| Features: |
| Curcumin is the main active ingredient in Tumeric. Member of the ginger family.Curcumin is a polyphenol extracted from turmeric with anti-inflammatory and antioxidant properties. - Has iron-chelating, iron-chelating properties. Ferritin. But still known to increase Iron in Cancer cells. - GSH depletion in cancer cells, exhaustion of the antioxidant defense system. But still raises GSH↑ in normal cells. - Higher concentrations (5-10 μM) of curcumin induce autophagy and ROS production - Inhibition of TrxR, shifting the enzyme from an antioxidant to a prooxidant - Strong inhibitor of Glo-I, , causes depletion of cellular ATP and GSH - Curcumin has been found to act as an activator of Nrf2, (maybe bad in cancer cells?), hence could be combined with Nrf2 knockdown -may suppress CSC: suppresses self-renewal and pathways (Wnt/Notch/Hedgehog). Clinical studies testing curcumin in cancer patients have used a range of dosages, often between 500 mg and 8 g per day; however, many studies note that doses on the lower end may not achieve sufficient plasma concentrations for a therapeutic anticancer effect in humans. • Formulations designed to improve curcumin absorption (like curcumin combined with piperine, nanoparticle formulations, or liposomal curcumin) are often employed in clinical trials to enhance its bioavailability. -Note half-life 6 hrs. BioAv is poor, use piperine or other enhancers Pathways: - induce ROS production at high concentration. Lowers ROS at lower concentrations - ROS↑ related: MMP↓(ΔΨm), ER Stress↑, UPR↑, GRP78↑, Cyt‑c↑, Caspases↑, DNA damage↑, cl-PARP↑, HSP↓ - Lowers AntiOxidant defense in Cancer Cells: GSH↓ Catalase↓ HO1↓ GPx↓ but conversely is known as a NRF2↑ activator in cancer - Raises AntiOxidant defense in Normal Cells: ROS↓, NRF2↑, SOD↑, GSH↑, Catalase↑, - lowers Inflammation : NF-kB↓, COX2↓, p38↓, Pro-Inflammatory Cytokines : TNF-α↓, IL-6↓, IL-8↓ - inhibit Growth/Metastases : TumMeta↓, TumCG↓, EMT↓, MMPs↓, MMP2↓, MMP9↓, uPA↓, VEGF↓, NF-κB↓, CXCR4↓, SDF1↓, TGF-β↓, α-SMA↓, ERK↓ - reactivate genes thereby inhibiting cancer cell growth : HDAC↓, DNMT1↓, DNMT3A↓, EZH2↓, P53↑, HSP↓, Sp proteins↓, - cause Cell cycle arrest : TumCCA↑, cyclin D1↓, CDK2↓, CDK4↓, CDK6↓, - inhibits Migration/Invasion : TumCMig↓, TumCI↓, ERK↓, EMT↓, TOP1↓, TET1↓, - inhibits glycolysis /Warburg Effect and ATP depletion : HIF-1α↓, PKM2↓, cMyc↓, GLUT1↓, LDHA↓, HK2↓, PFKs↓, PDKs↓, HK2↓, ECAR↓, OXPHOS↓, GRP78↑, GlucoseCon↓ - inhibits angiogenesis↓ : VEGF↓, HIF-1α↓, Notch↓, FGF↓, PDGF↓, EGFR↓, Integrins↓, - inhibits Cancer Stem Cells : CSC↓, CK2↓, Hh↓, GLi1↓, CD133↓, CD24↓, β-catenin↓, n-myc↓, sox2↓, OCT4↓, - Others: PI3K↓, AKT↓, JAK↓, STAT↓, Wnt↓, β-catenin↓, AMPK↓, ERK↓, JNK, TrxR**, - Synergies: chemo-sensitization, chemoProtective, RadioSensitizer, RadioProtective, Others(review target notes), Neuroprotective, Cognitive, Renoprotection, Hepatoprotective, CardioProtective, - Selectivity: Cancer Cells vs Normal Cells |
| 147- | AG, | EGCG, | CUR, | Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells |
| - | in-vitro, | Pca, | LNCaP | - | in-vitro, | Pca, | MCF-7 |
| 3446- | ALA, | CUR, | The Potential Protective Effect of Curcumin and α-Lipoic Acid on N-(4-Hydroxyphenyl) Acetamide-induced Hepatotoxicity Through Downregulation of α-SMA and Collagen III Expression |
| - | in-vivo, | Nor, | NA |
| 2635- | Api, | CUR, | Synergistic Effect of Apigenin and Curcumin on Apoptosis, Paraptosis and Autophagy-related Cell Death in HeLa Cells |
| - | in-vitro, | Cerv, | HeLa |
