indicates research on normal cells as opposed to diseased cells
Total Research Paper Matches: 1

Results for Effect on Cancer/Diseased Cells:
NF-kB↓,1,   other↑,1,  
Total Targets: 2

Results for Effect on Normal Cells:
AIF↓,1,   Apoptosis↓,1,   ATP↑,1,   cardioP↑,1,   Casp3↓,1,   Casp9↓,1,   Catalase↑,1,   cognitive↑,1,   COX2↓,1,   GPx↑,1,   GSH↑,1,   GSK‐3β↓,1,   GSR↓,1,   H2O2↓,1,   IL1β↓,1,   IL2↓,1,   IL4↓,1,   IL6↓,1,   INF-γ↓,1,   Inflam↓,1,   iNOS↓,1,   LDH↓,1,   lipid-P↓,1,   MDA↓,1,   neuroP↑,1,   NO↓,1,   NRF2↑,1,   PGE2↓,1,   ROS↓,1,   SOD↑,1,   STAT↓,1,   TNF-α↓,1,  
Total Targets: 32

Scientific Paper Hit Count for: cardioP, cardioProtective
Filter Conditions: Pro/AntiFlg:%  IllCat:%  CanType:%  Cells:%  prod#:65  Target#:1188  State#:%  Dir#:%
wNotes=on sortOrder:rid,rpid

 

Home Page