| 1024- | Api, | CUR, | Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects |
| - | vitro+vivo, | Melanoma, | A375 | - | in-vitro, | Melanoma, | A2058 | - | in-vitro, | Melanoma, | RPMI-7951 |
| 2703- | BBR, | CUR, | SFN, | UA, | GamB | Naturally occurring anti-cancer agents targeting EZH2 |
| - | Review, | Var, | NA |
| 3754- | BBR, | CUR, | EGCG, | Hup, | Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review |
| 3514- | Bor, | CUR, | Effects of Curcumin and Boric Acid Against Neurodegenerative Damage Induced by Amyloid Beta |
| - | in-vivo, | AD, | NA |
| 1426- | Bos, | CUR, | Chemo, | Novel evidence for curcumin and boswellic acid induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer |
| - | in-vivo, | CRC, | NA | - | in-vitro, | CRC, | HCT116 | - | in-vitro, | CRC, | RKO | - | in-vitro, | CRC, | SW480 | - | in-vitro, | RCC, | SW-620 | - | in-vitro, | RCC, | HT-29 | - | in-vitro, | CRC, | Caco-2 |
| 145- | CA, | CUR, | The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity |
| - | in-vitro, | NA, | NA |
| 2015- | CAP, | CUR, | urea, | Anti-cancer Activity of Sustained Release Capsaicin Formulations |
| - | Review, | Var, | NA |
| 428- | Chit, | docx, | CUR, | Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer |
| - | vitro+vivo, | Lung, | H460 | - | vitro+vivo, | Lung, | H1299 | - | vitro+vivo, | Lung, | A549 | - | vitro+vivo, | Lung, | PC9 |
| 3628- | Croc, | VitE, | CUR, | Vitamin E, Turmeric and Saffron in Treatment of Alzheimer’s Disease |
| - | Review, | AD, | NA |
| 3795- | CUR, | Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence |
| - | Review, | AD, | NA |
| 3585- | CUR, | Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer |
| - | Study, | NA, | NA |
| 3794- | CUR, | Curcumin hybrid molecules for the treatment of Alzheimer's disease: Structure and pharmacological activities |
| - | Review, | AD, | NA |
| 3793- | CUR, | Curcumin Downregulates GSK3 and Cdk5 in Scopolamine-Induced Alzheimer’s Disease Rats Abrogating Aβ40/42 and Tau Hyperphosphorylation |
| - | in-vivo, | AD, | NA |
| 3760- | CUR, | GI, | CAP, | RosA, | PI | Extending the lore of curcumin as dipteran Butyrylcholine esterase (BChE) inhibitor: A holistic molecular interplay assessment |
| 3753- | CUR, | Gala, | A Novel Galantamine–Curcumin Hybrid Inhibits Butyrylcholinesterase: A Molecular Dynamics Study |
| - | Study, | AD, | NA |
| 3752- | CUR, | Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor |
| - | in-vivo, | AD, | NA |
| 3751- | CUR, | Gala, | A Novel Galantamine-Curcumin Hybrid as a Potential Multi-Target Agent against Neurodegenerative Disorders |
| - | in-vivo, | AD, | NA |
| - | in-vitro, | AD, | SH-SY5Y |
| 3748- | CUR, | RES, | Hup, | Riv, | Gala | Natural acetylcholinesterase inhibitors: A multi-targeted therapeutic potential in Alzheimer's disease |
| - | Review, | AD, | NA |
| 3590- | CUR, | The Holy Grail of Curcumin and its Efficacy in Various Diseases: Is Bioavailability Truly a Big Concern? |
| - | Review, | Var, | NA | - | Review, | AD, | NA |
| 3588- | CUR, | The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: A systematic review of pre-clinical and clinical studies |
| - | Review, | AD, | NA |
| 3586- | CUR, | PI, | Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers |
| - | in-vivo, | NA, | NA |
| 4656- | CUR, | EGCG, | Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling |
| - | in-vitro, | BC, | MDA-MB-231 | - | in-vitro, | BC, | MCF-7 |
| - | in-vivo, | AD, | NA |
| 2688- | CUR, | Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs |
| - | Review, | Var, | NA | - | Review, | AD, | NA |